Carnegie Mellon

Online Integration of Modular Smart Grid Test Beds

Marija Ilic, Jovan Ilic, Jhi-Young Joo Carnegie Mellon University <u>milic@ece.cmu.edu</u>

Invited presentation at NIST Workshop, March 13-14, 2014

Outline

Major problems requiring integrated smart grid test beds

- Smart grid characteristics and performance measurements
- R&D needs
- Centralized simulation of modular smart grids
 Distributed simulation of modular smart grids
 Co-simulation of modular smart grids within cyber-physical systems

Challenges of Integrating smart grid test beds

- Why integrate?
 - System-level performance improvements at distributed-level choices
- Major problems to solve
 - Integrating (operation and planning) new technologies at value
 - Avoiding unexpected operating problems

Carnegie Me

R&D needs

Systematic framework for designing and online testing of interconnected test beds

Information exchange protocol definitions

- That align multi-layered distributed performance measurements with system-level performance
- That support data-driven and model-based decision making; academic work in progress
- Communication protocol definitions for temporal and spatial information exchange to ensure theoretically provable observability
 - Specification of sensing, communication delays, estimation accuracy, security needs

Design and Development Evolution

World is a collection of distributed objects

- Model the systems as close as needed
- Centralized, single processor simulation
- Simulate on a distributed computational platform by replacing communication method
- Replace some of nodes with measurements
- Explore proposed data flow standards; collaborating with the industry

SG features and performance measurements (basis for information protocols)

Well-defined protocols (technical, \$\$, interoperability)

- Over a wide range of time scales (planning; scheduling; load following; stabilization)
- Over a wide range of geography/hierarchy (small customers, LSEs, ISOs, TOs, DOs, GENCOs)

Performance measurements

Distributed multi-party (demand side, renewables, conventional GENCOs, LSEs, ISOs, ...)

spec

Time-varying

DYMONDS – Aligning distributed and systemlevel performances

Centralized modular smart grid simulation

Adaptive Load Management

Example of scheduling – Flores Island, Azores, Portugal


```
Carnegie Mellon ()
```

Interactive moving-horizon dispatch

Proof of concept: distributed vs. centralized

Flores Island, July 16, 2008

Reference: Engineering IT-enabled Sustainable Electricity Service: The Tale of Two Low-Cost Green Azores Islands, Springer, 2013

Carnegie Mellon

47

Distributed modular smart grid simulation

Co-simulation of modular smart grids within cyber-physical systems

Concluding remarks

- Smart Grid In A Room -- NIST-CMU collaborative project, is pursuing simulation of modular smart grids integration
- Model-based and data driven demonstration of provable performance based on proposed information protocols

Next phase:

distributed co-simulation to demonstrate communication protocols

- Directly relevant to integration of existing physical test beds
- Collaborating with Microsoft and OSISoft on Smart City initiative

15

Carnegie Mellon

Thank you

Networked Database System

- Interoperable with power system entities
- Secure with well defined access control
- Capable of storing large amounts of data
- Available API to interface with various data sources and formats (SQL, CIM, text, etc.)
- APIs for different programming languages (C/C++, Matlab, Python, etc.)
- Free for academic research

Implementation Outcomes

Designing better dispatch and control algorithms

Defining what information needs and can be exchanged for higher efficiency algorithms

Deciding on communication standardization efforts

Flores Island, Jan 15, 2008

Distributed interactive protocols approach system-level performance Generation dispatch

