Scatterfield Microscopy, Review of Techniques that Push the Limit of Optical Defect Metrology

Rick Silver

Group Leader, Surface and Nanostructure Metrology Group National Institute of Standards and Technology

Bryan Barnes Martin Sohn Francois Goasmat Hui Zhou Andras Vladar Abraham Arceo

Defect Modeling and Analysis 193 nm Scatterfield Microscope Programming and Simulation Simulation Engine SEM Measurements SEMATECH, Wafer development

- ITRS metrology roadmap shows defect inspection as red, without known solutions in just two years. We are working with the major manufacturers and suppliers to evaluate and develop new techniques to meet these needs.
- The main challenge: to measure very small, nanometer scale features over large patterned areas in manufacturing. There is a fundamental incompatibility between throughput and resolution.
- Optical methods offer unparalleled throughput with tremendous sensitivity. Spatial frequency modulation of the illumination and collection fields can be tailored to enhance optical defect signals.
 - Further gains can be achieved at shorter wavelengths
 - The arrayed and directional aspects of current and future device fabrication are well suited to engineered optical fields

Outline

- Scatterfield Optical Microscopy
- Simulations
 - Quantitative validation
 - 3-D Patterned Defects

- Angle and Polarization Enhanced Sensitivity – Wavelength optimization
- Multi-dimensional Defect Detection
 - Rigorously using three-dimensional focus information

- Future Directions in Inspection
- Conclusions

Source and Collection Optimization for Arrayed Patterns

Scatterfield Microscopy

- Optical microscopy
 - High magnification, image forming optics
- Source optimization, frequency control, and structured illumination

R. Silver et al., Proc. SPIE 5752, 67-79 (2005).

Optimizing optical defect inspection using:

- wavelength
- polarization
- spatial frequency
- focus position

rad

control coherence

Simulation Studies to Assess Trends in Detectability

rad

Highly directional bridge defects

Defect Metric Definition

- Random and correlated noise, with $3\sigma = 2\%$ of mean(I_{ref}), is added to each difference image.
- The defect metric is the absolute intensity sum of the pixels with intensities greater than 4σ for regions larger than a specified area.

Definition of axes

2.16 μ m x 2.16 μ m FDTD domain (3x9 unit cell rep.) grid size = 3 nm, λ = 193 nm

Defect Simulation Details

- Three-dimensional simulations of structures are performed on defects from the 22 nm to defects below 10 nm.
 - Finite-difference time-domain (FDTD)
 - In-house code
 - RCWA code
 - In-house but primarily used for 2-D modeling
 - Finite Element Method (FEM)
 - Commercially available code
 - Integral equation solver (in-house)

Results are subtracted for die-to-defect comparisons

Theory-to-experiment comparisons for defect metrology.

raa

Defect "By"

Each image normalized individually.

Images

Simulation Experiment

Differential Images

Developing Accurate Simulation Methods: Advanced Tool Characterization

rad

50 nm pillar array, 175 nm pitch at λ =450 nm

OCD parameterization

	а	σ _a
middle	45.27 nm	2.77 nm
δ	26.27 nm	6.61 nm
height	82.12 nm	5.99 nm
aspect	1.19	0.01

OCD with with δ_{AFM} and h_{AFM}

	а	σ _a
middle	48.91 nm	0.89 nm
δ	18.17 nm	2.63 nm
height	73.84 nm	1.78 nm
aspect	1.19	0.01

Right tables show measurements with hybrid metrology embedding AFM.

rad

Fitting Optimized Targets for sub-20 nm CD Metrology

- Sets of nominally 14nm, 16 nm, and 18 nm lines were fabricated by SEMATECH based on NIST designs.
- Targets are Si on Si with a thin conformal oxide. Wafers fabricated using ebeam litho.
- Line extensions were included to facilitate AFM measurements. Note AFM measurements may have a bias compared to dense area optical measurements.
- Current target sizes as small as 1.75 μm x 6 μm.

Data Fitting for L14P60 30-line Dense ArrayX-polarized lightY-polarized light

SEM example

Best Fits: 5 nm SiO2 cap 45nm Si height 7 nm at 1.0h 11 nm at 0.8h 14 nm at 0.5h 16 nm at 0.3h 24 nm at base

AFM data: 45nm Si height 13 nm at 0.8h 16 nm at 0.5h 18 nm at 0.2

raa

Parametric model

Theory to Experiment Fits: 100-line Dense Array

Target 2 - 42-20-3-2-5-4-8 - X - Focus Offset: -92 - kx: 0 - Chi(norm): 1.0793007724781

- Fits shown on left with uncertainties in table below.
- Target 1 has width and height floated with 2 oxide capping thicknesses.
- Target 2 has same plus top width floated.

				-	100	1000	0.000	
								188
			1000		王法的			
			10.11					
			10 C C					
			80 - I					- C
	131	100			1.1			
	105				2.18			
	100				108 B			
	80.			100	118			
	2011-			12.1	0.1B			
					1.48			
				80 V	S 8			
	100				- 15			
		80 M		10.00	128			- CO
					1.00			
		100	100	ACCREMENTS.	1965			
			111					
								18 H I

	Target 1	Target 2
Height (nm)	42 ± 0.024	45 ± 0.123
CD [1.0 h] (nm)	9	17
[0.8 h](nm)	13	21 ± 0.047
[0.5 h] (nm)	16 ± 0.017	24 ± 0.210
[0.3 h] (nm)	18	26
[0.0 h] (nm)	26	34

Simulation Study: Polarization and Angle Dependence 15 nm Bridge Defects

TE polarization – s pol.

TM Polarization – p pol.

- These highly directional bridges with narrow widths are optimally detected at particular combinations of θ and ϕ .
- As the direction of the bridge changes 90°, the optimal combinations of θ and ϕ rotate by 90°.

raa

• Detectability for the By defect is not symmetric for TE polarization.

Simulation Study: Polarization and Angle-Resolved Detection 8 nm Bridge Defects

• These highly directional bridges are sensitive to polarization and to a lesser extent, the polar angle, θ . The azimuthal angle ϕ has a modest effect.

raa

Experiment: 193 nm Laser Optical Metrology System

SYSTEM OVERVIEW

Angular Scan Mode

- -Nearly plane wave illumination
- Pinhole apertures 20 um~1500 um
- Control of illumination angle, polarization, and phase

Full Field Modification Mode

- Modify distribution of illumination
- Motorized rotating aperture holder
- Modify spatial intensity distribution
- Control polarization state

Major upgrades underway.

Physical Measurement Laboratory

Fourier image of dipole illumination

rad

 $\lambda = 450 \text{ nm}$ $\lambda = 193 \text{ nm}$

Theory-to-experiment Comparison at λ = 193 nm

Lower examples show defects 15 nm in size based on reference measurements.

Defect

Illumination Aperture **Polarization**

Images **Simulation Experiment**

Differential Images Simulation Experiment

Bx60

By60

SEM

SEM

Full-field

Dipole

rad

z = 300 nm

z = 100 nm

z = -200 nm

- Simulations qualitatively trend with experimental results. •
- Clearly, not all aspects of the microscope are accounted for here. •

Using all the Three Dimensional Data for Inspection

- Capturing images through focus not only finds a best focus for observing defectivity but also provides additional correlated data.
- Two-dimensional treatments of the data cannot fully utilize this information.

• Each image is *m* x *n* pixels which are typically square.

Image simulation of dipole illumination with X polarization on a 8 nm Bx defect at λ =193 nm.

Using matched focus positioning or interpolation, match *xy* pixel pitch to *z* position to form cubic volumetric pixels (voxels).

raa

Using all the Three Dimensional Data for Inspection

- As with all defect simulations, noise should be added to benchmark detectability.
- Subtraction of the two volumes leads directly to a difference volume.

- With this 3-D matrix, we are now in a position to exploit
 - 3-D continuity, 3-D filtering, 3-D thresholding,
 - As well as employing standard methods over the full volume.

raa

Experiments on the 9 nm node SEMATECH IDA at λ = 193 nm

Additional Experimental Intensity Processing Steps

- Fourier intensity filtering
 - Operates on the defect and reference volumes
- 3-D correlation of volumes
- Note: shift between "defect" and "reference" image is < 1 μm, thus two defect signatures are measured.

The 9 nm node IDA

printing of this array

raa

Experimental Validation: J defect – Y pol. , λ = 193 nm

J defect schematic

The defect volume can be visualized as a 2D slice 3D isometric view XY projection XZ projection YZ projection

raa

Experimental Validation: By defect – Y pol. , λ = 193 nm

4

3

XZ projection

2

4

He

3

rad

Χ (μm)

Volumetric-based Focus Metric

Defect J Die (3,3) Pol Y

In this example, a fivefold increase in sensitivity is observed

	Area (pixels ²)	Integrated Intensity (a.u.)
2-D best image	8	0.50
3-D flatten Y	42	(02
3-D flatten X	42	6.03

rad

Summary of Volumetric-based Focus Metric

• The addition of the focus-resolved data increases the defect sensitivity using an area-based defect metric by about a factor of five or more for at least one of the two 3-D projections used.

		2 nd Die, "Bx" Y pol. 1.33 DR	1 st Die <i>,</i> "By" Ƴ pol. 0.45 DR	2 nd Die, "By" <i>X</i> pol. 0.89 DR	1 st Die, "J" Y pol. 1.55 DR
Area	2-D Best Image	21	12	5	8
(pixeis²)	3-D, Flatten x	88	72	27	42
	3-D, Flatten y	96	69	18	42

• The improvement in sensitivity between the 2-D and 3-D results varies with defect type, ranging by a factor of 7.5 up to a factor of 14.9 .

Integrated		2 nd Die, "Bx" Y pol. 1.33 DR	1 st Die, "By" <i>Y</i> pol. 0.45 DR	2 nd Die, "By" <i>X</i> pol. 0.89 DR	1 st Die, "J" Y pol. 1.55 DR
Intensity (a.u.)	2-D Best Image	2.30	0.87	1.29	0.50
	3-D, Flatten x	21.40	12.00	0.70	C 02
	3-D, Flatten y	31.49	12.96	9.79	6.03

Angle and Focus Resolved Detection: Dipole Illumination

Data taken with polarization along the bridge direction.

By defect - Y pol.

	Area (pixels ²)	Integrated Intensity (a.u.)
2-D best image	4	0.010
3-D flatten Y	15	0.074
3-D flatten X	15	0.076

rad

New Directions: Potential Gains in Coherent Imaging

Interference microscopy using simple reference plane. Difference intensity images simulated using the FEM model for 22nm.

raa

Scatterfield Microscopy for Improved Defect Detection

- Simulations demonstrate clear optimal combinations of angular illumination and polarization.
- Experimental verification of simulation trends has been observed with qualitative theory-to-experiment matching for a variety of apertures, polarizations, and defect types.
- A clear, quantifiable gain in sensitivity of up to five was demonstrated using three-dimensional focus information through multi-dimensional defect detection.
 - This approach allows the full range of 3-D filters, continuity, and algorithms to be explored.

raa

• New directions in coherent imaging and Fourier frequency control were described.