Frontiers of Characterization and Metrology for Nanoelectroincs

Challenges and Opportunities for Modeling and Simulation

Mark Lundstrom

Network for Computational Nanotechnology Purdue University West Lafayette, Indiana USA

obligatory Moore's Law plot

nanoscale MOSFETs

device simulation

Frank, Laux, and Fischetti, IEDM Tech. Digest, p. 553, 1992.

- Monte Carlo simulation -with quantum corrections
- Drift-diffusion

molecular electronics

$$\vec{J} = nq\mu_n \vec{E} + qD_n \nabla n?$$

$$\mu = \frac{q\tau}{m^*}?$$

generic model of a nanodevice

S. Datta, *Quantum Transport: Atom to Transistor*, Cambridge, 2005 ("Concepts of Quantum Transport" **nanohub.org**)

Landauer-Datta

$$I_{D} = \frac{2q}{h} \int T(E)M(E)(f_{1} - f_{2})dE$$

Or
$$I_{D} = \frac{2q}{h} \int \gamma(E)\pi \frac{D(E)}{2}(f_{1} - f_{2})dE$$

generic model --> NEGF

S. Datta, *Quantum Transport: Atom to Transistor*, Cambridge, 2005 ("Concepts of Quantum Transport" <u>nanohub.org</u>)

limits of MOSFETs

from M. Luisier, ETH Zurich / Purdue

spintronics

Theory: Datta group Purdue

Experiment: Cornell Sankey et al. *Nat. Phys.*, **4**, 67 (2008)

10

21st century electronics

MOSFETs and variability

1997 MOSFET (Texas Instruments)

Random Dopant Fluctuations

after Takahiro Shinada, et al., *Nature*, **437**,1128, 2005

nanostructured solar cells (Alam group)

13

Phase segregation dominated by Spinodal decomposition

1) Transistors

-quantum transport with dissipation

-dealing with randomness and variability

2) Beyond transistors

-from the atomistic/nano scales to the (often random) micro- and macro scales.

3) Other challenges

builders (experimentalists) vs. analysts

http://www.endex.com/gf/buildings/bbridge/bbgallery/

Eugene Fergason, in Engineering and the Mind's Eye, 1994

why we simulate

Three reasons to simulate:

1) to **explore** uncharted territory

2) to **resolve** well-posed questions

3) to make good **design** choices

-Leo Kadanov, *Computing in Science and Engineering*, 2004

what we're after

Two kinds of results:

- 1) answers, insight, understanding
- 2) numbers and software

(after Brian Hayes, on "inquisitive computing" in American Scientist, 2008)

role cyberinfrastructure

www.nanoHUB.org

signature service:

online simulation to connect simulation tool developers and users

cloud computing for science and engineering

cyber-enabled research

Arvind Raman ME, Purdue

Virtual Environment for Dynamic AFM

- Comprehensive suite of AFM simulation tools
- Includes realistic tip sample interaction models
- Sophisticated cantilever dynamics models
- Liquid/ambient/vacuum conditions
- Soft/hard organic/inorganics samples
- Used by individual researchers...
- and AFM industry (Agilent, Veeco, Asylum)

"I have been using VEDA now for almost a year and have found it to be extremely useful. ... Finally, I have also been very happy with the ability to run these sometimes rather computationally expensive calculations remotely. I joked about it last year .. but since then I have actually run several calculations on my iPhone while traveling." Roger Proksch, CEO and co-founder, Asylum Research

another view

"The purpose of computing is insight - not numbers." -Richard W. Hamming "Research on molecular and nanoscale electronics is providing a new understanding of electronic conduction at the smallest scale. The objective of "Electronics from the Bottom-Up" is to convey these new insights, understanding, and conceptual approaches to students and working engineers worldwide."

19,259 nanoHUB.org EBU students last year.

New partnership with World Scientific.

nanoHUB.org

the biggest challenge in computational science

American Scientist, pp.5,6, Jan/Feb 2006.

office nanoHUB.org

Essential Software Skills for Research Scientists

https://www.nanohub.org/resources/1811

Software Carpentry:

conclusion

There are plenty of challenges, but many more opportunities!