Overview
Capture of carbon dioxide from the air (direct air capture; DAC) combined with energy efficiency and carbon capture, utilization and storage (CCUS) efforts across many technologies have the combined potential to not only reduce, but reverse increasing atmospheric CO2 levels that are implicated in man-made climate change.
NIST is developing a comprehensive program to address current and future industry needs via development of the critical measurement and metrologies needed for successful DAC deployment and industry innovation.
The program is across several NIST operating units, with key contacts listed below. Please look on the internal ADLP webpages under 'Collaborative Research Projects' for information on the working group (NIST Direct Air Capture (DAC) - Carbon Capture, Utilization, and Storage (CCUS) Working Group).
Pamela Chu (MML)
Andrew Allen (MML)
Dan Neumann (NCNR)
Craig Brown (NCNR)
Important reports:
with: D. Hancu (NETL- DOE); T. McDonald (Mosaic Materials); P. Llewellyn (TotalEnergies);
additionally with: Alissa Park (Columbia University), Dan Zhao (U. Singapore), Christopher Jones (Georgia Tech.), Climeworks, Travis Johnson (ASU)
Take-away messages:
Publications
Presentations
New metrologies and capabilities
Previous efforts:
Reversible switching between nonporous and porous phases of a new SIFSIX coordination network induced by a flexible linker ligand, B.-Q. Song, Q.-Y. Yang, S.-Q. Wang, M. Vandichel, M. Vandichel, A. Kumar, C. M. Crowley, N. Kumar, C.-H. Deng, V. GasconPerez, M. Lusi, H. Wu, W. Zhou, M. J. Zaworotko, J. Am. Chem. Soc., 142, 6896−6901 (2020). https://doi.org/10.1021/jacs.0c01314
A microporous aluminum-based metal-organic framework for high methane, hydrogen, and carbon dioxide storage, B Wang, X Zhang, H Huang, Z Zhang, T Yildirim, W Zhou, S Xiang, ... Nano Research, 1-5 (2020). https://doi.org/10.1007/s12274-020-2713-0
Neutron diffraction structural study of CO2 binding in mixed-metal CPM-200 metal–organic frameworks AJ Campanella, BA Trump, EJ Gosselin, ED Bloch, CM Brown Chemical Communications 56 (17), 2574-2577 (2020). https://pubs.rsc.org/en/content/articlelanding/2020/cc/c9cc09904b/unauth#!divAbstract
Understanding How Ligand Functionalization Influences CO2 and N2 Adsorption in a Sodalite Metal–Organic Framework M Asgari, R Semino, PA Schouwink, I Kochetygov, J Tarver, O Trukhina, ... Chemistry of Materials 32 (4), 1526-1536 (2020). https://pubs.acs.org/doi/abs/10.1021/acs.chemmater.9b04631
A metal–organic framework with suitable pore size and dual functionalities for highly efficient post-combustion CO2 capture, H.-M. Wen, C. Liao, L. Li, A. Alsalme, Z. Alothman, R. Krishna, H. Wu, W. Zhou, J. Hu, B. Chen, J. Mater. Chem. A, 7, 3128–3134 (2019). https://doi.org/10.1039/C8TA11596F
Controlling pore shape and size of interpenetrated anion-pillared ultramicroporous materials enables molecular sieving of CO2 combined with ultrahigh uptake capacity, M. Jiang, B. Li, X. Cui, Q. Yang, Z. Bao, Y. Yang, H. Wu, W. Zhou, B. Chen, H. Xing, ACS Appl. Mater. Interfaces, 10, 16628–16635 (2018). https://doi.org/10.1021/acsami.8b03358
An experimental and computational study of CO2 adsorption in the sodalite-type M-BTT (M= Cr, Mn, Fe, Cu) metal–organic frameworks featuring open metal sites M Asgari, S Jawahery, ED Bloch, MR Hudson, R Flacau, B Vlaisavljevich, ...Chemical science 9 (20), 4579-4588 (2018). https://pubs.rsc.org/en/content/articlehtml/2018/sc/c8sc00971f
A microporous hydrogen-bonded organic framework with amine sites for selective recognition of small molecules, H. Wang, H. Wu, J. Kan, G. Chang, Z. Yao, B. Li, W. Zhou, S. Xiang, J. C.-G. Zhao, B. Chen, J. Mater. Chem. A, 5, 8292-8296 (2017). http://dx.doi.org/10.1039/C7TA01364G
Highly enhanced gas uptake and selectivity via incorporating methoxy groups into a microporous metal–organic framework, H.-M. Wen, G. Chang, B. Li, R.-B. Lin, T.-L. Hu, W. Zhou, B. Chen, Crystal Growth Des., 17, 2172–2177 (2017). http://dx.doi.org/10.1021/acs.cgd.7b00111
Design of hyperporous graphene networks and their application in solid-amine based carbon capture systems, S Gadipelli, Y Lu, NT Skipper, T Yildirim, Z Guo Journal of Materials Chemistry A 5 (34), 17833-17840 (2017). https://doi.org/10.1039/C7TA05789J
On the Structure–Property Relationships of Cation‐Exchanged ZK‐5 Zeolites for CO2 Adsorption TD Pham, MR Hudson, CM Brown, RF Lobo ChemSusChem 10 (5), 946-957 (2017). https://chemistry-europe.onlinelibrary.wiley.com/doi/abs/10.1002/cssc.201601648
Performance of van der Waals Corrected Functionals for Guest Adsorption in the M2(dobdc) Metal–Organic Frameworks B Vlaisavljevich, J Huck, Z Hulvey, K Lee, JA Mason, JB Neaton, JR Long, ... The Journal of Physical Chemistry A 121 (21), 4139-4151 (2017). https://pubs.acs.org/doi/full/10.1021/acs.jpca.7b00076
Graphene oxide-derived porous materials for hydrogen/methane storage and carbon capture S Gadipelli, T Yildirim, Z Guo, Graphene Science Handbook: Size-Dependent Properties (2016).
From Fundamental Understanding To Predicting New Nanomaterials For High Capacity Hydrogen/Methane Storage and Carbon Capture (Technical Report) | OSTI.GOV. https://www.osti.gov/biblio/1171662
Flexible metal-organic framework compounds: In situ studies for selective CO2 capture AJ Allen, L Espinal, W Wong-Ng, WL Queen, CM Brown, SR Kline, ... Journal of Alloys and Compounds 647, 24-34 (2015). https://www.sciencedirect.com/science/article/pii/S0925838815014589
Understanding Small‐Molecule Interactions in Metal–Organic Frameworks: Coupling Experiment with "A Flexible Microporous Hydrogen-Bonded Organic Framework for Gas Sorption and Separation, H. Wang, B. Li, H. Wu, T.-L. Hu, Z. Yao, W. Zhou, S. Xiang, B. Chen, J. Am. Chem. Soc., 137, 9963–9970 (2015). http://dx.doi.org/10.1021/jacs.5b05644
Understanding Small‐Molecule Interactions in Metal–Organic Frameworks: Coupling Experiment with Theory JS Lee, B Vlaisavljevich, DK Britt, CM Brown, M Haranczyk, JB Neaton, ... Advanced Materials 27 (38), 5785-5796 (2015) https://onlinelibrary.wiley.com/doi/full/10.1002/adma.201500966
Water‐Stable Zirconium‐Based Metal–Organic Framework Material with High‐Surface Area and Gas‐Storage Capacities, OV Gutov, W Bury, DA Gomez‐Gualdron, V Krungleviciute, ... Chemistry–A European Journal 20 (39), 12389-12393 (2014). https://doi.org/10.1002/chem.201402895
Exceptional CO2 capture in a hierarchically porous carbon with simultaneous high surface area and pore volume, G Srinivas, V Krungleviciute, ZX Guo, T Yildirim Energy & Environmental Science 7 (1), 335-342 (2014). https://doi.org/10.1039/C3EE42918K
Comprehensive study of carbon dioxide adsorption in the metal–organic frameworks M2 (dobdc)(M= Mg, Mn, Fe, Co, Ni, Cu, Zn) WL Queen, MR Hudson, ED Bloch, JA Mason, MI Gonzalez, JS Lee, ... Chemical Science 5 (12), 4569-4581 (2014). https://pubs.rsc.org/no/content/articlelanding/2014/sc/c4sc02064b/unauth#!divAbstract
Molecular basis for the high CO2 adsorption capacity of chabazite zeolites TD Pham, MR Hudson, CM Brown, RF Lobo ChemSusChem 7 (11), 3031-3038 (2014). https://chemistry-europe.onlinelibrary.wiley.com/doi/abs/10.1002/cssc.201402555
Evaluation of cation-exchanged zeolite adsorbents for post-combustion carbon dioxide capture TH Bae, MR Hudson, JA Mason, WL Queen, JJ Dutton, K Sumida, ... Energy & Environmental Science 6 (1), 128-138 (2013). https://pubs.rsc.org/no/content/articlehtml/2013/ee/c2ee23337a
Gram-scale, high-yield synthesis of a robust metal–organic framework for storing methane and other gases, CE Wilmer, OK Farha, T Yildirim, I Eryazici, V Krungleviciute, AA Sarjeant, ... Energy & Environmental Science 6 (4), 1158-1163 (2013). https://doi.org/10.1039/C3EE24506C
Unusual and highly tunable missing-linker defects in zirconium metal–organic framework UiO-66 and their important effects on gas adsorption. H Wu, YS Chua, V Krungleviciute, M Tyagi, P Chen, T Yildirim, W Zhou Journal of the American Chemical Society 135 (28), 10525-10532 (2013). https://doi.org/10.1021/ja404514r
Graphene oxide derived carbons (GODCs): synthesis and gas adsorption properties, G Srinivas, J Burress, T Yildirim, Energy & Environmental Science 5 (4), 6453-6459 (2012). https://doi.org/10.1039/C2EE21100A
Unconventional, Highly Selective CO2 Adsorption in Zeolite SSZ-13 MR Hudson, WL Queen, JA Mason, DW Fickel, RF Lobo, CM Brown Journal of the American chemical society 134 (4), 1970-1973 (2012). https://pubs.acs.org/doi/abs/10.1021/ja210580b
Microporous metal-organic framework with potential for carbon dioxide capture at ambient conditions, S. Xiang, Y. He, Z. Zhang, H. Wu, W. Zhou, R. Krishna, B. Chen, Nat. Commun., 3, 954 (2012). http://dx.doi.org/10.1038/ncomms1956
Carbon capture in metal–organic frameworks—a comparative study, JM Simmons, H Wu, W Zhou, T Yildirim Energy & Environmental Science 4 (6), 2177-2185 (2011). https://doi.org/10.1039/C0EE00700E
Site-Specific CO2 Adsorption and Zero Thermal Expansion in an Anisotropic Pore Network WL Queen, CM Brown, DK Britt, P Zajdel, MR Hudson, OM Yaghi The Journal of Physical Chemistry C 115 (50), 24915-24919 (2011) https://pubs.acs.org/doi/abs/10.1021/jp208529p
Adsorption Sites and Binding Nature of CO2 in Prototypical Metal−Organic Frameworks: A Combined Neutron Diffraction and First-Principles Study, H Wu, JM Simmons, G Srinivas, W Zhou, T Yildirim The Journal of Physical Chemistry Letters 1 (13), 1946-1951 (2010). https://doi.org/10.1021/jz100558r
Hydrogen storage and carbon dioxide capture in an iron-based sodalite-type metal–organic framework (Fe-BTT) discovered via high-throughput methods K Sumida, S Horike, SS Kaye, ZR Herm, WL Queen, CM Brown, ... Chemical Science 1 (2), 184-191 (2010). https://pubs.rsc.org/lv/content/articlehtml/2010/sc/c0sc00179a