Sample Alignment of X-Ray Reflectometry Using Thickness and Density From Certified Reference Materials

Introduction to XRR Problem

Calibration of XRR measurement technique

•Why is XRR calibration important? The semiconductor and optics industries need to precisely determine thin film character:

future NIST SRMS in XRR

thickness, roughness, density, composition, etc.

•What is required to calibrate XRR measurements?

Nanotechnology research requires accurate thin film characterizatior

Calibration artifact: stable with time, well determined structure, rich in data features

SI traceable measurement: well characterized instrument response function

Unbiased data analysis: SI traceability between structural model and measurement

•What is the current status of an XRR calibration standard? NMIJ & NIST collaboration on data analysis and recommended Reference Material use for calibration in the field NIST is developing several materials in collaboration with SEMATECH and collaborators for

CRM strategy

MBE epitaxial deposition of AIAs/GaAs produces high quality, stoichometric, multilayer with smooth interfaces and low inter-diffusion.

Nominal Reference values for NMIJ GaAs/AIAs RM

	Structure	Reference value (nm) (k=2) ¹	Information value (nm)
	Surface oxide	-	1.32
	1 st layer (GaAs)	-	9.24
8	2 nd layer (AIAs)	9.65 ± 0.11	
4	3 rd layer (GaAs)	9.51 ± 0.10	
6	4 th layer (AIAs)	9.64 ± 0.11	
6	5 th layer (GaAs)	9.51 ± 0.09	
7	6 th layer (AIAs)	9.62 ± 0.11	

NIST-NMIJ MCMC RM thickness stability study (5yrs)

	Structure (thickness in nm)	2004 NMIJ/GA	2004 NIST/MCMC (95%) k=2 ¹	2005 NIST/GA	2009 NIST/ MCMC (95%) k=2 ¹
	Al ₂ O ₃	1.23	0.89 to 1.43	2.779	2.97 to 3.66
	GaAs	9.05	8.87 to 9.60	8.457	7.88 to 8.51
8	AIAs	9.44	9.35 to 9.64	9.480	9.09 to 9.69
4	GaAs	9.27	9.13 to 9.40	9.307	9.01 to 9.45
5	AIAs	9.43	9.33 to 9.63	9.464	9.24 to 9.69
6	GaAs	9.26	9.12 to 9.40	9.303	9.10 to 9.60
7	AIAs	9.44	<u>9.31 to 9.61</u>	9.466	<u>9.20 to 9.78</u>
	GaAs	-	-	-	-

Conclusions (from 2011 NIST/NMIJ study)

The buried (Layers 3-7) show stability over many years Uncertainty analysis showed expanded uncertainties of < 0.3 nm for Layers 3-7.

International Community Interaction

NIST's transfer method of calibration capability to customers: SRMs

NIST XRR Measurement Alignment

Goal			
Develop a method to calibrate thickness and dens measurement from a given XRR instrument			
Step 1			
Measure XRR from an "aligned" Reference Material			
Align using methods provided by instrument vendor			
Measure the sample several times and with several re-mountings			
Certified Reference Materials are available from NMIJ and are under development at NIST			
Stop 2			

Analyze XRR using commercially Very fast at providing a solution that fits the Only finds a best fit, so it cannot provide c Available from most commercial instrument

Intentionally shift θ data from an aligned XRR measurement
heta is the sample angle from the source (typically the detector moves at 20)
Shifting is easily accomplished by adding a fixed value, γ , to the θ column in excel or equiv.
Shifts of +/- 0.025° are sufficient to cover alignment range (~ 7 γ shifts is sufficient)

Compare density and thickness refinements with reference values
Goodness of Fit provides too slow of a response to determine optimal alignment
Thickness increases linearly with sample tilt for buried layers in a multilayer stack
Density decreases linearly with sample tilt for buried layers in a multilayer stack
Certified thickness or density define the aligned condition for an instrument

Determine inst

Repeat steps 3 and 4 for multiple measurer **Compare** results over time, and over differe

Mis	alignment Ge
	XRR
spe	ecular reflect
	$\theta_i = \theta_r$
ì	Thin Film

MATERIAL MEASUREMENT LABORATORY

D. Windover¹, Yasushi Azuma², D.L. Gil¹, Toshiyuki Fujimoto² ¹National Institute of Standards and Technology, Material Measurement Laboratory, Gaithersburg, MD 20899, USA, ²National Institute of Advanced Industrial Science and Technology, National Metrology Institute of Japan, 1-1-1 Umezono, Tsukuba 305-8568, Japan

Aligned data refinement Aligned data will catch all oscillation features provided the appropriate structural model is used + Data - GA fit Oxide GaAs AlAs GaAs AlAs GaAs AlAs

Wafer

 $\times 10^{-2}$ Reflection angle (θ / rad)

Thickness variation with misalignment

Step 2

available Genetic Algorithm refinement
data well
etailed information about uncertainties
vendors and also open source

Step 3

Step 4

Step 5

rument repeatability
nents and multiple mountings
ent instrument conditions (ex. lab temperature)

ent Geometry

reflection misalignment angle ----_____

Conscani Software MCMC & GA XRR modeling software courtesy of David L Gil (david.gil@CORUSCAVI.com)

GA XRR modeling software courtesy of Matthew Wormington (mattheww@JVSEMI.com)

NIST - NMIJ

GaAs thickness calibration linearity				
Both GaAs layers have a slope correction of \sim 3 nm/° (for this data set)				
cture	Reference value (nm)	Intercept Thickness (nm)	Slope (thickness / ° misalignment)	R ² (A measure of fit quality)
		Na		
;		Na		
	9.44	9.476	-4.846x	.998
5	9.27	9.272	-2.845x	0.9956
	9.43	9.469	-4.990x	0.999
5	9.26	9.267	-3.3106x	0.9974
	9.44	9.461	-5.193x	0.9939
5		Na	Na	

5	9.26	9.267	-3.3106x	0.9974	
	9.44	9.461	-5.193x	0.9939	
;		Na	Na		
	AIAs t	hickness cali	bration linearity		
All AIAs layers have a slope correction of ~5 nm/° (for this data set)					
All A	AIAs layers have	a slope correct	ion of ~5 nm/° (for this da	ita set)	
All A	AIAs layers have	a slope correct	ion of ~5 nm/° (for this da	ita set)	
All A	AlAs layers have Reference	e a slope correct Intercept	ion of ~5 nm/° (for this da Slope	nta set) R ²	
All A	AlAs layers have Reference value (nm)	a slope correct Intercept Thickness (nm)	ion of ~5 nm/° (for this da Slope (thickness / ° misalignment)	nta set) R ² (A measure of fit quality)	
All A	AlAs layers have Reference value (nm)	a slope correct Intercept Thickness (nm) NA	ion of ~5 nm/° (for this da Slope (thickness / ° misalignment)	nta set) R ² (A measure of fit quality)	
All A	AlAs layers have Reference value (nm)	a slope correct Intercept Thickness (nm) NA NA	ion of ~5 nm/° (for this da Slope (thickness / ° misalignment)	nta set) R ² (A measure of fit quality)	

	9.44	9.476	-4.846x	.998
S	9.27	9.272	-2.845x	0.9956
i i	9.43	9.469	-4.990x	0.999
S	9.26	9.267	-3.311x	0.9974
	9.44	9.461	-5.193x	0.9939
3		Na	Na	

Both AIAs and GaAs buried layer thickness provide both direction of misalignment and good linearity for calibration High variability in the slopes between AIAs and GaAs layers is a consequence of fringe "beating" and may adversely effect results if layers "swap" inside the model (which can sometimes happen in multilayer fitting)

Density variation conclusions

Both AIAs and GaAs buried layer density provide both direction of misalignment and good linearity for calibration Careful selection of the layer used for density calibration is essential given the narrower range for linearity High slope changes (~ 10 times higher than thickness) show the significant impact that slight misalignment has on density determination using XRR

Standard uncertainty derived from statistical methods (Type A). Standard uncertainty a priori derived (Type B) (see Taylor NIST TN 1297)

Thickness CRMs available from NMIJ

	Si/SiO ₂ multilayer (NMIJ CRM 5202-a)	
Enhancement of Interface Constrasts under defocal Condition. $\Delta F = -50 \text{ nm}$ SIO ₂ SI	Margania Santa S	
SI Managana and Andreas	Structure	Certified value ¹ (nm)
SiO ₂	1 st Layer (SiO ₂)	•
Si 20 nm	2 nd Layer (Si)	20.0 ± 0.6
	3 rd Layer (SiO ₂)	20.5 ± 0.8
	4 th Layer (Si)	19.9 ± 0.5
	5 th Layer (SiO ₂)	20.5 ± 0.6

Density variation with misalignment

		GaAs density calibration linearity							
		GaAs layers have both high linearity and stability in density correction factors							
s d s		Structure	Bulk Density	Intercept Density (g/cm3)	Slope (density / ° misalignment)	R ² (A measure of fit quality)			
)		AI_2O_3		Na					
5		GaAs	5.316	Na					
		AIAs	3.81	3.807	31.555x	0.8905			
;	4	GaAs	5.316	5.455	47.244x	0.9997			
		AIAs	3.81	3.680	38.052x	0.9995			
5	6	GaAs	5.316	5.367	37.529x	0.9998			
	_	AIAs	3.81	3.633	19.014x	0.9894			
afer		GaAs		Na	Na	Fixed			

		AIAs density calibration linearity							
		AIAs layers have a large range of slope correction factors							
k S		Structure	Bulk Density	Intercept Density (g/cm3)	Slope (density / ° misalignment)	R ² (A measure of fit quality)			
<u>,</u>		AI_2O_3		Na					
;		GaAs	5.316	Na					
		AIAs	3.81	3.807	31.555x	0.8905			
		GaAs	5.316	5.455	47.244x	0.9997			
	6	AIAs	3.81	3.680	38.052x	0.9995			
;		GaAs	5.316	5.367	37.529x	0.9998			
	7	AIAs	3.81	3.633	19.014x	0.9894			
afer		GaAs		Na	Na	Fixed			

*Certain commercial equipment, instruments, or materials are identified in this poster to specify the experimental procedure adequately. Such identification is not intended to imply recommendation or endorsement by the National Institute of Standards and Technology, nor is it intended to imply that the materials or equipment identified are necessarily the best available for the purpose.

NIST National Institute of Standards and Technology U.S. Department of Commerce