

Technology Administration, U.S. Department of Commerce

Label-Free Chemical Imaging of Biological and Medical Samples

Using Broadband Coherent Anti-Stokes Raman Scattering Microscopy (µCARS)

Marcus T. Cicerone

Technology Administration, U.S. Department of Commerce

Technology

- Label-Free Chemical Imaging of Cells and Tissues
 - All phenotypic changes in cells and tissues are accompanied by changes in chemical profile

150 mW 488 nm, 5 s / spectrum - slow and damaging to cells

Technology Administration, U.S. Department of Commerce

Technology

- Label-Free Chemical Imaging of Cells and Tissues
 - Technology based on nonlinear Raman spectroscopy, uses interferometric method to extract pure Raman spectrum

<u>Low Power</u> 10 mW, 830 nm <u>Fast</u> 10-100 ms

Non-invasive

Technology Administration, U.S. Department of Commerce

Technology Applications

- Use intrinsic contrast from chemical changes to rapidly and quantitatively detect phenotype changes and disease states
 - Cancer
 - Stem Cells

Technology Administration, U.S. Department of Commerce

Commercial Applications

- Rapid Cancer Screening
 - Potential for objective, reliable diagnosis
- Noninvasive 100% inspection of stem cell culture
 - Ensure phenotype maintenance
 - Detect development of differentiating structures within cell culture

CARS Pseudo-Color Images

Technology Administration, U.S. Department of Commerce

Collaboration Opportunities

- List licensing opportunities
 - Development of commercial broadband CARS microscope using interferometric background suppression
 - Development of broadband CARS endoscope

Technology Administration, U.S. Department of Commerce

Contact Information

- For further information contact:
 - Marcus T. Cicerone

NIST / Polymers Division

100 Bureau Drive MS 8543

Gaithersburg, MD 20899-8543

301.975.8104

cicerone@nist.gov