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Background/Theory (1/2)
Assumption about statistical errors on Rietveld analysis

　(1) 　  : Error caused by counting (Poisson) statistics for count-loss negligible case

　　　= square root of count
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Background/Theory (1/2)
A theoretical model for statistical errors

　(1) 　  : Error caused by counting (Poisson) statistics for count-loss negligible case
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　(2) 　  : Error caused by particle (sampling) statistics (Alexander et al. 1948)

　　　　　　　　　 : peak intensity,          : effective multiplicity

Dependence on (ycalc - b), 2θ and meff (for symmetric relection, stationary specimen) 
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Proportionality factor Cp , determined by crystallite size, absorption factors of the 
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Background/Theory (1/2)
A theoretical model for statistical errors

　(1) 　  : Error caused by counting (Poisson) statistics for count-loss negligible case

　　　= square root of count

　(2) 　  : Error caused by particle (sampling) statistics (Alexander et al. 1948)

　　　　　　　　　 : peak intensity,          : effective multiplicity

Dependence on (ycalc - b), 2θ and meff (for symmetric relection, stationary specimen)
is acceptable.
Proportionality factor Cp , determined by crystallite size, absorption factors of the 
sample and geometry of the diffractometer, 
can experimentally be evaluated for stationary specimens, 
in symmetric-reflection mode, if a standard powder and a sample-spinning 
attachment are used (Ida et al., 2009).　← useless for structure refinement
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　(1) 　  : Error caused by counting (Poisson) statistics for count-loss negligible case

　　　= square root of count

　(2) 　  : Error caused by particle (sampling) statistics (Alexander et al. 1948)

　　　　　　　　　 : peak intensity,          : effective multiplicity

Proportionality factor Cp is unknown

　(3) 　  : Error proportional to intensity (Toraya 1998, 2000)
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Background/Theory (1/2)
A theoretical model for statistical errors

　(1) 　  : Error caused by counting (Poisson) statistics for count-loss negligible case

　　　= square root of count

　(2) 　  : Error caused by particle (sampling) statistics (Alexander et al. 1948)

　　　　　　　　　 : peak intensity,          : effective multiplicity

Proportionality factor Cp is unknown

　(3) 　  : Error proportional to intensity (Toraya 1998, 2000)

　　　Incompleteness of count-loss correction (?) and/or peak profile model (?)

Proportionality factor Cr is unknown

How can we optimize the statistical model including two unknowns Cp & Cr in variance 
to fit experimental data ?
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Maximum likelihood estimation (MLE)
     Maximization of the probability that the observed data should appear

     Maximization of 
　　　　　　　　　　　

　　Deviation of the observed value from calculated value : 

　　MLE can optimize not only　　　 , but also the error　　ycalc( ) j
σ j
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Maximum likelihood estimation (MLE)
     Maximization of the probability that the observed data should appear

     = Minimization of                               
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Least-squares method (LSQ)
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Ability of Maximum Likelihood Method
     ( = Minimum Unlikelihood Optimization )

Background/Theory (2/2)
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Ability of Maximum Likelihood Method
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Maximum likelihood estimation (MLE)
     Maximization of the probability that the observed data should appear
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　　Deviation of the observed value from calculated value : 
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Method of MLE Calculation

Step (1) : Structure refinement by the Rietveld method
Optimization of structure and profile models
(with RIETAN-FP ver. 2.x)

Step (2) : Error estimation by MLE method
Evaluation of effective multiplicity at each data point
Optimization of error model by downhill simplex method
Calculation of statistical errors
(coded with a graphing software Igor Pro ver. 6.2 macro language)

Iterations of steps (1) & (2)
Maximum-likelihood solution of structure, profile and error models will be obtained, when 
no change is observed on further iteration (typically 2~3 iterations are needed).

22

Δ, {y1, ..., yM} σ



23

Δ, {y1, ..., yM} σ

Method of MLE Calculation

Step (1) : Structure refinement by the Rietveld method
Optimization of structure and profile models
(with RIETAN-FP ver. 2.x)
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Method of MLE Calculation

Step (1) : Structure refinement by the Rietveld method
Optimization of structure and profile models
(with RIETAN-FP ver. 2.x)

Step (2) : Error estimation by MLE method
Evaluation of effective multiplicity at each data point
Optimization of error model by downhill simplex method
Calculation of statistical errors
(coded with a graphing software Igor Pro ver. 6.2 macro language)

Iterations of steps (1) & (2)
Maximum-likelihood solution of structure, profile and error models will be obtained, when 
no change is observed on further iteration (typically 2~3 iterations are needed).
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The results of the new (MLE) method are closer to single-crystal data rather 
than the results of the Rietveld method from the same data set !
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Results (2/4)　BaSO4     (open powder data attached to RIETAN-FP)

Comparison with single-crystal data
Spherical 0.15 mmΦ (Miyake et al. 1978)，

Difference in atomic coordinates
(from results by Miyake et al.)

The results of the new (MLE) method coincide with the single-crystal 
data except one structure parameter (O1: z), while the deviations in the results of 
the Rietveld method exceed the error range.
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Results (3/4)　LaxSr1-xMnO3

La0.03Sr0.97MnO3， P63/mmc
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Results (3/4)　LaxSr1-xMnO3

La0.03Sr0.97MnO3， P63/mmc
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Results (3/4)　LaxSr1-xMnO3

La0.03Sr0.97MnO3， P63/mmc
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Results (4/4)　BaSO4, heat-treated coarse-grain powder
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Results (4/4)　BaSO4, heat-treated coarse-grain powder
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Results (4/4)　BaSO4, heat-treated coarse-grain powder
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Rietveld MLE
single
crystal

Bond length (Å)Bond length (Å)Bond length (Å)Bond length (Å)

S–O1 2.04 1.39 1.47

S–O2 1.47 1.41 1.47

S–O3 1.84 1.60 1.49

Bond angles (º)Bond angles (º)Bond angles (º)Bond angles (º)

O1-S-O2 74.6 112.2 111.9

O1-S-O3 137.8 114.2 109.6

O2-S-O3 107.7 109.3 108.9

O3-S-O3’ 82.9 96.5 107.9

Results (4/4)　BaSO4, heat-treated coarse-grain powder



Conclusion

A new analytical method for powder diffraction intensity data 
based on MLE, superordinate concept of the LSQ method, 
has been developed.  The method includes estimation of 
statistical errors on structure refinement.  

The structure parameters of Ca3(PO4)3F & BaSO4 optimized 
by the new method have become closer to the single-crystal 
data, as compared with the results of the Rietveld 
refinement.  The structure of a La-Sr-Mn-O system optimized 
by the new method is clearly different from those refined by 
the Rietveld analyses.   

Reasonable structure parameters was obtained from powder 
diffraction data of coarse BaSO4 powder by applying the ML 
optimization.
 
published in J. Appl. Cryst. 44(5) 921-927 (2011).
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Statistical analysis of experimental data

　Baysian inference

　　↓　application of mode

　Maximum A Posteriori estimation

　　↓ 　uniform prior distribution

　Maximum Likelihood Estimation

　　↓ 　experimental error known

　Least Squares Method

general

special

Appendix: Background/Theory



Appendix 2: Ca5(PO4)3F, PbSO4, BaSO4

Likelihood estimator ＝ probability that observed dataset 

should appears

41

Ca5(PO4)3F PbSO4 BaSO4

PRietveld 10–14698 10–17386 10–9567

PIda-Izumi 10–13654 10–15305 10–8682

PIda-Izumi / PRietveld 101044 102081 10885

The statistical model of the newmethod is 10885 ～ 102081 times more likely than 

that used in Rietveld analysis
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Appendix: errors in the goniometer angles
A theoretical model for statistical errors

　(1) 　  : Error caused by counting (Poisson) statistics for count-loss negligible case

　(2) 　  : Error caused by particle (sampling) statistics (Alexander et al. 1948)

　(3) 　  : Error proportional to intensity (Toraya 1998, 2000)

　(4)        : Error caused by statistical error in goniometer angle

σ j
2 = σ c( ) j

2 + σ p( ) j

2
+ σ r( ) j

2 + σ 2Θ( ) j

2

σ c

σ r

σ 2Θ = C2Θ Δ2Θ( )

σ p

σ 2Θ

C2Θ = ∂ycalc

∂2Θ
⎛
⎝⎜

⎞
⎠⎟
−1



Errors in 2Θ ? (1)  Ca5(PO4)3F  (open powder data)

Optimized errors in 2Θ : Δ2Θ = 0.0030º
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Total & component errors optimized
 by maximum likelihood estimation
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← Errors calculated with Δ2Θ = 0.003º



Errors in 2Θ ? (2)  PbSO4   (open powder data attached to FULLPROF)

Optimized errors in 2Θ : Δ2Θ = 0.0099º
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Total & component errors optimized
 by maximum likelihood estimation

← Total errors evaluated by the
    maximum likelihood estimation

← Counting statistical errors

← Particle statistical errors

← Errors proportional to intensities

← Errors calculated with Δ2Θ = 0.0099º
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Errors in 2Θ ? (3) (open powder data attached to RIETAN-FP)

Optimized errors in 2Θ : Δ2Θ = 0.0036º
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← Errors calculated with Δ2Θ = 0.0036º
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Discussions on DXC 2012:

Q1 (Jim Kaduk, chairman): “Your talk makes us think many things before the excursion.  There 
have been some suggestions to change how to weight the data in the Rietveld analysis, and do 
you think adjustment of weighting scheme can make similar results as your method ?”
A1: “Yes, I think it is possible, but I think the maximum likelihood method is easier.”

Q2 (D. Balzar): “As you have mentioned, the errors in the optimized parameters were almost 
unchanged.  Do you have any idea to explain that ?”
A2: “Good question... Actually, the results are different from what I expected, and I am not sure 
about the reason... But as I showed in equations,  I have changed the treatment of the PEAK 
PROFILE intensity, but NOT changed the treatment of the BACKGROUND intensity in the 
statistical model.  You know most of the powder diffraction intensity data are background 
intensity, so I think that can be a reason why the estimated errors are not significantly 
changed... but I am not sure about that now.”


