Neutron Powder Diffraction with Long Pulses at the European Spallation Source

Dimitri N.Argyriou and Paul Henry European Spallation Source

Neutrons are special

Charge neutral Deeply penetrating

Li motion in fuel cells

Help build electric cars

S=1/2 spin

Nuclear scattering

probe directly magnetism

Solve the puzzle of High-Tc superconductivity

Efficient high speed trains

and is

Test AdS/CFT correspondence

Sensitive to light elements and isotopes

Actives sites in proteins

Better drugs

Major National and International Neutron Sources

SPALLATION

First neutron instruments

D1B (ILL)

D1A / D2B (ILL)

1970s

The Next Generation at ILL

D20 at ILL

Continuous 120 deg detector

Monochromator Drum

 Large monochromator viewing a large beam cross section

- Various λ available
- Large continuous coverage microstrip detector
 - Major technological challenge
- Relative ease in changing take-off angle from low to high resolution.
- Flexible set-up in special environments
 - Pressure cells
 - Reaction cells
 - Furnaces ...

Flexible resolution on D20

Fast data collection / processes

Ti₃SiC₂ made by hot isostatic pressing is expensive In-situ investigation of thermal explosion synthesis (TES) Initiate by heating from 850-1050 °C at 100 °C/ min

Acquisition time 500 ms (300 ms deadtime)

D.P.Riley et al. J. Am. Ceramic. Soc. 2002, 2417-2424.

materials

Similarities between structural distortions under pressure and chemical doping in superconducting BaFe₂As₂

Simon A. J. Kimber¹⁺, Andreas Kreyssig^{2,3}, Yu-Zhong Zhang⁴, Harald O. Jeschke⁴, Roser Valenti⁴, Fabiano Yokaichiya¹, Estelle Colombier², Jiaqiang Yan², Thomas C. Hansen⁵, Tapan Chatterji⁶, Robert J. McQueeney^{2,3}, Paul C. Canfield^{2,3}, Alan I. Goldman^{2,3} and Dimitri N. Argyriou¹⁺

Powder Diffraction and Modeling

Two ways to produce Intense Neutron Beams Safely

Fission:One neutron in, three neutrons out How: Use a nuclear reactors

EUROPEAN SPALLATION SOURCE

Spallation: Up to 30 neutrons per proton ! How: Use an accelerator to propel a proton onto on a tungsten element target

ESS-Sweden

Moderators

POLARIS + HRPD (ISIS)

POLARIS 1991

SPALLATION

Step change in instrumentation

D20 @ILL

Collimator Monochromators

Slits

Shutter Monitor Disphropms

co Table

Beam stop

Evacuated tube

- High count rate / efficiency
- Large detector arrays
- Optimised beam transport
- Flexible resolution

late 1990s

H11

D28

Beam stop

PSD

Position Sensitive Detector

Understanding the Insulating Phase in Colossal Magnetoresistance Manganites: Shortening of the Jahn-Teller Long-Bond across the Phase Diagram of La_{1-x}Ca_xMnO₃

E. S. Božin,¹ M. Schmidt,² A. J. DeConinck,¹ G. Paglia,¹ J. F. Mitchell,³ T. Chatterji,⁴ P. G. Radaelli,² Th. Proffen,⁵ and S. J. L. Billinge¹

 High throughput and high quality data allows for detailed parametric investigation as a function of composition, temperature, pressure etc

• Was *tour de force*, now routine !

1995 cf. 2013

1995 500 mg 24+ hrs2013 500 mg 15-20 minutes with increased Q-range

Requirements in Modern NPD

•Flexible Instrumentation

- -trade flux for resolution
- -Match resolution to problem
- -Match Q-range to system of interest
- •Smaller samples
 - -lsotopic substitution
 - -Extreme conditions (high pressure/ high magnetic fields/simultaneous measurements)

• Fast data collection

- -Parametric studies of phase diagrams
- -In situ study of reactions
- -Kinetic studies
- New technical developments
 - -Polarisation
 - -Hydrogenous materials

Reactor and Spallation Sources have distinct advantages and disadvantages

- Take-off Angle
- Moderator pulse shape

Need for higher source fluxes, how ?

Advanced data acquisition electronics and methods to track fast reactions.

micro-secs possible from the perspective of flux
Problems in using large detector arrays in this way

Polarisation is flux intensive!

Proton Accelerator Energy: 2.5 GeV Frequency: 14 Hz Current: 50 mA

Instruments 22 Instruments in construction budget Target Station Solid Rotating W He or Water Cooled 5MW average power >22 beam ports

5 times more powerful than SNS 30 times brighter than ILL

Total Cost of Project 1843 (2013) Mil €

An International Collaboration

Sweden, Denmark and Norway: 50% of construction and 20% of operations costs

European partners pays the rest

ESS Moderator

ESS Long Pulse Structure Compared to Other Sources

APD-2013 | NIST | Dimitri Argyriou

Two Strategies for Neutron Instrumentation at ESS

How to do it ?

• The long pulse is too broad to use for diffraction studies.

Choppers will play the role of the moderator-response time in a conventional short pulse source.

 Important to get the first pulse shaping chopper as close as possible to moderator.

 Tunable wavelength range (1.9 Å band up to a maximum of 6 Å)

Can 'slew' choppers to cover complete wavelength band in several pulses

Tunable $\Delta\lambda/\lambda$ (from < 0.02% - 5% at λ = 1.45 Å) with PSC

Resolution/peak shape not determined by moderator time constant

4.500

5,000

5,500

6,000

time (microsec)

6,500

7,000

7,500

12 -

4 -

Intensity

Instrument Workshop Summary

Debated at the Experts' Meeting

at Vaals (September) and SAC (November 2010)

- **Recommended Phase I Diffractometers**
 - Single-crystal diffractometer for macromolecular crystallography
 - Single-crystal diffractometer for magnetism
 - Narrow-bandwidth, high-resolution tunable powder diffractometer
- Suggested for further consideration
 - Hybrid diffractometer
 - Structured pulse engineering spectrometer
 - Single-crystal (and/or powder) diffractometer for extreme conditions

Concepts for powder diffractometers at ESS

Use source peak brightness →TOF wavelength band instrument (conventional spallation source instrument)

Use source time-average brightness →Monochromator instrument with TOF detector (reactor-like instrument with enhanced capabilities)

Thermal powder TOF diffractometer

- Up to 1.9 Å single frame wavelength band (normal mode 0.5 – 2.4 Å)
- High flexibility cf. SPSS instrument
 - Tuneable wavelength range (1.9 Å band up to a maximum of 6 Å)
 - Can 'slew' choppers to cover complete wavelength band in several pulses
 - Tuneable $\Delta\lambda/\lambda$ (from < 0.02% 5% at λ = 1.45 Å) with PSC
 - Tuneable flux with PSC
 - Resolution/peak shape not determined by moderator time constant
- Long instrument (156 m)
 - low background

FUROPEAN

OURCE

time

Bispectral Powder Diffractometer

- Bispectral extraction (0.8 10 Å)
- Wavelength frame multiplication gives 3.8 Å wavelength band
 - Normal mode (0.8 4.6 Å)
 - Tuneable wavelength range
- Beat chopper
 - Flexible resolution
 - Flexible flux
- Shorter instrument (75m cf. 150m)
- Complementary with thermal powder diffractometer

75	
Å Å	a.or
o o	
E	
E E	
0	71.428 142.86
-	t/ms
ution options	"Beat"

chopper

$\delta t(\lambda_1)$	$\delta t (\lambda_1 + 1.9 \text{\AA})$	(Hz): (Hz)
$27.5 \ \mu s$	$82.5 \ \mu s$	84:70
$60.6 \ \mu s$	181.8 µs	45:28
$151.5 \ \mu s$	$353.5 \ \mu s$	28:14
$227.4 \ \mu s$	606.3 µs	14:14
$378.8~\mu s$	681.8 µs	0:14

Pulsed monochromatic powder diffractometer

•Like a reactor instrument in appearance

- -Q_{max} ~ 12.5 Å⁻¹
- -Variable resolution (takeoff angle)
- -Trade flux for resolution (takeoff angle)
- -But longer instrument (total flight path 50 m cf. 22m at D20)
- -And optimised beam transport
- Background suppression
 - -Only integrate around elastic line
- •New capabilities cf. reactor instrument
 - -Multi-wavelength data collection
 - -Separate coherent/incoherent scattering
 - -Elastic/inelastic measurements
 - -Fast kinetics

 $\Delta\lambda$

Neutron Diffraction and ESS

Diffraction at ESS

- ESS will offer levels of versatility not available in any type of diffractometer either at reactor or short-pulse spallation sources.
- Mechanical chopper systems provide for the
 - Wavelength resolution
 - Wavelength band
 - Peak shape
- ESS diffractometers will require significant software developments for data reduction and analysis
- Emphasis in instruments will be towards sample environments, following current trends
- To understand results scientific computing is becoming increasingly important