engineering laboratory

September 6, 2019 NCST Advisory Committee Meeting

NOTE – Summaries of the recommendations are included in the following slides for context. The complete recommendations are available in the final report of the NIST Technical Investigation of the Joplin Tornado, at <u>https://dx.doi.org/10.6028/</u> <u>NIST.NCSTAR.3</u> Summary of Progress on Implementation of Recommendations from the Joplin Tornado Investigation

Long Phan Leader, Structures Group

NIST Joplin Tornado Investigation

NIST NCSTAR 3

Final Report • National Institute of Standards and Technology (NIST)

Technical Investigation of the May 22, 2011, Tornado in Joplin, Missouri

http://dx.doi.org/10.6028/NIST.NCSTAR.3

The first tornado study to include storm characteristics, building performance, emergency communication and human behavior - with assessment of the impact of each on fatalities

 16 recommendations for improving:

- Tornado hazard characterization
- How buildings and shelters are designed and constructed in tornado–prone regions
- Emergency communications that warn of threats from tornadoes.

List of Joplin Recommendations

Hazard Characteristics	R #	RECOMMENDATION SUMMARY	
	1	Development and deployment of technology to measure tornado wind fields	
	2	Archival of tornado event data	
	3	Development of tornado hazard maps	
	4	Improvement of EF Scale; means for continued improvement; adoption by NWS	
esignated nes	5	Development of performance-based standards for tornado-resistant design	
	6	Development of performance-based tornado design methodologies	
	7	 a) Development of tornado shelter standard for existing buildings; b) Installation of tornado shelters in more buildings in tornado-prone regions 	
rs, D ifeli	8	Development of guidelines for public tornado sheltering strategies	
elte ind L	9	Development of guidelines for selection of best available refuge areas	
Buildings, Sh Safe Areas, a	10	Prohibition of aggregate roof coverings and ballast in tornado-prone regions	
	11	Development of requirements for enclosures of egress systems in critical facilities	
	12	 a) Development of tornado vulnerability assessment guidelines for critical facilities; b) Performance of vulnerability assessments by critical facilities in tornado-prone 	
Emergency Communication	13	Development of codes, standards, and guidance for emergency communications; Development of joint plan by emergency mgrs/media/nws for consistent alerts	
	14	Deployment of "push" technologies for transmission of emergency information	
	15	Research to identify factors to enhance public perception of personal risk	
	16	Develop technology for real-time, spatially-resolved tornado threat information	
		engineering laborato	

List of Joplin Recommendations

Hazard Characteristics	R #	RECOMMENDATION SUMMARY PROGRESS UPDATES IN THIS BRIEFING		
	1	Development and deployment of technology to measure tornado wind fields		
	2	Archival of tornado event data		
	3	Development of tornado hazard maps		
	4	Improvement of EF Scale; means for continued improvement; adoption by NWS		
esignated nes	5	Development of performance-based standards for tornado-resistant design		
	6	Development of performance-based tornado design methodologies		
	7	 a) Development of tornado shelter standard for existing buildings; b) Installation of tornado shelters in more buildings in tornado-prone regions 		
rs, E Lifeli	8	Development of guidelines for public tornado sheltering strategies		
s, Shelte as, and I	9	Development of guidelines for selection of best available refuge areas		
	10	Prohibition of aggregate roof coverings and ballast in tornado-prone regions		
ding	11	Development of requirements for enclosures of egress systems in critical facilities		
Builc Safe	12	 a) Development of tornado vulnerability assessment guidelines for critical facilities; b) Performance of vulnerability assessments by critical facilities in tornado-prone 		
Emergency Communication	13	Development of codes, standards, and guidance for emergency communications; Development of joint plan by emergency mgrs/media/nws for consistent alerts		
	14	Deployment of "push" technologies for transmission of emergency information		
	15	Research to identify factors to enhance public perception of personal risk		
	16	Develop technology for real-time, spatially-resolved tornado threat information		
		engineering laborato		

Highlights of Implementation Activities and Successes since 8/18 Meeting (1/5)

Nearing Completion of R3: Development of Tornado Hazard Maps

- Map development methodology has been completed
 - Incorporates variation of risk with size of the building or facility
 - Includes explicit treatment of epistemic (modeling) uncertainty
- Draft Tornado Hazard Maps have been produced
- 2nd Tornado Map Stakeholder
 Workshop held on May 14, 2019
 - Obtained valuable feedback being used to update the methodology and maps

Tornado Climatology Region Boundaries and Uncertainties

Highlights of Implementation Activities and Successes since 8/18 Meeting (2/5)

Awarded 4 grants totaling \$2.24M under the NIST Disaster Resilience 2018 Notice Of Funding Opportunity¹, supporting development of sensors and methods to collect spatiotemporal data on windstorm phenomena, including surface-level winds and near ground velocity profiles in tornadoes, hurricanes, thunderstorms and other high wind events. (**R1**)

¹<u>https://www.nist.gov/el/disaster-resilience/disaster-resilience-federal-funding-opportunity-ffo</u>

https://www.nist.gov/news-events/news/2019/08/nist-awards-66-million-research-helpstructures-better-withstand

NIST has awarded more than \$6.6 million to study ways buildings can be made more resilient to hazards such as the 2011 Joplin tornado that destroyed this large store.

Highlights of Implementation Activities and Successes since 8/18 Meeting (3/5)

NIST Disaster Resilience Grant Awardees

Florida Institute of Technology (\$421,000)

For a project to develop a wireless sensor network system and lidar experiments to characterize wind profiles near the ground and strong wind loads on nonstructural components of buildings (such as architectural details or electrical systems).

Texas Tech University (\$582,000)

To deploy new 4D measurement and modeling techniques to advance understanding of windstorm characteristics and provide input and validation of numerical, experimental and empirical modeling efforts.

Highlights of Implementation Activities and Successes since 8/18 Meeting (4/5)

NIST Disaster Resilience Grant Awardees

The University of Illinois (\$498,000)

To close fundamental knowledge gaps through the development and use of sensors to measure pressure, wind and wind load (the force wind exerts on a structure) characteristics in thunderstorm, tornado and tornado-like environments.

The University of Oklahoma (\$738,000)

For the development of maps of damaging winds from integrated remote and on-site observations that provide high resolution in time and space.

Highlights of Implementation Activities and Successes since 8/18 Meeting (5/5)

- Main Committee balloting has begun on draft chapters of the new ASCE/SEI/AMS Standard on Wind Speed Estimation in Tornadoes and Other Windstorms (R4 and R2)
- Development of tornado load provisions (by NIST, ARA, and the ASCE 7 Tornado Task Committee) for the ASCE 7-22 Standard to accompany the new tornado wind speed maps is well under way (R5 and R6)
- A joint NIST/NOAA/FEMA workshop was held to identify the opportunities and challenges associated with planning, communications, and operations related to public tornado shelters (<u>R8, R13, and R16</u>)
- Guidance was published on short message templates for 280-character
 Twitter and 360-character Wireless Emergency Alert (WEA) messages
 (<u>R13</u>)
 - J. Sutton, E. Kuligowski, Alerts and warnings on short messaging channels: guidance from an expert panel process, Nat. Hazards Rev. 20 (2019). <u>https://doi.org/10.1061/(ASCE)NH.1527-6996.0000324</u>.

engineering laboratory

Tornado Hazard Characteristics

Performance of Buildings, Shelters, Designated Safe Areas, and Lifelines

Marc Levitan, *Research Wind Engineer* Structures Group

Progress – Tornado Hazard Maps

R3: Development of tornado hazard maps for use in the engineering design of buildings and infrastructure, considering spatially based estimates of the tornado hazard instead of point–based estimates.

• 2nd Tornado Mapping Stakeholder Workshop

- Jointly sponsored by NIST and ASCE/SEI
- May 14, 2019, at ASCE HQ , prior to the ASCE 7-22
 Wind Load Subcommittee meeting
- Over 100 stakeholder participants

Goals

- Inform participants on the data, analysis, and methodology used in development of new probabilistic tornado hazard maps for engineering design
- Present the draft maps and options for incorporation into ASCE 7-22
- + <u>Obtain stakeholder feedback</u> on the proposed tornado hazard maps and their implementation in ASCE 7-22

Outcomes

 Obtained valuable feedback that is being used to update the methodology and maps

SEL

engineering

Development of Probabilistic Tornado Hazard Maps for the United States 2^{ed} Stakeholder Workshop

> May 14, 2019 8:00 a.m. – 5:00 p.m. ASCE Headquarters 1801 Alexander Bell Drive, Reston, VA 20191

laborato

Tornado Map Development Components/Process

Tornado Climatology – Region Identification

Animation of Sequential Cluster Formation - 1° Grid

¹ Continuation of tornado regionalization presented to the NCSTAC on Aug. 30, 2018. For data sources and analysis, see items 1-3 on slide 17 of last year's presentation, available at the link below. https://www.nist.gov/sites/default/files/documents/2019/01/28/02 phan levitan kuligowski ncstac aug2018 joplin recommendations update final.pdf

Variables Include

Latitude, Longitude Elevation Std Dev Elevation Land Fraction Tornado Days/Yr Path Length Occurrence Rates • All Intensities • Moderate • Strong Point Strike Probability

Also ran 2° grids and repeated 1° and 2° cluster analyses with grids shifted over half a grid cell

engineering laboratory

Region Boundaries and Uncertainties

8 Model Cluster Runs

The boundary contours are also used to quantify region boundary uncertainties through spatial smoothing, described on slide 18.

Final Region/Subregion Boundaries

Hazard Regions from Cluster Analysis and Sub-region analysis

Region Hazard C

Additional Data on Tornadoes in Canada

Final Climatology Regions for Tornado Maps

Final regional boundaries determined using regions from cluster analysis with modifications, including

- Smoothing of certain boundaries to improve map contouring near multi-region intersections
- Adjusted Region 1-2 boundary in Montana-Wyoming to follow tornado trends in combined US-Canadian tornado maps and land elevation

Hazard Curves

Windspeed Exceedance Frequencies (WEFs) are then developed for each region and subregion, for a range of target sizes

egion :

Region 4

Target Size Sensitivity

- Region 1 shows more sensitivity than region 4b, due to smaller tornadoes
- For square targets, there is virtually no change for random orientation of target
- Targets w/plan aspect ratio >>1 have somewhat increased wind speeds over square targets with same target area.

Target Sizes			
Plan Size (ft)	Area (ft²)		
Point	-		
45x45	2K		
100x100	10K		
200x200	40K		
500x500	250K		
1000x1000	1M		
2000x2000	4M		

Map Development Process

- A six step process is 1. used to develop maps.
- 2. The grid wind speeds for a given Return Period and Target Size were smoothed using Gaussian smoothing.
- 3. The Kriging was performed in ArcGIS with default parameters, similar to the current ASCE 7 non-tornadic maps.

Example Grid After Smoothing

Regional Boundary Uncertainties

Region 4 – Region 5 (West of

Appalachians) Region 4 - Region 5 (South and East

of Appalachians)

Overall Mean

0.0320

0.0770

0.1031

0.0770

0.0320

0.0575

0.0239

0.0239

0.0099

0.0239

0.0575

0.0770

0.0575

0.0239

0.0099

0.0239

0.0320

0.0239

0.0099

en

	188		3.1
0.0239	0.0099	Ga	ussian
0.0575	0.0239	We	eights.
0.0770	0.0320		

tor

85

177

400

1.4

3.0

Map Examples

Target Size – 200 x 200 ft (40K ft²)

3,000 Year Return Period

100,000 Year Return Period

Notes

- Isotachs (i.e., contours) drawn in 10 mph increments
- Wind speeds less than those shown in ASCE 7 may still produce loads that control the wind load design, due to differences in other wind load coefficients for tornadoes (e.g., K_z, K_d, GC_p), which are still under development

Next Steps

• Continue working with the ASCE 7 Tornado Task Committee and Wind Load Subcommittee to refine maps and cartography for application in ASCE 7-22

engineering laboratory

Progress - Tornado Databases

R2: Improve publicly available tornado databases

During the last year continued working with multiple NOAA offices to improve tornado data collection and archiving, including:

- NWS Storm Prediction Center (SPC) on tornado database structure and data collection procedure improvements, including to the NWS Damage Assessment Toolkit
 - Most recent meeting at SPC on March 6, 2019

NWS Performance Branch (PB) to improve the Storm Events Database

- <u>The NWS Storm Data Program has recently begun a major revision to its</u> <u>underlying software</u> to move from a purely text-based system to one that can accommodate geospatial information, imagery, and other data formats
- The new system will document much more information about each tornado and how/why it received a certain rating
- Many of the changes are a direct result of significant engagement from NIST and the committee developing the ASCE/SEI/AMS Standard for Wind Speed Estimation in Tornadoes and Other Windstorms (see R4)

Progress – Improvement of the EF Scale

R4: Standardize the Enhanced Fujita (EF) scale and improve through addition of scientific/quantifiable damage indicators, particularly those that better distinguish between the most intense tornado events

ASCE/SEI/AMS Standard on Wind Speed Estimation in Tornadoes and Other Windstorms (NIST and NOAA co-chair this standards committee)

- Subcommittees have begun balloting chapters through the Main Committee
- <u>NIST proposed a major improvement to the EF-</u> <u>Scale methodology</u>, including guidance and wind speed estimates for Damage Indicators (DIs) based on
 - Typical resistance
 - Stronger than typical resistance
 - Weaker than typical resistance
 - Additional EF Scale methodology improvements include
 - Explicit consideration of uncertainty
 - Existing DIs being updated
 - Several new DIs being developed, for example

SOURCE: ASCE/SEI/AMS Committee on Wind Speed Estimation in Tornadoes. Used with Permission.

Progress – Tornado Shelter Standard

R7a: Development of tornado shelter standard for existing buildings

- NIST is chairing the IS/STM Committee developing the 2020 ICC/NSSA Storm Shelter Standard
- NIST successfully proposed expansion of scope to include construction of shelters within existing buildings
- Other relevant ICC 500 proposals this cycle include
 - Evaluation of existing slabs on grade to verify the ability to resist storm shelter loads
 - Applicability of current flood elevation criteria to installation of tornado shelters within existing buildings
- Timeline: the revised standard is scheduled for completion by December 2020, to be incorporated into the 2021 I-Codes

Cover image © 2014, International Code Council. Reprinted with permission. www.iccsafe.org

Progress – Public Tornado Sheltering Strategies (1/2)

R8: Development and implementation of uniform national guidelines that enable communities to create safe, effective public sheltering strategies

Held Workshop on Public Tornado Sheltering

Venue

- National Tornado Summit
- March 4, 2019 in Oklahoma City

Workshop Goals

- Raise awareness of major changes taking place with the rapid expansion of public-use shelters
- Identify unique challenges posed by public tornado shelters across the many stakeholder communities
- Lay the foundation for a future workshop and subsequent development of guidance and best practices, which is needed for optimal planning and operations of public tornado shelters

Workshop Partners

 FEMA, NOAA (NSSL and SPC), U. of Oklahoma, City of Birmingham AL, Industry

Pre-Summit Workshop

Public Tornado Shelters: Opportunities and Challenges for Improving Tornado Safety

Progress – Public Tornado Sheltering Strategies (2/2)

Workshop Outcomes

- Based on positive results, NOAA and FEMA have agreed to work with NIST and industry partners on developing followup workshop(s)
- Emergency Communications was identified as a critical aspect of shelter operations, so this effort will also support implementation of R13 and R16, and make use of the results of work on R13 through R16.

Workshop Focus Areas

- A Changing Paradigm the Proliferation of Public Tornado Shelters Brings New Challenges
- Communications Challenges
- Operations Challenges
- Improving Tornado Safety Opportunities and Best Practices

Workshop presentations available at <u>https://tornadosummit.org/archive/2019/detailed_agenda.php</u>

Implementation Progress to Date

	R #	RECOMMENDATION SUMMARY			
rd acteristics	<mark>1</mark>	Development and deployment of technology to measure tornado wind fields	Legend Published code/std/guidance		
	<mark>2</mark>	Archival of tornado event data	In planning/modest progress		
laza Chara	<mark>3</mark>	Development of tornado hazard maps			
ΤΟ	<mark>4</mark>	Improvement of EF Scale; means for continued improvement; adoption by NWS			
gs, Shelters, Designated eas, and Lifelines	<mark>5</mark>	Development of performance-based standards for tornado-resistant design			
	<mark>6</mark>	Development of performance-based tornado design methodologies			
	7	a) Development of tornado shelter standard for existing buildings; b) Installation of tornado shelters in more buildings in tornado-prone regions			
	8	Development of guidelines for public tornado sheltering strategies			
	<mark>9</mark>	Development of guidelines for selection of best available refuge	areas		
	<mark>10</mark>	Prohibition of aggregate roof coverings and ballast in tornado-prone regions			
lding e Ar	11	Development of requirements for enclosures of egress systems in critical facilities			
Buil Safe	<mark>12</mark>	 a) Development of tornado vulnerability assessment guidelines for critical facilities; b) Performance of vulnerability assessments by critical facilities in tornado-prone 			
Emergency Communication	<mark>13</mark>	Development of codes, standards, and guidance for emergency communications; Development of joint plan by emergency mgrs/media/nws for consistent alerts			
	<mark>14</mark>	Deployment of "push" technologies for transmission of emergen	cy information		
	<mark>15</mark>	Research to identify factors to enhance public perception of pers	onal risk	25 📶	
	<mark>16</mark>	Develop technology for real-time, spatially-resolved tornado three	eat information	у 25	

engineering laboratory

September 6, 2019 NCST Advisory Committee Meeting **Progress on Implementation of Joplin Tornado Recommendations**

QUESTIONS?

Long Phan Leader, Structures Group

Marc Levitan Research Wind Engineer, Structures Group

Erica Kuligowski

Research Social Scientist, Wildland-Urban Interface Fire Group

