
Nist Special Database 2

Structured Forms Database Users' Guide
D. L. Dimmick, M. D. Garris, and C. L. Wilson

National Institute of Standards and Technology

Advanced Systems Division

Image Recognition Group

December 1, 1991

1.0 Introduction
This report describes the NIST Structured Forms Reference Set database, NIST Special
Database 2, containing binary images of synthesized documents. Databases of this magnitude
are necessary to further the research and development of automated document processing
systems. This database is being distributed as a reference data set to be used by developers of
document recognition and data capture systems to test and report results on a common corpus
of images derived from structured forms containing machine printed data. The structured forms
used in this database are 12 different tax forms from the IRS 1040 Package X for the year
1988. These include Forms 1040, 2106, 2441, 4562, and 6251 together with Schedules A, B,
C, D, E, F, and SE. Eight of these forms contain two pages or form faces making a total of 20
different form faces represented in the database.

The database contains 5,590 full page images of completed tax forms. Each image is stored in
the bilevel black and white raster format defined in Section 2.2. The images in this database
appear to be real forms prepared by individuals but the images have been automatically
derived and synthesized using a computer.

2.0 Image Synthesis
The entry field values on these forms have been automatically generated by a computer in
order to make the data available without the danger of distributing privileged tax information.
The computer derived entry field values are synthesized as images from one or more fonts of
machine printed data. An image of an entry field value is produced by combining images of
each character in the value. An entry field image is then inserted in a selected location within
the corresponding field within a form image. The image data entered in a field in this way has
been translated and rotated by small amounts to simulate effects of imperfect printing and
imperfect alignment of a form in the printing device. Multiple examples of the digital
representation of each character are used so that the pattern of the binary pixels representing
each character is not consistently replicated but varies as it would in a sample of real tax forms.
Both the form templates and the character examples are digitized at 300 pixels per inch binary.
Figure 1 displays a synthesized tax form.

NIST Imaging Database 2 - Structured Forms Database Users' Guide

file:///C|/Program Files/Qualcomm/Email Data/Attach/nistsd2_ug_A.htm (1 of 12) [11/4/2002 3:36:16 PM]



The values entered on the forms have been derived by a computer. These entry field values
are stored separately from the image in an ASCII text file. This text file, one per completed
structured form image, serves as an answer file which can be used to score the values
hypothesized by a recognition system. An example of one of the answer files in the database is
listed in Figure 2. These text files are the ground truth against which recognition responses may
be compared.

The information in Figure 2 has been listed in two adjacent text columns. The first line in this file
contains the identification of the form face in the referenced image. NIST Special Database 2
contains multiple form faces and therefore can be used for testing the forms identification ability
of a document recognition system. The form type identification can be used to compute a
system's accuracy in correctly identifying the form face contained in an image.

Each successive line in the answer file is an entry field identification and entry field value pair.
The field identification string uniquely identifies which entry field is being referenced on a
structured form. The field identifications used in this database are labeled on the form faces
contained in Appendix A. The entry field value may be empty or it may contain a computer
derived value. Empty entry field values model sparsely filled forms. An entry field value
containing the token string "_ICON_" represents the existence of non-character information.
Examples of this type of information includes box check marks and signatures. Any other value
listed for an entry field references the precise character information entered into the form
image.

2.2 Image File format

Image file formats and effective data compression and decompression are critical to the
usefulness of image archives. Each of a completed form face was synthesized at 300 dots per
inch binary, 2-dimensionally compressed using CCITT Group 4, and temporarily archived onto
computer magnetic mass storage. Once all forms were synthesized, the images were mastered
and replicated onto ISO-9660 formatted CD-ROM discs for permanent archiving and
distribution.

In this application, a raster image is a digital encoding of light reflected from discrete points on
a scanned form. The 2-dimensional area of the form is divided into discrete locations according
to the resolution of a specified grid. Each cell of this grid is represented by a single bit value or
1 called a pixel; 0 represents a cell predominately white, 1 represents a cell predominately
black. This 2-dimensional sampling grid is then stored as a 1-dimensional vector of pixel values
in raster order, left to right, top to bottom. Successive scan lines (top to bottom), contain the
values of a single row of pixels from the grid concatenated together.

After digitization, certain attributes of an image are required to be known to correctly interpret
the 1-dimensional pixel data as a 2-dimensional image. Examples of such attributes are the
pixel width and pixel height of the image. These attributes can be stored in a machine readable
header prefixed to the raster bit stream. A program which is used to manipulate the raster data
of an image, is able to first read the header and determine the proper interpretation of the data
which follows it. Figure 3 illustrates this file format.

A header format named IHead has been developed for use as an image interchange format.

NIST Imaging Database 2 - Structured Forms Database Users' Guide

file:///C|/Program Files/Qualcomm/Email Data/Attach/nistsd2_ug_A.htm (2 of 12) [11/4/2002 3:36:16 PM]



Numerous image formats exist; some are widely supported on small personal computers,
others supported on larger workstations; most are proprietary formats, few are public domain.
The IHead header is an open image format which can be universally implemented across
heterogeneous computer architectures and environments. Both documentation and source
code for the IHead format are publicly available and included with this database. IHead has
been designed with an extensive set of attributes in order to adequately represent both binary
and gray level images, to represent images captured from different scanners and cameras, and
to satisfy the image requirements of diversified applications including, but not limited to, image
archival/retrieval, character recognition, and fingerprint classification.

IHead has been successfully ported and tested on several systems including UNIX
workstations and servers, DOS personal computers, and VMS mainframes. The attribute fields
in IHead can be loaded into main memory in two distinct ways. Since the attributes are
represented by the ASCII character set, the attribute fields may be parsed as null-terminated
strings, an input/output format common in the 'C' programming language. IHead can also be
read into main memory using

record-oriented input/output. The fixed length of the header is prefixed to the front of the header
as shown in Figure 3. The IHead structure definition as written in the 'C' programming language
is listed in Figure 4.

 

Record Length

ASCII Format Image Header

Binary Raster Stream

000000010000010000011111110. . . .

Representing the digital scan across the
page left to right, top to bottom.

'0' - Represents a white pixel.
'1' - Represents a black pixel.

8 Pixels are packed into a single byte of
memory.

FIG. 3. An illustration of the IHead raster
file format.

 

 

FIGURE 4. IHead C language definition.

Figure 5 lists the header values from an IHead file corresponding to the structure members
listed

Figure 4. This header information belongs to the isolated box image displayed in Figure 6.

NIST Imaging Database 2 - Structured Forms Database Users' Guide

file:///C|/Program Files/Qualcomm/Email Data/Attach/nistsd2_ug_A.htm (3 of 12) [11/4/2002 3:36:16 PM]



Referencing the structure members listed in Figure 4, the first attribute field of IHead is the
identification field, id. This field uniquely identifies the image file, typically by a file name. The
identification field in this example not only contains the image's file name, but also the
reference string the writer was instructed to print in the box. The reference string is delimited by
double quotes.

 

 

 

FIGURE 5. The lHead values for the isolated subimage displayed in Figure 6.

 

FIGURE 6. An lHead image of an isolated box.

The attribute field, created, is the date on which the image was captured or digitized. The next
three fields hold the image's pixel width, height, and depth. A binary image has a pixel depth
of 1 whereas a gray scale image containing e scan resolution of the image; in this case, 300
dots per inch. The next two fields deal with compression.

In the IHead format, images may be compressed with virtually any algorithm. The IHead is
always uncompressed, even if the image data is compressed. This enables header
interpretation and manipulation without the overhead of decompression. The compress field is
an integer flag that signifies which compression technique, if any, has been applied to the
raster image data that follows the header. If the compression code is zero, then the image data
is not compressed, and the data dimensions: width, height, and depth, are sufficient to load the
image into main memory. However, if the compression code is nonzero, then the complen field
must be used in addition to the image’s pixel dimensions. For example, the image described in
Figure 5 has a compression code of 2. This signifies that CCITT Group 4 compression has
been applied to the image data prior to file creation. In order to load the compressed image
data into main memory, the value in

complen is used to load the compressed block of data into main memory. Once the
compressed image data has been loaded into memory, CCITT Group 4 decompression can be
used to produce an image that has the pixel dimensions consistent with those stored in its
header. Using CCITT Group 4 compression and this compression scheme on the images in this
database, a compression ratio of 10 to 1 was achieved.

The attribute field, align, stores the alignment boundary to which scan lines of pixels are
padded. Pixel values of binary images are stored 8 pixels (or bits) to a byte. Most images,
however, are not an even multiple of 8 pixels in width. In order to minimize the overhead of
ending a previous scan line and beginning the next scan line within the same byte, a number of
padded pixels are provided in order to extend the previous scan line to an even byte boundary.
Some digitizers extend this padding of pixels out to an even multiple of 8 pixels, other digitizers
extend this padding of pixels out to an even multiple of 16 pixels. This field stores the image's
pixel alignment value used in padding out the ends of raster scan lines.

NIST Imaging Database 2 - Structured Forms Database Users' Guide

file:///C|/Program Files/Qualcomm/Email Data/Attach/nistsd2_ug_A.htm (4 of 12) [11/4/2002 3:36:16 PM]



The next three attribute fields identify binary interchanging issues among heterogeneous
computer architectures and displays. The unitsize field specifies how many contiguous pixel
values are bundled into a single unit by the digitizer. The sigbit field specifies the order in
which bits of significance are stored within each unit; most significant bit first or least significant
bit first. The last of these three fields is the byte_order field. If unitsize is a multiple of bytes,
then this field specifies the order in which bytes occur within the unit. Given these three
attributes, binary incompatibilities across computer hardware and binary format assumptions
within application software can be identified and effectively dealt with.

The pix_offset attribute defines a pixel displacement from the left edge of the raster image
data to where a particular image's significant image information begins. The whitepix attribute
defines the value assigned to the color white. For example, the binary image described in
Figure 5 is black text on a white background and the value of the white pixels is 0. This field is
particularly useful to image display routines. The issigned field is required to specify whether
the units of an image are signed or unsigned. This attribute determines whether an image with
a pixel depth of 8 should have pixel values interpreted in the range of -128 to +127, or 0 to 255.
The orientation of the raster scan may also vary among different digitizers. The attribute field,
rm_cm, specifies whether the digitizer captured the image in row-major order or column-major
order. Whether the scan lines of an image were accumulated from top to bottom, or bottom to
top, is specified by the field, tb_bt, and whether left to right, or right to left, is specified by the
field, rl_lr.

The final attributes in IHead provide a single historical link from the current image to its parent
image; the one from which the current image was derived or extracted. In Figure 5, the parent
field contains the full path name to the image from which the image displayed in Figure 6 was
extracted. The par_x and par_y fields contain the origin point (upper left hand corner pixel
coordinate) from where the extraction took place from the parent image. These fields provide a
historical thread through successive generations of images and subimages. The IHead image
format contains the minimal amount of ancillary information required to successfully manage
binary and gray scale images.

 

3.0 Data Base Content and Organization
NIST Special Database 2 contains 5,590 full page images of completed structured forms and
correspondingly contains 5,590 ASCII text answer files. The database is approximately 610
Megabytes in size and is distributed on an ISO-9660 formatted CD- RO M disc. The binary
images in the database have been 2-dimensionally compressed. Uncompressed the database
would require 5.9 Gigabytes of storage.

3.1 Hierarchy

Figure 7 illustrates the top-level directory tree in the database. The directories doc, man, and
src, contain documentation and utilities necessary to manipulate the image data on the CD
discussed in Section 4. The data directory contains files of images and entry field value answer

NIST Imaging Database 2 - Structured Forms Database Users' Guide

file:///C|/Program Files/Qualcomm/Email Data/Attach/nistsd2_ug_A.htm (5 of 12) [11/4/2002 3:36:16 PM]



files described in Section 2.0. The organization of these files is illustrated in Figure 8.

 

FIGURE 7. The top-level directory tree in the database.

 

FIGURE 8. The file organization of the form images and answer files contained in NIST Special
Database 2.

There are 5,590 full-page images of completed forms distributed across 8 subdirectories within
data. The subdirectories sfrs_0, sfrs_1, through sfrs_8 each contain 100 synthesized tax
submissions comprised of a random collection of completed form faces generated by a
computer. Therefore there are 900 total tax submissions in this database. Each submission is
represented as a directory. An example of a submission directory r0200 is illustrated in Figure
8. In this example,

the directory sfrs_2 contains the 100 submission directories r0200 through r0299. The images
associated with submission 200 are stored in the subdirectory r0200. There are on average 6.2
form images stored in a submission directory. In Figure 8, r0200 contains 9 synthesized form
faces stored as the files r0200_00.pct, r0200_01.pct, through r0200_08.pct where the last two
digits in the file name uniquely index the form images. For each form face image, there is a
corresponding answer file. The answer file for the image r0200_00.pct is r0200_00.fmt,
r0200_01.pct is r0200_01.fmt, and so on. In this way 5,590 form images are stored on the CD
with their 5,590 corresponding answer files accounting for 11,180 individual files in all.

4.0 Source Code For Data Base Access
In addition to images and answer files, the database contains documentation and software
written in the 'C' programming language. Source code for 3 different programs: dumpihdr,
ihdr2sun, and sunalign is included within the top-level database directory src. These
programs, their supporting subroutines, and associated file names are described below. These
routines are provided as an example to software developers of how IHead images may be
manipulated. Manual pages are included in Appendix B and are located in the top-level
database directory man.

4.1 Compilation

CD-ROM is a read-only storage medium; this requires the files located in the directory src to be
copied to a read-writable partition prior to compilation. Once these files have been copied,
executable binaries can be produced by invoking the UNIX utility make. A command line
example follows.

# make -f makefile.mak

4.2 Dumpihdr <IHead file>

NIST Imaging Database 2 - Structured Forms Database Users' Guide

file:///C|/Program Files/Qualcomm/Email Data/Attach/nistsd2_ug_A.htm (6 of 12) [11/4/2002 3:36:16 PM]



Dumpihdr is a program which reads an image's IHead data from the given file and formats the
header data into a report which is printed to standard output. The report shown in Figure 5 was
generated using this utility. The main routine for dumpihdr is found in the file dumpihdr.c and
calls the external function readihdr().

Readihdr() is a function responsible for loading an image's IHead data from a file into main
memory. This routine allocates, reads, and returns the header information from an open image
file in an initialized IHead structure. This function is found in the file ihead.c. The IHead
structure definition is listed in Figure 4 and is found in the file ihead.h.

4.3 Ihdr2sun <IHead file>

Ihdr2sun converts an image from NIST !Head format to Sun rasterfile format. Ihdr2sun loads
an IHead formatted image from a file into main memory and writes the raster data to a new file
appending the data to a Sun rasterfile header. The main routine for this program is found in the
file ihdr2sun.c and calls the external function readihdrfile() which is found in the file
loadihdr.c.

Readihdrfile() is a procedure responsible for loading an IHead image from a file into main
memory. This routine reads the image's header data returning an initialized IHead structure by
calling readihdr(). In addition, the image's raster data is returned to the caller uncompressed.
The images in this database have been 2-dimensionally compressed using CCITT Group 4,
therefore readihdrfile() invokes the external procedure grp4decomp() which decompresses
the raster data. Upon completion, readihdrfile() returns an initialized lHead structure, the
uncompressed raster data, and the image's width and height in pixels. Grp4decomp() was
developed by the CALS Test Network and adapted by NIST for use with this database and is
found in the file g4decomp.c [1,2].

4.4 Sunalign <Sun rasterfile>

Sunalign is a program which ensures the Sun rasterfile passed has scan lines of length equal
to a even multiple of 16 bits. It has been found that some Sun rasterfile applications assume
scanlines which end on an even word boundary. lHead images may contain scanlines which do
not conform to this assumption. Therefore, it may be necessary to run sunalign on an image
which has been convened using ihdr2sun. The main routine for this program is found in the file
sunalign.c.

5.0 Entry Field Documentation Tables.
The final set of information provided with this database is a collection of tables. These tables
contain general knowledge about each entry field found on a structured form. This knowledge
can be applied by system developers to guide the recognition process of their document
processing system. These tables specify the data type and context associated with each entry
field found on the form faces labeled in Appendix A. Formatted copies of these tables are
included in Appendix C and are found in the directory tables within the top-level database
directory doc.

NIST Imaging Database 2 - Structured Forms Database Users' Guide

file:///C|/Program Files/Qualcomm/Email Data/Attach/nistsd2_ug_A.htm (7 of 12) [11/4/2002 3:36:16 PM]



Appendix C contains 20 different tables, 1 for each of the 20 different form faces found in this
database. Each line in these tables references a unique entry field from the corresponding form
face. Entry fields are described by three columns of information. The first column in these
tables contains entry field identifiers, the second column contains entry field data types, and the
third column contains each entry field's associated context. Figures 9 and 10 list the possible
entry field data types and contexts contained on the structured form faces used in this
database.

 

TAG DEFINITION
A, CA
F, FF, FP, FPER,
FU
I
ICON

Alphanumeric Field
Floating Point Fields
Integer Fields
Non-Character Fields (box markings,
signatures)

FIG. 9. The set of possible entry field data types.

 

 

TAG DEFINITION
DATA Generic Data
NAME Names of People
SSN Social Security Numbers

FIG. 10. The set of possible entry field contexts.

 

References
[1] Department of Defense, ``Military Specification Raster Graphics Representation in Binary
Format, Requirements for, MIL-R-28002,’’ 20 Dec 1988.

[2] CCITT, ``Facsimile Coding Schemes and Coding Control Functions for Group 4 Facsimile
Apparatus, Fascicle VII.3 - Rec. T.6,’’ 1984.

Appendix A: Labeled Form Faces 13

 

Appendix B: Manual Pages for Supplied Software

 

NIST Imaging Database 2 - Structured Forms Database Users' Guide

file:///C|/Program Files/Qualcomm/Email Data/Attach/nistsd2_ug_A.htm (8 of 12) [11/4/2002 3:36:16 PM]



DUMPIHDR(1) USER COMMANDS                                                          

NAME
      dumpihdr takes an NIST IHead image file and prints its header content to stdout

SYNOPSIS
      dumpihdr ihdrftle

DESCRIPTION
      Dumpihdr opens an NIST IHead rasterfile and formats and prints its header contents to
stdout.

OPTIONS
      ihdrftle any NIST IHead image file name

EXAMPLES
      dumpihdr foo.pct

FILES
      ihead.h                NIST's raster header include file

SEE ALSO
      ihdr2sun(l)

DIAGNOSTICS
      Dumpihdr exits with a status of -1 if opening ihdrfile fails.

BUGS
     

Sun Release 4.1 Last change: 15 March 1990              

 

 

IHDR2SUN ( 1 )                                        USER COMMANDS

  NAME
      ihdr2sun - takes an NIST IHead binary raster file and converts it to a Sun rasterfile

SYNOPSIS
      ibdr2sun ihdrfile

DESCRIPTION
      Ibdr2sun converts an NIST IHead binary raster file to a Sun rasterfile.
     The Sun image file created will have the root name of ihdrfile with the extension .ras
appended.

OPTIONS
      ihdrfile any IHead binary image

NIST Imaging Database 2 - Structured Forms Database Users' Guide

file:///C|/Program Files/Qualcomm/Email Data/Attach/nistsd2_ug_A.htm (9 of 12) [11/4/2002 3:36:16 PM]



EXAMPLES
      ibdr2sun r0000_00.pct

FILES
      rasterfile.h       Sun's raster header include file

      ibead.h      NIST's raster header include file

SEE ALSO
      rasterfile(5)

DIAGNOSTICS
      Ibdr2sun exits with a status of -1 if opening ihdrfile fails.

BUGS

 

Sun Release 4.1                                     Last change: 15 March 1990                              
                        I

SUNALIGN(1)                                             USER COMMANDS                             
SUNALIGN(1)
NAME
      sunalign - takes a sun rasterfile and word aligns its scanlines

SYNOPSIS
      sunalign sunrasterfile

DESCRIPTION
Sunalign takes the file sunrasterfile and determines if the stored scan lines in the
file require word alignment. If so, the command overwrites the image data making
scan lines word aligned. This command is useful when taking clipped images from
the HP Scan Jet and importing them into Frame Maker.

OPTIONS
      sunrasterfile
            any sun rasterfile image

EXAMPLES
sunalign foo.ras

FlLES
      / usrl include/ rasterfile.h
            sun's raster header include file

SEE ALSO
      rasterfile(5)

DIAGNOSTICS
      Sunalign exits with a status of -1 if opening sunrasterfile fails.

NIST Imaging Database 2 - Structured Forms Database Users' Guide

file:///C|/Program Files/Qualcomm/Email Data/Attach/nistsd2_ug_A.htm (10 of 12) [11/4/2002 3:36:16 PM]



BUGS

Sun Release 4.1 Last change:                         08 March 1990

      

READIHDRFILE (3)                                C LIBRARY FUNCTIONS                             
READIHDRFILE (3)

NAME
      readihdrfile - loads into memory an IHead structure and corresponding binary image data
from a file

SYNOPSIS
      #include <ihead.h>
      readihdrfile(file, head, data, width, height)
      char *file;
      IHead **head;
      unsigned char **data;
      int *width, *height;

DESCRIPTION
readihdrfile0 opens a file name file and allocates and loads into memory an IHead
structure and its corresponding binary image data. If the image data is compressed,
readihdrfile win uncompress the data before returning the data buffer. This routine
also returns several integers convened from their corresponding ASCII entries
found in the header. The source is found under src in the file loadhsf.c.

file       - the name of the file to be read from

head    - a pointer to where an IHead structure is to be allocated and loaded

data     - a pointer to where the array of binary raster image data is to be allocated
and loaded

width       - integer pointer containing the image's pixel width upon return

height     - integer pointer containing the image's pixel height upon return
SEE ALSO
      g4decomp(3)

DIAGNOSTICS
      readihdrfile() exits with -1 when opening file fails or the image contains multiple bit planes.

BUGS

Release 4.1                                         Last change: 15 March 1990                                     
                               

NIST Imaging Database 2 - Structured Forms Database Users' Guide

file:///C|/Program Files/Qualcomm/Email Data/Attach/nistsd2_ug_A.htm (11 of 12) [11/4/2002 3:36:16 PM]



GRP4DECOMP(3)                                             C LIBRARY FUNCTIONS                             
GRP4DECOMP(3)

NAME
      grp4decomp - takes an CCITT Group 4 Compressed input buffer
      and returns an output buffer of uncompressed data

SYNOPSIS
      grp4decomp(indata, inbytes, width, height, outdata, outbytes)
      unsigned char *indata, *outdata;
      int inbytes, width, height, *outbytes;

DESCRIPTION
grp4decomp() takes the input buffer indata of length inbytes and decompresses it
returning the uncompressed data in the output buffer outdata with length outbytes.
This procedure was developed by the CALS Test Network and adapted for use by
NIST. The source is found under src in the file g4decomp.c.

indata - the compressed data input buffer

in bytes - the length of the input data in bytes

width - the pixel width of the image from which the input data came height - the pixel
height of the image from which the input data came

outdata - the output buffer in which the uncompressed data is to be returned

outbytes - a pointer to the length in bytes of the uncompressed output data

SEE ALSO
      readihdrfile(3)

BUGS
      NOTE: Grp4decomp will only work with binary image data.

 

NIST Imaging Database 2 - Structured Forms Database Users' Guide

file:///C|/Program Files/Qualcomm/Email Data/Attach/nistsd2_ug_A.htm (12 of 12) [11/4/2002 3:36:16 PM]


	Local Disk
	NIST Imaging Database 2 - Structured Forms Database Users' Guide


