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ABSTRACT

Developing effective energy resource management strategies
in the smart grid is challenging due to the entities on both
the demand and supply sides experiencing numerous fluctu-
ations. In this paper, we address the issue of quantifying
uncertainties on the energy demand side. Specifically, we
first develop approaches using statistical modeling analysis
to derive a statistical distribution of energy usage. We then
utilize several machine learning based approaches such as
the Support Vector Machines (SVM) and neural networks
to carry out accurate forecasting on energy usage. We per-
form extensive experiments of our proposed approaches us-
ing a real-world meter reading data set. Our experimental
data shows that the statistical distribution of meter reading
data can be largely approximated with a Gaussian distribu-
tion and the two SVM-based machine learning approaches
to achieve a high accuracy of forecasting energy usage. Ex-
tensions to other smart grid applications (e.g., forecasting
energy generation, determining optimal demand response,
and anomaly detection of malicious energy usage) are dis-
cussed as well.1

Categories and Subject Descriptors

C.4 [Performance of Systems]: Modeling Techniques

General Terms

Measurement, Performance

Keywords

Statistical Modeling Analysis, Energy Usage Forecasting,
Machine Learning, Real-world Meter Reading Data, Smart
Grid

1. INTRODUCTION

With recent developments in sensing, information, and
communication technologies, the smart grid becomes a propos-
ing system that makes the power grid more efficient, reliable,

1Copyright is held by the authors. This work is
based on an earlier work: RACS’14 Proceedings of
the 2014 ACM Research in Adaptive and Conver-
gent Systems, Copyright 2014 ACM 978-1-4503-3060-2.
http://dx.doi.org/10.1145/2663761.2663768

and secure. To efficiently deliver energy resources in the
smart grid, an energy resource management strategy needs
to be developed to balance the energy demand and supply
[28]. Nonetheless, developing effective energy resource man-
agement schemes is challenging due to the entities on both
the demand and supply sides experiencing numerous fluctu-
ations. For example, on the supply side, fluctuations could
come from distributed renewable energy resources due to
solar irradiance, wind speed, etc. On the demand side, nu-
merous effects, including natural disasters, plug-in vehicles,
personal habits of using energy, weather and temperature,
etc., could make it difficult to predict energy usage.

To address these issues, in this paper, we develop tech-
niques to effectively manage energy resources and usage in
order to adapt to fluctuations. Particularly, to balance en-
ergy demand and supply, we develop effective techniques to
accurately model and forecast the amount of energy genera-
tion and demand over time. Therefore, the issue of quantify-
ing fluctuations on the energy demand side can be addressed.
It is worth noting that the techniques developed in this paper
can be applied to the energy generation side as well. We also
conduct the modeling analysis to derive a statistical model
of energy usage and develop several machine learning based
approaches to perform accurate forecasting of energy usage.
The extensions to areas, including forecasting energy gener-
ation, determining optimal demand response, and anomaly
detection of malicious energy usage, are discussed as well.

To summarize, the key contributions of this paper are as
follows:

• First, using the real-world meter reading data set from
Stanford University that consists of meter readings
from houses over 200 days2 as described in [18], we
study the statistical distribution of real-world meter
reading data using non-parametric tests, including the
Shapiro-Wilk test [31] and the Quantile-Quantile plot
normality test [9]. The experimental data shows that
the distribution of meter reading data can be approx-
imated with a Gaussian distribution.

• Second, we develop machine learning based approaches
to conduct accurate energy usage forecasting. Partic-

2The authors would like to acknowledge Mr. Sebastien
Houde at Stanford University for his dedicated help on pro-
viding the real-world smart meter measurement data set.
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ularly, we consider the standard Radial Basis Func-
tion (RBF) based SVM, the Least Squares (LS) based
SVM, and the Backward Propagation Neural Network
(BPNN). In addition, we conduct extensive experi-
ments using the aforementioned real-world meter read-
ing data set to validate the effectiveness of these ap-
proaches. The experimental data shows that the two
SVM-based approaches achieve a higher prediction ac-
curacy than the BPNN based approach.

• Third, the techniques that we developed in this pa-
per can be expanded to other areas as well, includ-
ing the modeling and forecasting of energy generation,
the optimal demand response, and anomaly detection
of malicious energy usage. Using the prediction of
wind speed as an example, the use of the SVM ma-
chine learning based approach can be used to effec-
tively conduct the forecasting on the distributed en-
ergy resources in the energy supply side. In addition,
the developed statistical modeling and forecasting re-
sults can be applied to derive the upper and lower
bounds of energy usage and determine optimal demand
response as well as anomaly detection of malicious en-
ergy usage.

The remainder of this paper is organized as following: The
literature review is conducted in Section 2. The problem of
balancing the energy demand supply and the developed ap-
proaches to perform the statistical modeling and forecasting
of energy usage are presented in Section 3. The experi-
mental results using real-world meter reading data set to
validate the effectiveness of the developed approaches are
shown in Section 4. The extensions of the work to other
areas (e.g., forecasting energy generation, determining opti-
mal demand response, and performing anomaly detection of
malicious energy usage) are presented in Section 5. Finally,
the conclusion is drawn in Section 6.

2. RELATED WORK

A number of research efforts have been conducted to im-
prove energy transmission and distribution efficiency [6, 10,
25, 5, 20, 11]. For example, Guan et al. [10] proposed min-
imizing the overall cost of electricity and natural gas for a
building operation. Chen et al. [5] proposed an optimal de-
mand response scheme that could match electricity supply
and shape electricity demand accordingly in both competi-
tive and oligopolistic markets.

The challenges associated with the forecasting and de-
mand response associated with energy usage were also dis-
cussed in [23]. Broadly speaking, energy usage forecasting
can be categorized into short-term, medium-term, and long-
term forecasting. For example, Hong et al. [13] adopted a
multiple linear regression mechanism for conducting short-
term forecasting, which provides an interpretability of the
behavior of the electricity usage in the service territory. A
semi-parametric additive model proposed by Fan et al. in
[8] used a regression mechanism and investigated the nonlin-
ear relationships between energy usage data and variables in
the short-term time period. In addition, a human-machine
co-construct intelligence framework was proposed in [14] to
determine the horizon year load for a long term load fore-
casting.

Machine learning methods such as SVM and neural net-
works have been used in carrying out forecasting [2, 32, 37,
35, 1, 19, 15, 29]. For example, Shi et al. [32] developed a
SVM-based model for one-day-ahead power output forecast-
ing using the characteristics of weather classification.

Different from the existing research efforts, using the real-
world meter reading data set [18], non-parametric tests were
used to investigate the statistical distribution of energy us-
age. To the best of our knowledge, our paper is one of
the first to validate that the statistical distribution of me-
ter reading data can be largely approximated with a Gaus-
sian distribution. In addition, two SVM and neural network
based approaches were used to systematically perform the
energy usage forecasting and the effectiveness of these ma-
chine learning approaches was systematically evaluated and
compared. The findings from the paper can be extended to
other areas, including the energy generation forecasting, the
optimal demand response, and anomaly detection of mali-
cious energy usage.

3. OUR APPROACHES

In this section, we first present an overview of the problem
and our proposed approaches. We then describe the real-
world data set and develop the non-parametric test based
approaches to carry out statistical modeling. Finally, we
discuss machine learning based approaches to perform en-
ergy usage forecasting.

3.1 Overview

In the smart grid, the electric power from generators can
be delivered through the power grid to large geographical
areas. High efficiency in power production and energy uti-
lization can be realized through monitoring and control of
power transmission and distribution processes. How to man-
age both bulk and distributed energy resources and the con-
sumption levels of consumers to balance energy supply and
demand is important. Nonetheless, developing effective man-
agement techniques to balance energy supply and demand
is a challenging task because both sides experience various
fluctuations.

To address this issue, we developed a statistical analysis
and model of energy usage in this paper. We also developed
machine learning based approaches to conduct accurate fore-
casting of energy usage. For the statistical modeling, we
use two types of non-parametric test approaches to derive
the distribution of energy usage based on real-world meter
reading data. For forecasting energy usage, we developed
several machine learning based approaches to conduct ac-
curate energy usage forecasting. Energy providers can use
these techniques to schedule energy generation and to make
energy transmission and distribution efficient.

3.2 Real-world Energy Usage Data Set

We now introduce the real-world data set from Stanford
University, which consists of meter readings from houses over
200 days (between February 2010 and October 2010) [18].
In this data set, weather information (e.g., mean tempera-
ture) for each 24 hour period is taken from archival data at
Weather Underground website. We use meter readings and
weather information for 283 houses in our experiments in
Section 4.
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An example of meter reading is shown in Table 1. From
the table, each house is assigned an ID. The meter reading
data for energy usage is measured hourly. The fields con-
tained in the data set are shown in Table 2, which consists of
the house ID , time, energy usage, the maximum, mean, and
minimum value of temperature, and maximum and mean
value of wind speeds. The house size (i.e., the area) is in-
cluded as well. As an example, the information shown in
Table 3 is the data associated with house 1001 that is for
a rented townhouse, built in 2004, with 92.90 − 139.35 sq.
meters. In Table 4, we show an example of meter readings
for energy usage and weather information at 2 p.m. from
days 100 to 102 for house 1001. On day 100, the energy
usage is 2.20 kilowatt hours (KWh) and the mean values of
temperature and wind speed are 50 Fahrenheit degrees (F )
and 20.92 Km Per Hour (KmPH), respectively.

Table 1. Data Range and Time Scale

Data Type Range

ID of Houses 1-283
Time Interval Hourly

Time Span Approximately 200 days
Number of Data Points Approximately 4800 (one per hour)

Table 2. Data Fields

Max Temp Mean Temp Min Temp
Max WindSpeed Mean WindSpeed ID

Day-of-Year Hour Electricity Consumption

Table 3. Sample of House Information

ID Building Rent Year Const. Size

1001
Townhouse, duplex

or row house
Rent 2004 92.90-139.35

sq. meters

1002
Single Family

Detached House
Own 1992 185.81-232.37

sq. meters

3.3 Statistical Model of Energy Usage

To establish a statistical model of energy usage, we de-
velop two non-parametric test based approaches to derive
the statistical distribution of energy usage based on the
aforementioned real-world meter reading data. We use a
non-parametric test to carry out the analysis of the energy
usage data. For a set of one-dimensional data, common
non-parametric test approaches include the Shapiro-Wilk
test [31] and the Kolmogorov-Smirnov (K-S) test [12]. It
is worth noting that because the K-S test demands the pre-
knowledge of the distribution of the sample data, the test
result will not be credible if the population’s Cumulative
Distribution Function (CDF) is estimated from the sample
data. It is worth noting that the predetermined CDF of the
meter data is not known, so we consider the Shapiro-Wilk
test to test the distribution of the sample data. We also use
another non-parametric test approach, which is also called
Quantile-Quantile (Q-Q) plot normality test, to confirm the
distribution of meter reading data [36]. On the plot, when
two data sets are identically distributed, the Q-Q plot will
be shown a line. Then, we know that the greater the depar-
ture from the reference line, the greater the chance that the
two data sets are drawn with different distributions.

Table 4. An Example of Real-World Meter
Reading Data

Day EU Max T Mean T Min T Max W Mean W

100 2.20 55 50 46 33.80 20.92

101 1.29 57 54 50 22.53 12.87
102 1.58 59 54 50 22.53 11.27

1 T stands for temperature (Fahrenheit degree (F )), W stands for wind

speed (Km per hour (KmPH)), and EU stands for energy usage (kilo-
watt hour (KWh))

3.4 Machine Learning Based Approaches for
Energy Usage Forecasting

To accurately forecast energy usage in the smart grid, we
use the following machine learning based approaches: neural
network based machine learning, the standard SVM and the
least squares SVM.

3.4.1 Neural Network Based Machine Learning

There are a number of research efforts on neural networks
[16, 17]. A classic example of one of these neural networks
is the Backward Propagation (BP) neural network, which
consists of three layers: input layer, hidden layer, and output
layer. Note that the error between real value and estimated
value will be propagated backward from output layer to hid-
den layer and from hidden layer to input layer. The error
of each layer can be re-estimated and the weights can be
assigned correspondingly. Parameters for neural networks
are set through a training process that use known data sets
as input. After the training process, the trained model can
then be used to carry out forecasting.

3.4.2 Standard SVM and LS-SVM

The standard SVM was originally proposed by V. N. Vap-
nik et al. [7]. Generally speaking, the SVM is one of the
popular methods to efficiently classify data and to build a
classifier, which can be further used to carry out forecasting.
In SVM, the data and associated features can be treated as
a point and vectors in multi-dimensional space. The basic
principle of a standard SVM is to find a hyperplane, which
could divide the points into different spaces. By doing so,
we can classify data into different categories [27]. In order
to minimize the classification error, the proper hyperplane
needs to be determined.

The least squares SVM that is also denoted as LS-SVM is
an enhanced SVM [33]. In a LS-SVM, there are two major
enhancements in comparison with the standard SVM. First,
the inequality constraints are substituted by equality con-
straints. Second, the squared loss function is used in the
objective function [34]. In our experiment, we use the radial
basis function as the kernel function in LS-SVM due to its
wide use.

3.4.3 Workflow for Energy Usage Forecasting

As shown in Figure 1, the main process of machine learn-
ing based approaches can be divided into the following three
steps: (i) data preprocessing, (ii) input feature selection, and
(iii) energy usage forecasting. In the following, we describe
these steps in detail.

Step 1: Data Preprocessing. To make our data more suit-
able for energy forecasting, data preprocessing needs to per-
formed first. Note that the real-world energy usage data
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cannot be directly used due to the following reasons: (i) the
data is lacking attribute values that could be caused by the
measurement noise of meters; and (ii) existing noises or bad
data could be deviated from the norm values due to mal-
function or unexpected events in the system (e.g., failures,
power cuts, and/or natural disasters, etc.).

To address these issues, we introduce an interpolation
mechanism to fill the missing values in the experimental
data set and smooth incorrect data values with the aver-
age value of points around them. The missing data is filled
using a linear interpolation mechanism. For bad data, be-
cause energy usage has continuity, the data located before
and after adjacent time periods should not have a distinct
change. Therefore, the average value in a continuous period
of time can be considered as a baseline. Then, data beyond
the baseline could be treated as bad data. Our experiments
on the aforementioned real-world data set shows that the
percentages for missing values and bad data are 3.08 % and
3.26 % on average, respectively. Therefore, around 6.34 %
of data in the real-world data set used in this paper needs
to be reprocessed using the mechanism discussed above.

Step 2: Input Feature Selection. As described in Sec-
tion 3.2, various factors (e.g., weather and/or user’s be-
haviors) can affect levels of energy usage. To achieve ac-
curate energy usage forecasting, the selection of input fea-
tures is important. The common way for feature selection
is to choose related input variables such as the energy usage
data in the past few days, humidity, temperature, and wind
speed.

Recall that each component in the training data set is
denoted as a feature. Here, the type of feature should be
considered to include in input vectors. In this paper, the
input features consist of two basic features: (i) hourly his-
torical energy usage, and (ii) weather information. For the
historical energy usage data, the measurements of the pre-
vious three hours are selected as input elements. The relieff
[30] algorithm was used to determine the importance of fea-
tures. In particular, the algorithm appraises features one by
one and assigns a weight to each feature to indicate its im-
portance. The larger the weight, the higher the importance
of the feature. Table 5 and Table 6 illustrate the weight of
all features related to weather in the experimental data and
the results of the input features selection, respectively. In
the experiments, the top three largest weights are selected
and the energy usages in three hour timespans are chosen as
input features for each house. To achieve rapid convergence
during the training process, the network input data and the
corresponding output data for the forecasting models are
normalized such that all data is mapped into the range of
[−1, 1].

Table 5. Weight of Weather Features

ID Max T Mean T Min T Max W Mean W

1002 0.2539 0.2367 0.5011 1.4756 0.6090

1035 -0.0004 0.0060 0.0032 -0.0032 0.0090

1044 0.0013 0.0015 0.0013 0.0006 0.0019

1 T denotes temperature, W denotes wind speed

Step 3: Energy forecasting with SVMs. After the feature
selection, the energy usage data should be divided into two
parts: (i) training set, and (ii) testing set. The training set is

Table 6. Input Features

ID Results of Input Features Selection

1002 Max W, Min T, Mean W and data in previous three hours
1035 Mean T, Min T, Mean W and data in previous three hours

1044 Max T, Mean T, Min T and data in previous three hours

Figure 1. Workflow of Machine Learning Based
Energy Usage Forecasting

used to train the learning models and the optimal setting for
parameters. The important parameters include the width of
ε−insensitive tube ε and the error cost C, which are dis-
cussed in Section 3.4. After completing the above process,
a trained SVM model is complete. Then, the trained model
is ready to predict future energy usage.

Note that the training process of SVM can be formulated
as solving a quadratic programming (QP) problem, which
is optimized by a numerical method. The time complexity
of the QP problem is of O(n3), where n is the number of
training examples. For LS-SVM, the QP problem can be
transformed into linear equations, thus the time complexity
reduces to O(n2). Therefore, the time complexity of SVMs
increases with an increase of training examples, which will
not be correlated with a class of energy consumers. It worth
noting that the development of distributed computing, par-
allel computing, and cloud computing can be used to speed
up the training and decision process described in the paper.

4. PERFORMANCE EVALUATION

In this section, we introduce the performance evaluation
results. We first introduce the experimental setup and then
present the results of statistical modeling and energy usage
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forecasting.
Based on the real-world meter reading data set described

in Section 3.2, we carried out extensive experiments to eval-
uate the effectiveness of our developed statistical modeling
and machine learning based energy usage forecasting ap-
proaches. MATLAB R2010b3 was used to implement our
developed approaches and the experiments were performed
on a laptop PC (Centrino Duo, 2.3 GHz, 3 GB RAM). The
toolkit LIBSVM in Matlab [4], a library for SVMs that in-
cludes the implementation of both SVM and LS-SVM, was
used in our experiments. For comparison purposes, the neu-
ral network toolbox in Matlab was also used to evaluate the
performance of the Backward Propagation (BP) neural net-
work based forecasting approach, one of the classical neural
networks that consists of three layers: input layer, hidden
layer, and output layer [17].

4.1 Results of Statistical Modeling

To perform the statistical modeling of energy usage, the
two non-parametric test approaches: Shapiro-Wilk test and
Q-Q plot normality test as we discussed in Section 3.3 are
used. In our experiments, the meter reading measurements
over the following three time windows are aggregated: (i)
morning (8:00-12:00), (ii) afternoon (14:00-18:00), and (iii)
evening (20:00-24:00). Due to the space limitations, we only
show limited scenarios here using the energy usage measure-
ments for house 1002, house 1035, and house 1044 as exam-
ples. It is worth noting that two non-parametric tests on 200
houses were performed at a significance level of α = 0.05.
The experimental data shows that the meter readings of 148
houses could be approximated by a Gaussian distribution.
In addition, more than 40 % of the remaining 52 houses
contain a number of 0 values and error information, which
largely deviate from the normal values, leading to the fail-
ures of the tests.

The Shapiro-Wilk test [31] with a significance level (α =
0.05) is used for the measurements in individual time win-
dows. It is worth noting that α is defined as the probability
that a Gaussian distribution approximation is mistakenly
rejected whereas it is actually true. Here, we consider two
hypotheses: (i) H0: the data follows a Gaussian distribu-
tion; and (ii) H1: the data does not follow a Gaussian dis-
tribution. The P -value, in contrast to the threshold α, is
computed based on the test statistics, which can be denoted
as the probability, in the case of the null hypothesis H0, of
sampling results being equal to or being closer to the actual
sampling results. As such, when the P -value is less than the
predetermined significance level α, the observed results are
be highly unlikely under the null hypothesis.

In our experiments, the P -value obtained from the me-
ter reading measurements for the morning, afternoon, and
evening windows are illustrated in Table 7. As shown in the
table, in addition to the P -value for the morning meter read-
ing measurements at house 1002, the remaining P -values are

3Certain commercial equipment, instruments, or materials
are identified in this paper in order to specify the experimen-
tal procedure adequately. Such identification is not intended
to imply recommendation or endorsement by the National
Institute of Standards and Technology (NIST), nor is it in-
tended to imply that the materials or equipment identified
are necessarily the best available for the purpose.

larger than the threshold of 0.05. Therefore, the energy us-
age in morning, afternoon, and evening windows of these
houses can be approximated with a Gaussian distribution.
It is worth noting that the Shapiro-Wilk test on morning
data measurements from house 1002, in which the P -value
is 0.000813, is an example of a failure case. As the P -value
is far less than the threshold of 0.05, the morning data from
house 1002 cannot be approximated with a Gaussian distri-
bution.

The Q-Q plot normality test [36] is also used to test the
distribution of meter reading measurements. As an exam-
ple, the energy usage in house 1002 in three time windows is
shown in Figure 2. The trend of points in Figures 2(b) and
2(c) has a higher degree of approximation to a straight line
than the one in Figure 2(a), which indicates that the energy
usages at noon and evening times can be better be approx-
imated with the Gaussian distribution. This is because the
closer the points are to a line, the closer the reading is to a
Gaussian distribution. In Figure 2, there is significant devi-
ation in the quantiles associated with the tails of the distri-
bution whereas there is close agreement near the median. To
summarize, the results of the two statistical test approaches
draw the same conclusion, that is, the meter reading mea-
surements for the three time windows at the three houses
can be approximated with a Gaussian distribution.

Table 7. Results of Shapiro-Wilk Test

ID Time Window P-value Hypothesis

Morning 0.000813 Reject

1002 Noon 0.3407 Accept
Evening 0.3236 Accept

Morning 0.08509 Accept
1035 Noon 0.6062 Accept

Evening 0.526 Accept

Morning 0.4816 Accept
1044 Noon 0.6121 Accept

Evening 0.6593 Accept

4.2 Results of Energy Usage Forecast

Experiments based on the real-world meter reading data
set used in this paper were conducted to validate the effec-
tiveness of two types of SVM presented in Section 3 and BP
neural network based approaches in terms of the accuracy of
energy usage forecasting. In our experiments, based on the
models learned through the training process from the his-
torical energy usage of the past 500 hours, we show the the
accuracy of energy usage forecasting in the next 48 hours.

To measure the accuracy of forecasting, the following three
metrics are considered: (i) MAPE (Mean Absolute Percent-
age Error), (ii) MSE (Mean Square Error), and (iii) Co-
efficient of Regression γ2, which are used to measure the
error between the actual and predicted energy usage. These

metrics are defined as follows: MAPE = 100
n

∑n
i=1

∣∣∣yi−ŷi
yi

∣∣∣,

MSE = 1
n

∑n
i=1(yi − ŷi)

2, and γ2 =
∑n

i (ŷi−y)2∑
n
i
(yi−y)2

, where yi,

ŷi and y are actual value, forecasted value, and mean value
of the actual value, respectively.

We conducted a large number of experiments on meter
reading data for 200 houses. Due to space limitations, only
a limited number of results are shown here for demonstration
purposes. Based on the workflow showed in Section 3.4.3,
the generic optimization mechanism provided by the LIB-
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Figure 2. Q-Q Plot on No. 1002 House (a) Morning, (b) Noon, and (c) Evening
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Figure 3. Forecasting Accuracy of (a) BPNN, (b) LS-SVM and (c) SVM on No. 1002 House
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Figure 4. Forecast Accuracy of (a) BPNN, (b) LS-SVM and (c) SVM on No. 1035 House

SVM toolkit [4] is used to select key parameters for the SVM,
including the width of insensitive tube ε and the cost of er-
ror C. Table 8 shows the forecasting accuracy of the two
SVM based approaches in comparison with the BP neural
network based approach (denoted as BPNN). From this ta-
ble, the standard SVM based approach achieves the MSE at
a magnitude of 10−4 and the highest coefficient of 0.88 in

comparison with the LS-SVM and BPNN based approaches.
For the LS-SVM based approach, all its MAPE values are
smaller than 10 % whereas the MSE values are around 0.01.
Further, the coefficient of regression approaches 0.84, which
is better than the one achieved by the BPNN based ap-
proach. This can be explained as the neural network can
easily fall into a local minimum instead of the global mini-
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Figure 5. MAPE of (a) No. 1002, (b) 1035, (c) 1044 Houses

mum, leading to a lower accuracy of prediction.

Table 8. Effectiveness of Forecasting Results

ID Index SVM LS-SVM BPNN

MSE 4.595e-04 0.0015 0.0352

1002 γ2 0.8531 0.7482 0.2054

MAPE(%) 6.9435 9.9221 13.6712

MSE 8.2092e-04 0.0039 0.0278

1035 γ2 0.7871 0.6939 0.1037
MAPE(%) 5.7728 9.5013 11.2417

MSE 6.3689e-04 0.0341 0.0174

1044 γ2 0.8819 0.8405 0.3345
MAPE(%) 4.3568 10.1023 10.6735

Table 9. Overall Forecasting Results

Method Statistics MAPE γ2 MSE Time(s)

SVM Mean 7.1261% 0.7593 0.0037 335.39
Variance 0.0004 0.0144 0.0009

LS-SVM Mean 14.5649% 0.6219 0.0321 36.22
Variance 0.002 0.0128 0.0014

BPNN Mean 16.8356% 0.4338 0.0732 29.28
Variance 0.007 0.0130 0.0571

The accuracy of energy usage forecasting for all 283 houses,
including the statistical mean and standard derivation of
MAPE, γ2, and MSE for the three machine learning ap-
proaches, are demonstrated in Table 9. From this table,
we can observe that the SVM achieves the highest forecast-
ing accuracy and the BPNN achieves the worst forecasting
accuracy. In addition, the time overhead of these machine
learning based forecasting approaches, which is defined as
the total time taken for inputting data, preprocessing data,
selecting features, conducting training process, and generat-
ing forecasting results based on a training model for a single
house, is evaluated. The experiments were conducted on a
laptop PC (Centrino Duo, 2.3GHz, 3GB RAM). As shown
in Table 9, the time overhead for the SVM, LS-SVM, and
BPNN are 335.39 s, 36.22 s, and 29.28 s, respectively.

It is worth noting that in order to further improve the
time efficiency, more powerful PC, conducting forecast using
low level language (instead of using MATLAB), and lever-
aging techniques (e.g., cloud computing and parallel com-
puting) can be used. For the SVM, time overhead is much
greater than that of the LS-SVM and BPNN as the genetic

algorithm optimization mechanism is used to select the key
parameters for the SVM, including the width of insensitive
tube ε and the cost of error C. For the LS-SVM, as explained
before, two major enhancements of the LS-SVM in compar-
ison with the standard SVM: (i) using equality constraints
instead of inequality constraints, and (ii) using square loss
function that can significantly simplify the complexity of the
problem solving process, leading to a smaller processing time
for carrying our energy usage forecasting.

In Figures 3 and 4, the accuracy of forecasting for the
three machine learning approaches on houses 1002 and 1035
is demonstrated. As we can see from these figures, the blue
and red curves represent the actual energy usage and fore-
casted energy usage, respectively. The blue curve and red
curve for the SVM based approaches are highly coincidental
with each other as shown in Figures 3(b)(c) and 4(b)(c)
whereas the results of the BPNN based approach are shown
in Figures 3(a) and 4(a). A higher consistency between the
real data and forecasted data in the SVM based approaches
indicates that the forecast of the SVM based approaches are
more accurate than the BPNN based approach. In addi-
tion, note that the blue and red curves in the SVM based
approaches almost follow the same trend, indicating the fore-
casted results of these approaches are accurate. For the two
SVM based approaches, because a generic algorithm is used
to obtain the optimal ε and C, the standard SVM based
approach actually achieves a higher accuracy than the ex-
perimental data shown in Figure 5.

5. EXTENSION

In this section, the extensions are made from the following
aspects: the modeling of energy generation, the optimal de-
mand response, and anomaly detection of malicious energy
usage.

5.1 Modeling of Energy Generation

The distributed energy resources are inherently stochas-
tic. Using wind energy as an example, the total wind energy
flowing through an imaginary area A at time t can be for-
malized as: E = 1

2
At̺v3 [24], where ̺ is the density of air

and v is the wind speed. Here, the wind energy E is highly
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correlated with the wind speed v. Therefore, the forecast-
ing of wind speed is one critical issue before wind energy
resources can be broadly integrated in the smart grid.

Using the prediction of wind speeds as an example and ap-
plying it to the modeling approach developed in this paper,
we are able to improve the ability of forecasting distributed
energy resources at the energy supply side. Similar to the
prediction of energy usage shown in Sections 3.4.2 and 4,
the standard SVM machine learning approach can be used
to carry out the prediction of wind speeds. We conducted
experiments on the wind speed data of 193 days at No. 1002
house. Recall that as shown in Table 2, the wind data in
the real-world data set used in this paper consists of both
the max wind speed and mean wind speed for a day. The
maximum and mean value of wind speeds in three days are
selected as the input features in the standard SVM machine
learning approach. The learning and forecasting process fol-
low the same workflow as we described in Section 3.4.3. The
mean value of wind speeds of the next two weeks is used to
test the accuracy of forecasting. Figure 6 illustrates the ac-
curacy of wind speed forecasting. The error metrics defined
in Section 4 are also used to evaluate the accuracy of fore-
casting. The results of error metrics are 9.3876, 1.0339, and
0.5392, respectively, showing that the standard SVM ma-
chine learning approach could achieve a high accuracy of
predicting wind speeds.

5.2 Optimal Demand Response

The results developed in this paper can also be used to de-
termine optimal demand response, which allows customers
to obtain real time energy prices and enables load shifting
and reduction. In the following, we show an example of
how to integrate our developed modeling results into the
optimization model originally proposed in [5] for conducting
optimal demand response. In [5], Chen et al. derived an ef-
ficient equilibrium based on the upper and lower bounds of
customer’s energy usage in a competitive market. Nonethe-
less, their original work did not show how to derive those
bounds.

In the following, we briefly show how to apply the results
developed in Section 3.2 to determine the optimal demand
response. Without loss of generality, we assume that a power
grid system consists of N customers, who are served by a
power generator. On the demand side, let the power load of
each customer be qi(t) at time t. Then, in a time window
[1 : T ], the bounds for minimum and maximum total energy
usages, denoted as, Q

i
and Qi, can be derived. On one

hand, based on the results of the energy usage forecasting,
the Q

i
and Qi in a near future time window are derived.

In this way, the bound can be precise and is suitable for a
short-time demand response process. On the other hand,
based on the result of the developed statistical modeling
analysis, the bounds in each time window can be derived
as well. It is worth noting that bounds based on statistical
modeling analysis are more general and suitable for a long-
term demand response process. Choosing either the long-
term bound or short-term bound can be determined by the
time scope of demand response process. In the following,
the bounds based on the statistical modeling are used as an
example to demonstrate our idea.

Denote the mean and the standard deviation of energy
usage as: X = 1

T

∑T
t=1 qi(t) and Sn = 1

T−1

∑T
t=1(qi(t) −

X)2, respectively. Based on the statistical modeling results
developed by this paper, Q

i
and Qi can be derived through

the interval estimation mechanism [26] and are given by,
Q

i
= X − tα

2
(T − 1) ST

√

T
, and Qi = X + tα

2
(T − 1) ST

√

T
,

where tα
2
(T − 1), X and ST are the upper quantile fractile

of student t distribution at the confidence level of α, mean
value and standard deviation, respectively. Then, assume
that each user i satisfies the following constraints in [1 : T ],∑T

t=1 qi(t) ≥ Q
i
, where i ∈ N , and

∑T
t=1 qi(t) ≥ Qi, where

i ∈ N . For each user i, a utility function: Ui(qi, t) is defined
to measure its satisfaction for the energy service, supplied by
the energy generator, where qi is the energy usage at time t.
We also assume that Ui(qi, t) is continuously differentiable
and increasing with respect to t monotonically.

On the supply side, depending on the state of the power
grid, the energy price will be dynamic over time. Assume
that the energy generator has a cost of C(Q, t) when it
supplies energy Q at time t. We also assume that C(Q, t)
increases with respect to Q and the marginal cost increases
with respect to Q.

5.3 Anomaly Detection of Malicious Energy
Usage

In an energy resource management system, it is important
to report energy usage information from consumers to the
utility supply. Nonetheless, this decision process could be
impacted by an adversary, who might compromise meters
and launch false data injection attacks to disrupt the smart
grid operations [22, 21, 3]. Therefore, the detection of false
data injections attacks becomes a critical issue. Note that
our developed energy usage forecasting can be leveraged to
carry out anomaly detection. To be specific, we can com-
pute the lower and upper bounds of energy usage in a near
future time window and use them as the baseline profile for
conducting anomaly detection. In the following, we briefly
demonstrate how to use our statistical modeling analysis re-
sults to detect malicious energy usages.

Based on the results in Section 3.2, we now present a hy-
pothesis testing based detection scheme. We consider two
hypotheses: (i) H0: the measurement is valid, and (ii) H1:
the measurement is under attack. Based on our statistical
modeling results, we assume that the energy usage measure-
ments X = (X1, X2, . . . , Xn) in the three time windows (i.e.,
morning, noon, and evening) follow the Gaussian distribu-
tion N(µ, σ2), in which µ and σ are all unknown parameters
and n is the total number of measurements.

It is worth noting that the malicious measurement’s de-
viation from the mean value can be treated as noise and
the value of µ and σ are unknown to the detection sys-
tem. Therefore, we consider that the standard deviation
of samples, denoted as Sn=

1
n−1

∑
(Xi−X)2, can reflect the

dispersion of difference between the compromised measure-

ment and the normal one. After letting T = X−µ0
Sn/

√

n
, we

have T ∼ t(n − 1). Based on this, the hypothesis test can

be formalized as, T
H1
≷
H0

τ, where τ = tα
2
(n−1) is the thresh-

old determined by considering the null hypothesis given a
certain false positive rate α.
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Figure 6. SVM Prediction
Accuracy on Wind Speed
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Figure 7. ROC Curve when
SAR=11dB
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Figure 8. ROC Curve when
SAR=8dB

To evaluate the effectiveness of anomaly detection based
on hypothesis test, we choose the following two metrics,
which are detection rate (same as the true positive) and false
positive rate. Detection rate PD is defined as the probability
that the attack is correctly recognized and false positive rate
PF is defined as the probability that a normal measurement
vector is misclassified as malicious. We use Receiver Oper-
ating Characteristic (ROC) curve to show the relationship
between PD and PF and measure tradeoffs between detec-
tion rate and false positive rate. We run simulations based
on measurements (e.g., measurements in the morning of 100
days on house No. 1002) to collect enough samples and es-
timate the mean value µ0. Then, we set detection threshold
τ based on the false positive rate α = 0.05. We use the mea-
surements of 100 days to present the normal measurements,
which are not manipulated by the adversary and derive PF

with the detection threshold. After that, we simulate the
malicious measurements in the following way. Similar to the
signal-to-noise ratio (SNR), we first define signal-to-attack
ratio (SAR) that is defined as SAR = 10log10

Xi

ci
to quantify

the strength of attacks, where Xi and ci are the maliciously
manipulated measurement and true measurement, respec-
tively. We then apply the anomaly detection discussed above
to derive detection accuracy PD. Note that SAR = 11dB
and SAR = 8dB represent that the adversary could change
8% and 12% of measurement values, respectively.

Figures 7 and 8 show the ROC curve of our detection
algorithm. As we can see, when SAR = 11dB, the detection
algorithm achieves an accuracy of 60% with a false positive
rate of 55%, while the adversary could only change up to 8%
of the true value of measurements. When SAR = 8dB, the
detection rate approaches almost 100% with a false positive
rate of 55% when the adversary can manipulate up to 12%
of the true value of measurements. Here, we can obtain 90%
detection rate with a false positive rate of less than 40%. As
we can see from these figures, detection rate becomes higher
when the attack strength increases. This is as expected,
the standard deviation of malicious measurements is higher
when the attack becomes stronger.

6. CONCLUSION

In this paper, the critical issue of quantifying uncertainty

on the energy usage was addressed. Particularly, the Shapiro-
Wilk test and Quantile-Quantile plot normality test were
adopted to investigate the statistical distribution of energy
usage and the machine learning based approaches (e.g., SVM
and neural network) were developed to conduct the accu-
rate forecasting of energy usage. Extensive experiments on
a real-world meter reading data set were conducted to vali-
date the effectiveness of the developed approaches. The ex-
perimental data shows that the energy usage can be largely
approximated with a Gaussian distribution and the SVM-
based machine learning approaches can accurately predict
the energy usage. The extensions to other areas (e.g., fore-
casting energy generation, determining optimal demand re-
sponse, and anomaly detection of malicious energy usage)
were discussed as well.
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