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Tables for form factors and anomalous dispersion are widely used in the UV, x-ray and
+y-ray communities, and have existed for a considerable period of time. Much of the recent
theoretical basis for these was contributed by Cromer, Mann and Liberman while much of
the experimental data was synthesised by Henke et al. More recent developments in both
areas have led to new and revised tables. These works have employed numerous simplifi-
cations compared (0 detailed relativistic S-matix calculations; the latter do not lend
themselves to convenient tabular application for the range of Z and energy of general
interest. Conversely, the former tables appear to have large regions of limited validity
throughout the range of Z and energies, and in particular have important limitations with
regard to extrapolation to energies outside tabulated ranges.

In the present study, the primary interactions of x-rays with isolated atoms from Z = |
(hydrogen) to Z =92 (uranium) are described and computed within a self-consistent
Dirac-Hartree-Fock framework. This has general application across the range of energy
from 1-10 eV to 400-1000 keV, with limitations (described below) as the low- and
high-energy extremes are approached. Tabulations are provided for the f, and f, compo-
nents of the form factors, together with the photoelectric attenuation coefficient for the
atom, W, and the value for the K-shell, ik, as functions of energy and wavelength. Also
provided are estimated correction factors as described in the text, conversion factors, and
a simple estimate for the sum of the scattering contributions (from an isolated atom).

The method used herein is primarily theoretical and considers intermediate assumptions
which limit the precision and applicability of previous theoretical tabulations. Particular
concern involves the application of the dispersion relation to derive Re(f) from photoelec-
tric absorption cross-sections. The revised formulation presented here explicitly avoids
most of the limitations of previous works. Revised formulae can lead to significant
qualitative and quantitative improvement, particularly above 30-60 keV energies, near
absorption edges, and at 0.03 keV to 3 keV energies. Recent experimental syntheses are
often complementary to this approach. Examples are given where the revised theoretical
tables are in better agreement with experiment than are those based on experimental
syntheses. ©1995 American Institute of Physics and American Chemical Society.

Key words: anomalous dispersion; attenuation; £ = 1—10 eV to 0.4~ 1.0 MeV; form factors; photoabsorption
tabulation; scattering cross-sections; Z = 1 —92.
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In the x-ray energy range covered here, the primary
interactions of photons with atoms are photoabsorption and
coherent (elastic) scattering. Inelastic (Compton) scattering
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becomes dominant for all elements as the higher (y-ray)
energies are approached. For light elements, this transfer of
dominance occurs at much lower energies (e.g. for hydrogen
the inelastic component dominates above 3-5 keV). Addi-
tional nuclear scattering and absorption occurs at MeV ener-
gies, including pair production and Delbriick scattering from
the nuclear field; and nuclear resonant processes (such as
nuclear Thompson scattering).' For XUV photons at the lower
end of the tabulated energy range, lattice phonon absorption,
delocalized. plasmon excitation, excitons and dipole reso-
nances may appear.’ Although these remain qualitatively
identifiable as photon interactions with bound electrons, they
are not associated with atomic orbitals or isolated atoms.

In the intermediate energy range, typically from 0.01-0.1
keV through to 80-800 keV, the interaction of the incident
photon with the electrons — i.e. with the bound atomic
orbitals — without production of secondary x-rays of reduced
cnergy, is the dominant process. The photon is then either
scattered without altering the internal energy of the atom, or
it is absorbed. This absorption is usually into a single atomic
orbital, with a consequent ejection of a photoelectron and
production of a singly-ionized species.

Both photoabsorption and (Rayleigh) scattering are
described by the structure factor F of the material in con-
densed or gas phase. In particular, diffracted intensity or co-
herent scattering is a complicated function of F, but for weak
reflections is linear or quadratic in F. Equally, transmission
through a bulk material is a complex function of F but local
attenuation is a relatively simple function of the imaginary
component of F.** This is well known in the crystallographic
community and is used extensively in the multilayer commu-
nity at lower energies.*® The structure factor for a given
reflection (denoted Ak! from the Miller indices) is a sum over
the atoms in the appropriate lattice (for a crystal) of the atomic

_form factors or the x-ray scattering factors f; of the j™ atom:

F(hkl) = zjfjefMJCZﬂ i(hxyrkyyeiz;) (1)

where thermal diffuse scattering is neglected, M; is the
thermal parameter for the given temperature, reflection and
atom, and the location of the atom in the unit cell is given by
(x;,y;,2;). For an isolated atom or a single elemental lattice, a
scaled atomic form factor may therefore be substituted for the
structure factor.

At grazing angles of incidence with solids, photons interact
with the surface, and the photoabsorption and reflection
processes may be given by Fresnel equations (while still dum-
inated by electron orbital interaction and governed by the
structure factor and form factors).” If the atoms in a condensed
system may be considered to scatter as dipoles (i.e. for low
energies or small scattering angles) then the interaction of
x-rays with matter may be described using optical constants
such as the complex index of refraction n, or the complex
dielectric constant €(E), which are related to the form factors
by
T
2
where n, is the atom number density and ry is the classical
clectron radius.

n, = ntik = Ve =1-8—if = | -== X231, f, @
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2. Form Factors and Standard Definitions

The real part of the atomic x-ray scattering factor is'
Re(f) = fotf'+fwr, f' = fitfra—2Z 3

where fE, Z) = f*+fw is composed of the non-relativistic
anomalous dispersion f* and the relativistic correction factor
frt. fo(g,Z) is the ‘normal’ coherent scattering factor as a
4wsinf
N the
latter relation for elastic scattering through an angle 26.

function of momentum transfer ¢ = IK(— K =

: 2
i) = o[ ELOSLGTI @
0

The dependences of f upon ¢ and E may not be strictly
scparablc as implicd by the scparation into f; and f'. Becausc
of this, some authors define a modified form factor MFF (g)"
or anomalous scattering factors (g' and g")."? The nuclear
Thompson scattering (NT) is small and negative in phase
relative to the electronic form factor (fo+f"), of magnitude fnr
= ~Z’m/M, with small (negligible) energy and momentum
dependence.'* The S-matrix channels of nuclear photo-
effect (dipole resonance), pair-N, pair-e production and Del-
briick scattering and other, smaller effects are typically ne-
glected, providing upper limits in energy for the validity of
these syntheses.

The imaginary part of the dispersion correction is simply
linked to the photoeffect cross section ppe(E) (neglecting, or
including, bound-bound cross-sections) at the photon energy E:

E pee(E)

Im(f) = £'(E) = FAE) = =555

(&)

fi and f, are used in Refs. 7,15,16. The form factor f, is
particularly useful in illustrating effects described here be-
cause it approximates Re(f) in the forward scattering direc-
tion where f, = Z and hence estimates the total scattering
factor, placing the problems indicated on an absolute footing.
It is also appropriate in typical experiments. The standard
dispersion relation yields

FE2) = fe-2p| L4 @

o (Ro)'—(€)

Heie £ = fuw is the x-ray energy, € is the energy above the
electron binding energy of the intermediate (bound or contin-
uum) state, and P represents the principal value. Commonly
the equation may be separated by orbital or by electron, with
neglect of unoccupied bound states yielding

iy = 2 p[ €=€) fE—e) L
fE) = FCI=2P) i —ay ¢ )

where —¢; is the electron binding energy, and € is the
(continuum) energy. The high-energy constant may be
combined with relativistic correction factors to provide the
separation into fr; and f* as indicated above.
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3. Available Tabulations and Basis
of Current Formalism

This section discusses other available theoretical,
experimental and synthesized tabulations for form factors and
attenuation. The main sources for comparison are the theoret-
ical development of Cromer, Mann and Liberman'®, the
experimental-theoretical synthesis by Henke et al.” and recent
developments along both lines.”'*

These works have employed numerous simplifications
compared to detailed relativistic S-matrix calculations,'? but
the latter do not lend themselves to convenient tabular appli-
cation for the range of Z and energy of general interest.
Conversely, the earlier tables appear to have large regions of
limited validity throughout the range of Z and energies, and in
particular have limitations with regard to extrapolation to
energies outside tabulated ranges. This is well known, and
other tabulations of attenuation coefficients or form factors
based on experiment or on alternate theoretical bases”” have
met with partial success in some regimes, generally with
corresponding areas of limitation elsewhere.

With the exception of high-order S-matrix calculations, the
method of Refs. 17-20 may be expected to produce greatest
theoretical precision and is perhaps predominant in the litera-
ture for the last decade. A number of intermediate theoretical
and procedural assumptions limit the precision and applicabil-
ity of this method. The current method, serving as a basis for
the present tabulation, allows significant improvement both in
the earlier tabulated range and in regions extrapolated with
the formulae. A particular concern of the current author lies in
suitable extrapolation to high and low energies, and interpola-
tion to energies not covered by the Ka values presented in the
literature for these tables.

For this purpose a Fortran version of the code was
gratefully received from S. Brennan* which contains the
updates of Cromer and Liberman® in their source code pre-
sented in Ref. 18, In this method of Cromer and Liberman,
relativistic SCF (self-consistent field) wavefunctions using
the Kohn-Sham potential”® and experimental energy levels®
were used to compute partial photoelectric absorption coeffi-
cients (o (E)) at ten or eleven selected energies, with the
Brysk and Zerby program.” This introduces approximations
regarding the potential and edge level derivation, but more
significantly uses a model with no molecular or solid-state
fine structure. Application of this code®?* to near-edge re-
gions of bound atoms is therefore limited by this procedure.

The development of Cromer and Liberman will be of prime
consideration in the current discussion, together with the for-
mulation for avoiding difficulties therein.”® In the code of
Ref. 20, separate partial cross-sections were calculated for
most orbitals of each element in the range of Z = 3—92.
However, some outer orbitals of higher Z elements were omit-
ted or misplaced (with respect to their free-atom ordering or
typical bonding patterns), which leads to inadequacies in
these cases at lower energies. In the extreme case of Rb
(Z =37), 9 electrons and hence four sub-shells were omitted
(4s, 4p, 1, 4ps,, 5s) leading to unnecessary termination of the
tables below 0.112 keV, and significant imprecision below
0.160-0.200 keV, whereas formal results could have been

given down to 0.004 keV. Most elements include all edges
down to about 0.050 keV, and light elements (to Ca) generally
include all orbitals. )

For each orbital, five cross-sections o (E) covered energies
of 5-23 ke V'8 or 1-80 keV,? for interpolation and determina-
tion of f"(E) (the imaginary, absorptive component of the
scattering factor). If the binding energy lay in the range
1keV<—¢€,<70 keV, an additional point applied to
E = —1.001¢,. An additional five values covered the above-
edge range (with energies set for 5-point Gauss-Legendre
integration). This second group of 5 points applied to the
integral of f"(E) to give f'(E): the locations of E and the form
of the integral chosen depends on whether —e€;<1 keV,—¢€;>
70 keV, or —e¢, is of intermediate energy.

4. Basic Transform Equations

Appropriate formulae based on Eq. (7) should give a small
and smooth integral over the range of the variable of integra-
tion, with the dominant term given by analytic form. The
situation may be illustrated by considering the above-edge
case, given by Eq. (27) of Ref. 17:

_ ([ ol —e)e—e)~0hw) (iw)® , ,
F ‘(fo (oY —(c—ey de
¥ o(hw) (hw)?

+P o (Ao —(e"—¢)?

de‘)/ 2w (8)

with « the fine structure constant and energies and o in atomic
units (au). Gauss-Legendre integration points are fixed by the
order of the integration, but corresponding energies may be
adjusted to optimize the precision for a particular photon
energy by scaling (contracting or expanding) the integrating
variable, following (but in contrast to) Eq. (29) of Ref. 17 (for
Eq. (8)):

lel hiw=2le |
€ —€p,
IG]I 2
x= - . ho< V2 el ©)
€ —€
12
! [Je.l J ,  ho>> 2le)l
L € —€

Note that €">0 and —€,>0 and the integration limits are trans-
formed from: (0,) to (1,0), while in the first case o(e*—¢;)
becomes o(—e/x). By symmetry, this yields a well-defined
integral which properly ranges from O to I.

Following the same formalism as in 17-20, improved if not
fully optimized relations for f* may then be given as

hw—e,

G(ﬁw)ln(ﬁw+€l

. ! I o ) )
= fh o, dx p=rn , leyl<hiw; (10)
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02, Ro>> 2l
o= [ g, hao= 2l (11)
O fiw<V?2 leyl;
{—ZG(Ie,sz)e,/xs, lex? = how
o =1 (olelxdex’ —e(ho) o(ﬁm)) (12
» 2( (hw)—elx » otherwise;
{—G(leli/x)e;/xz, le/ix = hw
Oo 3.2 2 (13)
le, V. Ix*—e,(h i3 .
(G(E' x)e;z:hm;f :;) o m)) otherwise;
[—O.SU(IGIV.\: ye/x, leV/x'? = A
Oy = o(lelx e x—e (fuo)? c(fuu)) 19
0.5( Vx oy —e ,otherwise;

for iw>le;l (above the edge). At the edge, use fi{w+dw) to
avoid the computational singularity. Below the edge
(I, >hw),

Iz
21r j dx +
T3,
0r= Ts,

a(lel/x)x*—a(lel)
o5 -c <—2_2—_(1th) — L ) (17

€ o-(le.l) In (Ie.l—ﬁm) 15)

Antaho le\+Ro

fw= 2le,!

o 2el; (16)

3 o(lell/x”z)/x—c'(‘ell)) (18)

os = 0‘561( r (x(hw) —€l)

where, again, o(le,l) is given by o(lel(1+8)) to arbitrary
precision. The second terms of Egs. (10) and (15) are always
negative, while the first term in Eq. (10) is positive and the
first term in Eq. (15) is negative. Use of (these) appropriate
functions can lead to problems where integration points
would lie beyond the database (11 data points per orbital). In
such cases, the above-edge or below-edge behavior should be
retained, but the choice of form may be modified appropri-
ately to match the data and to optimize precision. The effects
of this formalism and these specific modifications, compared
to the earlier results, may be seen generally near edges, at
energies below 2 keV or above 70 keV, but also at intermedi-
ate energies.

5. Avoidance of Singularities
in f'(E) Above Edges

The functional forms of the integral of f" as indicated in
Refs. 17-20 are formally continuous above each edge but
include singularities in both numerator and denominator
(which cancel). Consequently, the code of Cromer and
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Liberman'"-* yields divide-by-zero errors for Z = 18 (argon,
1.28 keV) and elsewhere at energies for Z>2 corresponding to
cancellations (5 per orbital).

The functional forms indicate were otherwise appro-
priate and valid in the 5 keV-50 keV range. This was the main
concern of the authors, but extension beyond this range in
cither dircction requires recvaluation of the construction. In
particular, the forms pertain to E >>—¢,, E=—¢, and E<—¢,
and not to —e,<1 keV, —¢,>70 keV. Further, that for ~¢,>70
keV omitted a correction which is increasingly important as E
approaches —e,. The nature and magnitude of this latter prob-
lem is depicted in Fig. 1 for uranium. The apparent ‘edge’ is
displaced and offset by several keV with five discontinuities,
and at 500 keV (four times the edge energy) the error is of the
same magnitude as Z. This energy range is much higher than
that of Refs. 15, 17-21. In these figures and in the text, the
current formulation avoids or overcomes all problems dis-
cussed, as far as is possible within the prescriptions provided.
The use of f, as the plotting variable follows the standard of
Refs. 7,16 but more importantly places the effects on an ap-
proximate absolute footing for the real component of the
atomic scattering factor in the forward direction.

d 17-20

6. Avoidance of Imprecision in f'(E)
Below and Near Edges

Corrections for below-edge behavior applied to the second
(intermediate energy) form in Ref. 18 should also be applied
to the other two forms as detailed in section 4. Near to but
above edges where —¢,<1 keV, the integration is improved by
using a form similar to the ‘higher-energy’ forms rather than
that previously indicated, which was optimum only for
E >—¢,. Well below edges where —¢;>1 keV, the integration
is improved by using a form similar to the ‘high-energy’ form
rather than that previously indicated, which was optimum for
E=—¢,. In any of these regions where the functional forms
are inappropriate, some improvement in precision can often
be gained by using 10-point or higher order Gauss-Legendre
integration. This represents improved precision of the integra-
tion using a less optimum integral transformation.

Previous below-edge errors are illustrated for the K edge of
carbon in Fig.2. The edge was apparently displaced and
asymmetric (typically with a spurious value for the edge
itself) as opposed to the revised form (‘o’ versus ‘+’ in figure).
There were also significant errors in the earlier prescription
12% below the edge. This also occurs with similar magnitude
(4 e/atom) for the L-edges of uranium at 17-22 keV in Fig. 1.
These errors occur at energies well within the range of
crystallographic investigation and concern, and are not
restricted to regimes of specialized anomalous or other
diffraction experiments.

The theoretical-experimental synthesis of Ref. 16 (tri-
angles) is in reasonable agreement with the current revised
results well away from the edge, with the exception that
aliasing is introduced due to the finite logarithmic grid on
which linear interpolation is carried out. This means that the
transform is calculated appropriately from the given absorp-
tion coefficients to yield f, values for specific energies, but
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subsequent interpolation between these points smooths out
any finer structure, in addition to generating an interpolation
error even in the absence of structure. The earlier synthesis’
contains a much coarser grid, so direct comparison of the two
primarily indicates interpolation limitations. The relativistic
correction factor is only about 0.004 (e/atom or eu in crystal-
lographic notation) and makes ncgligible contribution to the
results (whatever form is postulated for the correction), while
fo=Z~0.04 eu, and does not affect the comparison. Hence
a ty\pical experiment in this regime with graphite or other
elemental carbon should relate to a real component of the
atomic scattering factor given to high precision by f,. The
current revised formalism yields a width (below zero) of 4.6
eV and a mean f, of circa —0.9 eu over this region, with f;
= —2.4 eu at 0.24 eV from the edge, or f; = —4.0 eu at 0.07
eV from the edge (or about the edge width).

The independent particle approximation common to all
theories discussed herein should yield the revised smooth,
symmetric form, but the formalism may be expected to fail
near edges or at low energies, where molecular or collective
behavior may occur. However, the revised result is in good
agreement with Cherenkov radiation studies on the carbon K
edge,” which have derived widths of 5 ¢V and a mean suscep-
tibility x' = 0.0016 or f; = —0.82 eu, and minima of —2.0 eu
S>fimn>—5.1 eu.

Conversely, aliased profiles'® give minima of 0.3 eu
>fimn>—1.3 eu, non-aliased transforms of a simple edge
structure® yield fy mi» from —5.3 eu to — eu and a width of
order 5 eV, while other recent experimental f" measurements
yielded a width of around 14 eV and f),=—1.2 eu after
integration.* All are in disagreement with the Cherenkov
studies. In this respect, the importance of direct measure-
ments of the scattering factor (anomalous or atomic) cannot
be overestimated. Finally, the result of Ref. 21 which might
be expected to include contributing collective behavior, ap-
pears to give a shift and singularity in the structure."”

7. Integration Precision Requirements

Several integration procedures were investigated and
compared. Five-point Gauss-Legendre integration yields con-
vergence to 5% in many but not all cases where the form is
appropriate. In some cases (near edges, particularly with func-
tions not corrected for above or below-edge behavior) a 30-
point integration was found inadequate.” Five-point integra-
tion appears adequate for low Z to about 0.01 eu in most
regions, while yielding errors of 0.1 eu for silicon near edges,
where 10-point and 16-point results appear identical. This
error rises to above 1 eu for silver (Z = 47) and 5 eu for
uranium (Fig. 3), with shifts of 0.3 eu and 1.3 eu, respectively,
even midway between edges. The difference between 10-
point and 16-point integration is also significant at the 0.15 eu
level for Z = 92, and is fairly uniform for all energies. The
figure indicates major integration and interpolation error in
the unrevised formalism'”**?* of magnitude 1—4 eu across the
medium energy range of 4-6 keV. This may also be compared
to Refs. 15, 16 (including a partial f, correction of perhaps
— 1.5 eu), apparently erroncous by up to 5 eu. Although ura-
nium is perhaps an extreme case, this situation is reflected
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throughout the medium and higher range of Z. The 16-point
integration is therefore used and commended, covering a
much larger energy regime with higher precision.

8. Choice of Interpolation Formalism

The ‘convergence’ with improved integration precision is
partially due to inadequacy of interpolation methods rather
than convergence to the value predicted by the independent
particle approximation. The code of Cromer and Liberman'®
‘interpolates’ over In(f") using a quadratic least-squares fit.
This smooths precision-dependent noise but also obscures
significant local or higher-order structure. The 5 energies used
are not well spaced for interpolation to other f' values,
whether for integration or otherwise. Ref. 24 assumes a cubic
form for the Inf"-InE functional relation and uses the Aitken
interpolation method; this combination generates non-
monotonic and spurious f'" values near to or far above the
edge. Reference 22 used a linear interpolation on log-log
scales for E< 1 keV and noted significant errors for cubic
spline interpolation at higher energies (for Z = 24,42,44,67-
69,75,76,85).

Rational function interpolation is well able to model simple
cubic terms (on the log-log scale) but is quite inappropriate
for extended or oscillating structure. The latter would com-
monly produce a pole in the resulting fit near to the real plane
and therefore generate large errors. Most investigators have
(therefore) relied on polynomial interpolation on the log-log
scale.

At energies far above the edge, the form f'(E) = fy(E) is
expected to become approximately cubic, or linear in
In f'(In E). With the photoabsorption data of Refs. 17-20,
higher accuracy would follow from correct evaluation of
higher order terms but data points are unequally spaced, so
divergences easily follow extrapolation or interpolation. This
may be limited by extrapolating or interpolating at either end
of the energy range with a linear Jog-log form, while allowing
intermediate values to be affected by higher order contribu-
tions. Interpolating functions may further be limited to sym-
metric forms about the region interpolated (1.e. to linear, cubic
or quintic log-log interpolation using n = 2, 4, or 6 data
points). Given a sufficiently fine grid, interpolation becomes
insensitive to the form used. However, the database discussed
herein lacks such a fine grid, drawing attention to the appro-
priate forms of interpolation. This is illustrated in Fig. 4 for
medium energy attenuation by uranium, where the asterisk
notes the reduction to a linear log-log form for extrapolation,
thus avoiding unnecessary oscillations. Even so, the curves do
not converge or maintain a constant ordering, and differ by up
to 4 e/atom (eu) or 15% in this range, without the correct form
being immediately apparent.

The problem repeats itself for lower energies (lcss than
9 keV) and also for higher energies (above 30 keV) for most
elements. and effects of this problem upon f, are often as
large. Examples from other elements and regimes allow addi-
tional general rules to emerge: Linear log-log interpolation
fails near edges (even within the independent particle approx-
imation) where higher order terms are often significant and
necessary. Conversely. these are gencrally absent far above
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Uranium, Z=92, effect of integration precision
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edges and use of them can introduce spurious oscillations
from their contribution in the near-edge region. The relation
relatively near edges is often cubic in Inf"(InE) so that a
transition from this to the linear form may be accomplished at
intermediate energies above each edge. The location of the
transition is dependent on the element and edge, and appears
(in the current database) to lie between a factor of 1.5 and 4
above the edge.

This prescription is not rigid, but variation between
possible alternatives is estimated at (usually) below 1-2%.
This allows meaningful comparison of models with experi-
ment, which would otherwise be difficult or dubious. Figure 5
returns to uranium at intermediate energies, again emphasis-
ing the potential utility of the current formalism as opposed to
earlier forms and synthesised data. Here experiment®**
strongly supports the current formalism and interpolation
procedure.

Even at these energies, the contribution of coherent
scattering o 1o the total attenuation coefficient pror =
WpE+Tcon +07c i8 significant and should not be neglected in
these comparisons. (The high-precision experimental data’*
necessarily measures the total attenuation coefficient, and not
the photoeffect cross-section (¢ or weg) in isolation.) The
estimate of scattering follows Refs. 34, 35 and may only be
accurate at the 10% level, dependent on the experimental
arrangement. Neglect of this contribution is still unable to
bring Ref. 24 or Ref. 16 into good agreement with experiment
in this region.

Elsewhere, however, the local structure allows no simple
set of polynomial interpolations (for a given orbital). Typi-
cally at low energies and L, M; and My / My edges, the local
structure is real but subsequent polynomial extension yields
large oscillations well away from the structure. Early trunca-
tion to linear forms yields discontinuities in f, or its deriva-
tive. Scaling any deviations above or below the interpolated
points by a constant factor (e.g. 0.5) or a decreasing smooth
function can serve to smoothly suppress invalid oscillations.
Similar capping or scaling of large deviations from the linear
interpolation can also suppress oscillations, but it is difficult
to have a uniform and general method which avoids introduc-
ing f, structure from discontinuities in the derivative.

Any such effects are likely to produce significant features
(cusps, peaks or derivative discontinuities) in f;. The most
significant effects of this sort are found in the K-edge of Na
and Mg, L-edges for Z = 4-14, around the L; edge for Z =
30-36, M-edges of Z = 13~33, around the M, edge for £ =
61-68, and N-edges for Z = 55-65. Problems with cubic
spline interpolation were noted earlier.

Extrapolation near the edge is well defined using a linear
log-log form matching to the derivative of the following poly-
nomial. Particular regions were interpolated using the polyno-
mial forms, but with a smoothly increasing weighting for the
linear solution across the transition region (as opposed to the
above alternatives). This smooths the approach to the high-
energy linear Jog-log regime without discontinuity of function
or derivative, while remaining uniform and general in
application.

Photo-electric and total attenuation in U
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Fis. 5. Photoelectric absorption coafficient for uranium near 4, and M, edgesfhﬂwmg offset of interpalation procedures and agreement af ex p«'riml‘nt"z'j‘ with

current computation versus synthesised data'” and earlier procedures.”
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