# Defining Genome Editing Technologies for Therapeutics

Shengdar Q. Tsai, Ph.D. Assistant Member Department of Hematology St. Jude Children's Research Hospital

April 23, 2018 National Institute of Standards Technology







### Potential Conflicts of Interest Disclosure

Shengdar Q. Tsai is a scientific co-founder of Monitor Biotech.

# 1. Introduction 2. State-of-the-art 3. Challenges 4. Summary





Exciting promise of genome editing is the potential to develop curative genetic therapies.





Maeder & Gersbach Mol Ther. 2016 Traxler Nat. Med. 2016.

- Typically, hundreds of millions or more cells modified by therapeutic gene editing
- Even low-frequency off-target mutations may be relevant if they induce a cellular growth advantage
- Important to address, particularly for therapeutic applications



Safety considerations: What about off-target effects?

- Unlike gene therapy, no vector integrations in gene editing for easy tracking
- **Defining off-target locations is important**, even if we cannot currently interpret the function of many off-target sequences
- Methods for defining off-targets as comprehensively as possible enable monitoring for clonal expansion of cells harboring specific unintended edits
- However, new methods for assessing functional impact (**risk**) are urgently needed.



Defining where off-targets may occur enables critical safety monitoring

# 1. Introduction 2. State-of-the-art 3. Challenges 4. Summary







## In silico prediction

 Computationally predict sites based on sequence similarity, etc.

### **Advantages**

### Disadvantages

• Biased by assumptions

# The Streetlight Effect





# Whole genome sequencing is broad but shallow





- not practical to sequence large numbers of genomes
- significant limitation: it will miss off-target effects with low-frequency (i.e. sensitivity is poor)

### Strategies for Defining Gene Editing Nuclease Genome-wide Activity

### **Cell-based Methods**

- Integration deficient lentiviral (**IDLV**) capture
- <u>High-throughput genome-wide translocation sequencing</u> (**HTGTS**)
- <u>Breaks</u> labeling, <u>enrichment</u> on <u>streptavidin</u> and next-generation <u>sequencing</u> (**BLESS**)
- <u>Genome-wide unbiased identification of DSBs enabled by sequencing</u> (GUIDE-seq)

### In vitro Methods

- <u>Digested genome sequencing</u> (**Digenome-seq**)
- <u>selective enrichment and identification of adapter-tagged DNA ends by sequencing</u> (SITE-Seq)
- <u>Circularization for *in vitro* Reporting of Cleavage Effects by Sequencing</u> (CIRCLE-seq)



### GUIDE-seq: <u>Genome-wide unbiased</u> identification of <u>DSBs</u> enabled by <u>sequencing</u>





### Principle

• Optimized tag integration into DSBs followed by tag-specific amplification and sequencing

### **Advantages**

- Quantitative and unbiased method
- Can identify background or fragile sites

### **Disadvantages**

Requires transfection of DNA tag, limiting use in some primary cells

Tsai et al. Nat Rev Genetics 2016





## GUIDE-seq in Human Primary T-cells













### GUIDE-seq is quantitative but has limits to sensitivity



- Tag integration proportional to mutagenesis frequency
- $\bullet$ sequencing



Increasing sensitivity will require linear scaling of input genomes and

### Digenome-seq: Digested Genome Sequencing



### Principle

• In vitro cleavage of genomic DNA, whole genome sequencing, and identify sites with uniform ends

### **Advantages**

• Simple, PCR-free

### **Disadvantages**

- High number of sequencing reads required and high background
- Candidate sites need to be confirmed in cells.

Tsai et al. Nat Rev Genetics 2016.



## Standing out from a crowd



### Be different.



### CIRCLE-seq: Circularization for in vitro <u>reporting of cleavage effects by sequencing</u>



### Principle

 Selective sequencing of nuclease-cleaved genomic DNA

### **Advantages**

- Low background  $\bullet$
- High sensitivity
- Reference-free

### Disadvantages

Candidate sites need cellular confirmation 

Tsai et al. Nature Methods 2017





# CIRCLE-seq improves signal to noise while using 100-fold less reads





### 400 million reads





### 4 million reads

Tsai et al. Nature Methods 2017.



### CIRCLE-seq genome-wide nuclease activity profiles

3





Finding cures. Saving children.

### U2OS EMX1

10 11 12 13 14 15 1617 19 21 9 5 8 4 6 Chromosome

Tsai et al. Nature Methods 2017







### CIRCLE-seq detects nearly all sites previously detected by GUIDE-seq





Tsai et al. Nature Methods 2017



### Targeted tag sequencing strategy can overcome standard NGS limits of detection



Targeted Tag Sequencing

- Tag integration is unambiguous evidence of DSB repair
- Proxy for mutagenesis frequency



dsODN tag

Background indel rate of modern high-throughput sequencing around 0.1%

Tsai et al. Nature Methods 2017.





| 4/19       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       - | $EMX1$ Reads $\begin{bmatrix} 1 & 10 & 20 & 2\\ G A G T C C G A G C A G A A G A A G A A N G G C A G A A G A A G A A C A A C A A C A A C A A C A A C A A C A A C A A C A A C A A C A A C A A C A A C A A C A A C A A C A A C A A C A A C A A C A A C A A C A A C A A C A A C A A C A A C A A C A A C A A C A A C A A C A A C A A C A A C A A C A A C A A C A A C A A C A A C A A C A A C A A C A A C A A C A A C A A C A A C A A C A A C A A C A A C A A C A A C A A C A A C A A C A A C A A C A A C A A C A A C A A C A A C A A C A A C A A C A A C A A C A A C A A C A A C A A C A A C A A C A A C A A C A A C A A C A A C A A C A A C A A C A A C A A C A A C A A C A A C A A C A A C A A C A A C A A C A A C A A C A A C A A C A A C A A C A A C A A C A A C A A C A A C A A C A A C A A C A A C A A C A A C A A C A A C A A C A A C A A C A A C A A C A A C A A C A A C A A C A A C A A C A A C A A C A A C A A C A A C A A C A A C A A C A A C A A C A A C A A C A A C A A C A A C A A C A A C A A C A A C A A C A A C A A C A A C A A C A A C A A C A A C A A C A A C A A C A A C A A C A A C A A C A A C A A C A A C A A C A A C A A C A A C A A C A A C A A C A A C A A C A A C A A C A A C A A C A A C A A C A A C A A C A A C A A C A A C A A C A A C A A C A A C A A C A A C A A C A A C A A C A A C A A C A A C A A C A A C A A C A A C A A C A A C A A C A A C A A C A A C A A C A A C A A C A A C A A C A A C A A C A A C A A C A A C A A C A A C A A C A A C A A C A A C A A C A A C A A C A A C A A C A A C A A C A A C A A C A A C A A C A A C A A C A A C A A C A A C A A C A A C A A C A C A A C A A C A A C A A C A A C A A C A A C A A C A A C A A C A A C A A C A A C A A C A A C A A C A A C A A C A A C A A C A A C A A C A A C A A C A A C A A C A A C A A C A A C A A C A A C A A C A A C A A C A A C A A C A A C A A C A A C A A C A A C A A C A A C A A C A A C A A C A A C A A C A A C A A C A A C A A C A A C A A C A A C A A C A A C A A C A A C A A C A A C A A C A A C A A C A A C A A C A A C A A C A A C A A C A A C A A C A A C A A C A A C A A C A A C A A C A A C A A C A A C A A C A A C A A C A A C $ | <ul> <li>Control</li> <li>Nuclease</li> <li>Integration frequency by deep sequencing</li> <li>0.0001 0.001 0.01 0.1 1 10 100</li> </ul> | $VEGFA \ site \ 1$ Reads $G \ G \ G \ G \ G \ G \ G \ G \ G \ G $                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | <ul> <li>Control</li> <li>Nuclease</li> <li>Integration (%) by deep sequencing</li> <li>0.001 0.01 0.1 1 10 100</li> <li>•</li> <li></li></ul> |
|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| 152        C        A </td <td><math display="block"> \begin{array}{cccccccccccccccccccccccccccccccccccc</math></td> <td>2 • • • • • • • • • • • • • • • • • • •</td> <td><math display="block">\begin{array}{c ccccccccccccccccccccccccccccccccccc</math></td> <td></td>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | $ \begin{array}{cccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 2 • • • • • • • • • • • • • • • • • • •                                                                                                 | $\begin{array}{c ccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
| $ \begin{array}{c} \begin{array}{c} \begin{array}{c} \begin{array}{c} \begin{array}{c} \begin{array}{c} \begin{array}{c} \begin{array}{c}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 152                                                                                                                .                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                                                                                                                                         | System       G       G       G       A       A       A       A       A       A       A       A       A       A       A       A       A       A       A       A       A       A       A       A       A       A       A       A       A       A       A       A       A       A       A       A       A       A       A       A       A       A       A       A       A       A       A       A       A       A       A       A       A       A       A       A       A       A       A       A       A       A       A       A       A       A       A       A       A       A       A       A       A       A       A       A       A       A       A       A       A       A       A       A       A       A       A       A       A       A       A       A       A       A       A       A       A       A       A       A       A       A       A       A       A       A       A       A       A       A       A       A       A       A       A       A       A       A       A <td></td> |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |

~25% of sites detected only by CIRCLE-seq confirmed as bona fide cellular sites. Tsai et al. Nature Methods 2017



# 1. Introduction 2. State-of-the-art **3. Challenges** 4. Summary



# Technical limitations of standard high-throughput sequencing

- Error-rate obscures low-frequency mutations
- Short read length prevents mapping through repetitive regions





### What is technical reproducibility of measurements?





unpublished



# What determines relationship between cellular and *in vitro* measurements?







### What is the impact of human <del>genet</del>ic variation on genome editing activity?









### Towards Developing Genome Editing Measurement Standards

- Reference standards for validating lowfrequency mutation detection.
- Challenge and benchmark detection methods at common targets/nucleases/cells.
- Define reproducibility and limits of detection.



# 1. Introduction 2. State-of-the-art 3. Challenges 4. Summary



## Summary

- Important to <u>empirically</u> define genome-wide activity of gene editing for therapeutics
- GUIDE-seq and CIRCLE-seq are two complementary methods to define genome-wide genome editing activity
- Glass half full: fortunate to have many sensitive and unbiased genomic methods to define nuclease specificity
- NIST consortium has opportunity to develop standards to define genome editing measurements and increase confidence in safety of promising genome editing therapeutics



### Tsai Lab\* Cicera Lazzarotto Nikolay Malinin

### Weiss Lab

Jean-Yves Metais Yu Yao Sagar Keriwala









Joung Lab Yanfang Fu Nhu Nguyen Ved Topkar Jeff Sander



**Aryee Lab** Jose Malagon-Lopez Vishal Thapar



