ENGISIS

INTEROPERABILITY FOR PRODUCT LIFECYCLE MANAGEMENT

Application of blockchain and standards-based interoperability to manufacturing and MRO in a MBE

Xenia Fiorentini, CEO

Position

Engisis provides services and technology for PLM interoperability

Mission

To help our curstomers understand,

design and implement a PLM strategy by:

- > understanding the processes across the lifecycle,
- designing methods to support these processes,
- providing the technology to implement data exchange and integration through the product lifecycle

Key points

- Focus on international standards and model based approach
- > International network of industrial partners, universities and standardization committees
- > Location: Italy, France, USA

Customers

Big organizations with complex products and long lifecycle

The technology

Joint Enterprise Data Interoperability Engine					
Engisis Integration Platform					
Engisis Digital Certification toolkit			Engisis DaaS	Engisis Services for PLM	
Engisis STEP toolkits					
Data exchange	Data retention	Data certification	Web services		

Join Enterprise Data Interoperability (JEDI)

- JEDI is a capability developed through our Nexus subsidiary
- A data interoperability capability between Services and partners:
 - Interoperable equipment transactional and life-cycle data across organizations and information systems
 - Uses open standards to exchange detailed equipment data using NATO compliant ISO 10303:239 "PLCS" open data standards
 - Maximize discovery, access, and re-use of equipment data in logistics processes
 - Application within many scenarios

Current JEDI Landscape

JEDI-MAC (Marine-Army Calibration)

 US Army calibration support for USMC in production environment

JEDI-M (Maintenance)

 Demonstration in NATO CWIX exercise with US Army, USMC, and NATO partners, deployed across DoD MPE and NATO FMN

JEDI-IDSE (Integrated Digital Sustainment Environment)

 Link supply chain need for part with digital manufacturing processes

JEDI-JOPES (Joint Operations Planning & Execution System)

 Sharing of US deployment and sustainment data with NATO to coordinate operations and exercises

JEDI-M1 Abrams

 Joint/Coalition M1 tank parts inventory data integration supporting maintenance actions and fleet analyses

Trust

- Data ownership
- Traceability
- Data integrity
- Fraud prevention

What is blockchain?

- Heavily used for financial transactions
 - Initially created to support the Bitcoin currency (millions USD exchanged every day)
- Decentralized ledger (of facts) on a peer-to-peer network
 - Facts are validated without the need for a central authority
 - Each fact must be validated by a majority of the peers (consensus mechanism)
 - > Validation algorithm implements the business logic
 - > Consensus implements the security
 - > The more participants, the more secure the ledger is
- A record of facts is replicated through a peer-to-peer network
- A set of facts is stored in a block (storage unit)

What is a block in the chain?

- Each block contains different information:
 - A list of facts
 - Metadata
 - A link to the previous block

Principles

Data integrity support

- Retroactive alterations impossible due to 3 principles
 - 1. The link between the blocks
 - Alterations requires to partially rebuild the chain to insert new fraudulent and valid data
 - 2. The replication of the data
 - > Alterations would require to alter ALL replicates
 - 3. The consensus mechanism
 - > To alter all replicates requires control over the majority of the peers to make fraudulent data "official"

Enabling collaboration, trust and traceability

Why JEDI and blockchain?

- Blockchain is ideal within 3 conditions:
 - Large network of participants
 - Management of transactions (physical and/or virtual assets)
 - Data trust and traceability are critical
- JEDI is a strong candidate
 - Several organizations and several networks
 - Data exchange is a transaction
 - Record parts movements/exchanges between forces/allies
 - Transactions data is trustworthy enough for seamless audit

JEDI + Blockchain Potential Synergy

- JEDI data is stored using ISO 10303, open standard formats and metadata
 - High semantic quality for precise data context
 - Can increase the discovery, utility, and re-use of data in the Blockchain
 - No proprietary or legacy system formats
- Blockchain enhances integrity of data
 - Identifies the origin and timing of each transaction
 - Data can only be amended, not replaced
 - Consensus mechanism reduces/eliminates fraudulent data acceptance
- Technologies can be synergistic if both are applicable to the problem and solution

Generic JEDI architecture

© 2017 ENGISIS

Slide 12 of 19

Conceptual Architecture with Blockchain

Initial Blockchain Applicability Assessment

- Assessment simply made with G/Y/R circle
- Three areas assessed:
 - **Suitability** of Blockchain technology (Green best)
 - > 2 or more User networks
 - > Limited trust among Users
 - > Able to capture transactions in Blockchain
 - Value added of Blockchain to project (Green best)
 - > High value transactions
 - > Demonstrated need for Blockchain data integrity
 - **Risk** adding Blockchain to JEDI Project (Green best)
 - Increased Blockchain scope causes risk to project objectives or timelines
 - > Did not assess risk of project to Blockchain without knowing CIO goals

Applicability to JEDI IDSE: background

Applicability to JEDI IDSE

 Provide traceability of part requirement from identification in Depot induction, through digital manufacturing process

- NAVAIR FRC East (MCAS Cherry Point, NC)

- JEDI deployed on DoD AWS Cloud to interact with information systems in NAVAIR RDT&E Network, and NextGEN (Former NMCI)
- Deployment awaiting concurrent FRCE migration to Teamcenter Product Data Management (PDM) suite
- Initial capability no earlier than Dec 2017

Suitability	Value	Risk

This work is sponsored by the National Institute of Standards and Technologies under Grant #70NANB15H093

Ongoing work

- Objective: storing in the chain the digital signatures and the fingerprint of the signed models (the facts)
- We prepared a test environment:
 - CentOS (https://www.centos.org/) virtual machines
 - Multichain (http://www.multichain.com/)
 - Using data streams (http://www.multichain.com/developers/data-streams/) to store and chain the facts
 - We will use multisignatures: before inserting a fact in the chain, I need the signature of N out of M members
- 1STEP : store on the chain a set of digital signatures generated from the DMC toolkit
- 2STEP: build a new tool that allows users to:
 - use the DMC toolkit to generate signatures that embed predefined metadata
 - notify users that they have been asked to authorize the insertion of a fact in the chain
 - add signatures to the multichain and attach custom metadata to ease retrieval
 - query the multichain to prove a signature exists

Risks and challenges with blockchain

- Technology is not mature
 - Lot of bugs
 - Few implementations
 - Fewer experts and tools
- No consensus about validation within the community itself
- Technology is limited
 - Data size
 - No real-time validation
- Implementations are expensive (power/energy)
 - To develop
 - To maintain
 - To run

> ENGISIS

INTEROPERABILITY FOR PRODUCT LIFECYCLE MANAGEMENT

Thanks. Questions?

Xenia Fiorentini xenia.fiorentini@engisis.com

© 2017 ENGISIS