Skip to main content
U.S. flag

An official website of the United States government

Official websites use .gov
A .gov website belongs to an official government organization in the United States.

Secure .gov websites use HTTPS
A lock ( ) or https:// means you’ve safely connected to the .gov website. Share sensitive information only on official, secure websites.

Search Publications

NIST Authors in Bold

Displaying 1 - 25 of 100

Rydberg states of alkali atoms in atomic vapor as SI-traceable field probes and communications receivers

May 8, 2024
Author(s)
Noah Schlossberger, Nik Prajapati, Samuel Berweger, Andrew Rotunno, Aly Artusio-Glimpse, Abrar Sheikh, Eric Norrgard, Christopher L. Holloway, Stephen Eckel
Rydberg states of alkali atoms are highly sensitive to electric fields because their electron wavefunction has a large spatial extent, leading to large polarizabilities for static fields and large transition dipole moments for time-varying fields

Rydberg states of alkali atoms in atomic vapor as SI-traceable field probes and communications receivers

May 8, 2024
Author(s)
Noah Schlossberger, Nik Prajapati, Samuel Berweger, Aly Artusio-Glimpse, Matt Simons, Abrar Sheikh, Andrew Rotunno, Eric Norrgard, Stephen Eckel, Christopher L. Holloway
Rydberg states of alkali atoms are highly sensitive to electric fields because their electron wavefunction has a large spatial extent, leading to large polarizabilities for static fields and large transition dipole moments for time-varying fields

Metropolitan-scale Entanglement Distribution, with Co-existing Quantum and Classical Signals in a single fiber

May 7, 2024
Author(s)
Anouar Rahmouni, Paulina Kuo, Ya-Shian Li-Baboud, Ivan Burenkov, Yicheng Shi, Jabir Marakkarakath Vadakkepurayil, Nijil Lal Cheriya Koyyottummal, Dileep Reddy, Mheni Merzouki, Lijun Ma, Abdella Battou, Sergey Polyakov, Oliver T. Slattery, Thomas Gerrits
The development of prototype metropolitan-scale quantum networks is underway and entails transmitting quantum information via single photons through deployed optical fibers spanning several tens of kilometers. Among the major challenges in metropolitan

Experimental demonstration of local area entanglement distribution between two distant nodes, coexisting with classical synchronization

May 12, 2023
Author(s)
Anouar Rahmouni, Paulina Kuo, Yicheng Shi, Jabir Marakkarakath Vadakkepurayil, Nijil Lal Cheriya Koyyottummal, Ivan Burenkov, Ya-Shian Li-Baboud, Mheni Merzouki, Abdella Battou, Sergey Polyakov, Oliver T. Slattery, Thomas Gerrits
We successfully demonstrated polarization entanglement distribution and classical time synchronization using a high-accuracy precision time protocol between two quantum nodes located 250 meters apart using a single fiber simultaneously carrying both

Constraints on Gaussian Error Channels and Measurements for Quantum Communication

April 10, 2023
Author(s)
Alexander T. Kwiatkowski, Ezad Shojaee, Sristy Agrawal, Akira Kyle, Curtis Rau, Scott Glancy, Emanuel Knill
Joint Gaussian measurements of two quantum systems are important for quantum communication between remote parties and are often used in continuous-variable teleportation or entanglement-swapping protocols. Many of the errors in real-world implementations

Synchronization and Coexistence in Quantum networks

March 27, 2023
Author(s)
Ivan Burenkov, Alexandra Semionova, FNU Hala, Thomas Gerrits, Anouar Rahmouni, DJ Anand, Ya-Shian Li-Baboud, Oliver T. Slattery, Abdella Battou, Sergey Polyakov
We investigate the coexistence of clock synchronization protocols with quantum signals in a common single-mode optical fiber. By measuring optical noise between 1500 nm to 1620 nm we demonstrate a potential for up to 100 quantum DWDM channels coexisting

Experimental Ambitions for DC-Area Quantum Network Testbed

March 23, 2023
Author(s)
Oliver T. Slattery, Adam Black
Quantum networks [1] bear the promise of one day enabling diverse applications such as secure communications, distributed quantum computing, distributed sensing, and time distribution, in addition to other applications not yet identified. In recent years

Portable polarization-entangled photon source & receiver toolset for quantum network metrology

October 4, 2022
Author(s)
Anouar Rahmouni, Thomas Gerrits, Paulina Kuo, Dileep Reddy, Lijun Ma, Xiao Tang, Oliver T. Slattery
A quantum network will consist of many physically separated nodes connected by quantum communication channels that distribute entanglement between them. Such nodes will require mechanisms for the generation, routing, and measurement of quantum states to

Towards entangled photon pair generation from SiC-based microring resonator

October 4, 2022
Author(s)
Anouar Rahmouni, Lijun Ma, Xiao Tang, Thomas Gerrits, Lutong Cai, Qing Li, Oliver T. Slattery
Entangled photon sources are fundamental building blocks for quantum communication and quantum networks. Recently, silicon carbide emerged as a promising material for integrated quantum devices since it is CMOS compatible with favorable mechanical

Resource optimization of quantum-enabled channels using novel modulation schemes

July 21, 2021
Author(s)
Jabir Marakkarakath Vadakkepurayil, FNU Nur Fajar Rizqi Annafianto, Ivan Burenkov, Abdella Battou, Sergey Polyakov
We introduce new practical modulation schemes inspired by the quantum measurement. We experimentally show that our quantum-enabled communication system optimizes the combined resource efficiency (CRE) beyond the classical, shot-noise-limited CRE.

Demonstration that Einstein-Podolsky-Rosen Steering Requires More than One Bit of Faster-than-Light Information Transmission

May 28, 2021
Author(s)
Yu Xiang, Michael Mazurek, Joshua Bienfang, Michael Wayne, Carlos Abellan, Waldimar Amaya, Morgan Mitchell, Richard Mirin, Sae Woo Nam, Qiongyi He, Marty Stevens, Krister Shalm, Howard Wiseman
Schrödinger held that a local quantum system has some objectively real quantum state and no other (hidden) properties. He therefore took the Einstein-Podolsky-Rosen (EPR) phenomenon, which he generalized and called 'steering', to require nonlocal

Practical quantum-enhanced receivers for classical communication

April 20, 2021
Author(s)
Ivan Burenkov, Jabir Marakkarakath Vadakkepurayil, Sergey Polyakov
Communication is an integral part of human life. Today, optical pulses are the preferred information carriers for long-distance communication. The exponential growth in data leads to a "capacity crunch" in the underlying physical systems. One of the

Compact and Tunable Forward Coupler Based on High-Impedance Superconducting Nanowires

February 25, 2021
Author(s)
Marco Colangelo, Di Zhu, Daniel F. Santavicca, Brenden Butters, Joshua Bienfang, Karl K. Berggren
Developing compact, low-dissipation, cryogenic-compatible microwave electronics is essential for scaling up low-temperature quantum computing systems. In this paper, we demonstrate an ultracompact microwave directional forward coupler based on high

A simple low-latency real-time certifiable quantum random number generator

February 24, 2021
Author(s)
Yanbao Zhang, Hsin-Pin Lo, Alan Mink, Takuya Ikuta, Toshimori Honjo, Hiroki Takesue, William Munro
Quantum random numbers distinguish themselves from others by their intrinsic unpredictability arising from the principles of quantum mechanics. As such they are extremely useful in many scientific and real-world applications with considerable efforts going

Experimental demonstration of the near-quantum optimal receiver

November 19, 2020
Author(s)
Jabir Marakkarakath Vadakkepurayil, Ivan Burenkov, FNU Nur Fajar Rizqi Annafianto, Abdella Battou, Sergey Polyakov
We implement the cyclic quantum receiver based on the theoretical proposal of Roy Bondurant and demonstrate experimentally below the shot-noise limit (SNL) discrimination of quadrature phase-shift keying signals (PSK). We also experimentally test the

A kilopixel array of superconducting nanowire single-photon detectors

November 18, 2019
Author(s)
Varun Verma, Adriana Lita, Sae Woo Nam, R P. Mirin, Emma Wollman, William Farr, Matthew Shaw
We present a 1024-element imaging array of superconducting nanowire single photon detectors (SNSPDs) using a 32x32 row-column multiplexing architecture. Large arrays are desirable for applications such as imaging, spectroscopy, or particle detection.

Background and Review of Cavity-Enhanced Spontaneous Parametric Down-Conversion

August 22, 2019
Author(s)
Oliver T. Slattery, Lijun Ma, Kevin Zong, Xiao Tang
Spontaneous parametric down-conversion (SPDC) in a nonlinear crystal has been a workhorse for the generation of entangled and correlated single-photon pairs used for quantum communications applications for nearly three decades. However, as a naturally
Displaying 1 - 25 of 100