

Risk Aspects Related to Pipeline Transmission of CO2

Workshop on Future Large CO2 Compression Systems Gaithersburg March 30-31, 2009

Hans A. Bratfos, Head of Section, Cleaner Energy Norway DNV Energy

$\mathcal{O}(\mathbb{R}^d)$ Intro:

- About risk management
- About CCS
- About CO $_2$ pipeline transportation
- \blacksquare Risk aspects
	- Is CO $_{\rm 2}$ dangerous?
	- Concerns about CO2 transmission
	- Dispersion assessments

■ No risk – no business

Risk Management is to:

- Understand and control the risks
- Take the right risks
- Balance risk and reward for *all* stakeholders

Opportunities

Risks

Risk management strategies

The basic elements of risk assessment

MANAGING RISK

dnv

Types of risks in CCS

- Political risks (incentives, future regulations, legal responsibilities)
- P. Commercial uncertainties (energy prices, value of $CO₂$, land rights)
- \mathbb{R}^2 Reliability (new technologies, different medium)
- P. Safety risks (releases and dispersion)
- Environmental risks (releases and dispersion)

Risk acceptance

- \blacksquare Risk acceptance involves a subjective balancing of benefits with risks.
- Two people who may agree on the degree of risk involved may disagree on its acceptability.
- *Environmental risks* are linked to consequences of significance to the nature and the people using it.
- *Environmental* risk is thus a public concern
- \blacksquare The public can not always see the benefits of taking the risks

Two key challenges – for all of us

Need for energy Climate change

Capture Transport Storage

- \blacksquare **Fossil power plants**
- **Natural Gas CO₂ reduction**
- **Other industrial processes**
- **Pipelines**
- **Ships**
- \blacksquare **Empty oil or gas reservoirs**
- $\mathcal{L}_{\mathcal{A}}$ **Saline aquifers**
- **Enhanced Oil Recovery**

Transportation of Super Critical CO2

CO₂ Sources & Storage Areas

Image courtesy of Tim Carr, Natcarb Principal Investigator, DOE - NETL

- \blacksquare The CO₂ sources and sinks are not all in geographical proximity.
- P. The need for pipelines for CCS may therefore be considerable

8

$CO₂$ pipelines – a booming industry?

Projected CO₂ emissions by 2030

CO2 captured by CCS by 2030 and projected demand for Natural Gas "450 Stabilisation Case"

 IEA's proposed mix of means to stabilize the CO $_{\rm 2}$ concentration in the atmosphere to 450 ppm by 2030 includes 2.3 Gt/year by **CCS**

 This would imply that the future amount of captured CO $_2$ will be in the same order of magnitude as today's natural gas production

$CO₂ - A$ different risk exposure

- ☺ \circledcirc CO₂ is <u>inflammable</u>
- ☺ \odot CO₂ is <u>not toxic</u> in normal concentration
- ☺ \heartsuit A single CO_2 release has <u>insignificant environmental</u> impact
- (\approx) Other chemical constituents (as H_2S) carried in the CO₂ may harm people and the environment
- $(\ddot{\sim})$ \odot Concentrated CO₂ can displace oxygen and cause **asphyxia**
- \odot Elevated CO₂ levels causes neurological effects ranging from flushed skin, muscle twitches and raised blood pressure to disorientation, convulsions, unconsciousness and death (IDLH¹⁾ level is set to 4%)

 $(\ddot{\sim})$ \odot CO₂ is heavier than air and may fill up sunken areas and confined spaces. Safety zones for NG can therefore not be adopted directly.

UK HSE Exposure Criteria

MANAGING RISK

$CO₂ - An enhanced risk exposure$

- **The future CO**₂ pipeline infrastructure may become several hundreds times larger than today.
- \blacksquare The CO₂ will be transported in highly concentrated form at high pressure (dense phase)

- P. The need to locate CHP coal power plants near consumers implies that CO_2 pipelines will pass through more densely populated areas
- P. Thus, large populations will be exposed to a risk, which for them will be perceived as *new*

Concerns related to $CO₂$ transmission

Root causes:

- P. Emergency blowdown of large dense phase inventories
- P. Accidental denting
- P. \blacksquare $\underline{\text{CO}}_2$ corrosion leaks in case of accidental intake of water
- Material compatibility (elastomers, polymers)
- Ductile fracture ("un-zipping")

Consequences:

- P. Dispersion of concentrated CO₂
- P. Dispersion of toxic impurities
- Pipeline damage/downtime

Frequency Analysis

- The incident rate for onshore natural gas pipelines is ≈ 0.00008 km⁻¹ yr⁻¹ due to:
	- Corrosion (30%)
	- Third party (42%)
	- Design (7%)
	- Incorrect operation (13%)
	- Natural hazards (8%)
- The incident rate (from only 10 incidents) for CO_2 pipelines is ≈ 0.00032 km^{-1} yr⁻¹ due to:
	- Corrosion (20%)
	- Third party(10%)
	- Relief valve failure (40%)
	- Weld/gasket/valve packing failure (30%)

\mathbf{CO}_2 corrosion

- $CO₂$ in free water phase creates carbonic acid ($CO₂ + H₂CO₃$) which is highly corrosive to C-Mn steels
- At high partial pressures of $CO₂$ the corrosion rates are expected to be dramatically higher than experienced for O&G pipelines
- Π We do not have models for predicting CO $_{\rm 2}$ corrosion rates which are valid for P>10 bar and $T < 20^{\circ}$ C
- Π Experimental data for high pressure CO $_{\rm 2}$ are few
- Π We have little insight in the effect of impurities Mixtures of CO $_{\rm 2}$ streams from $\,$ different sources makes the

\mathbf{CO}_2 corrosion

- Design basis: Dehydration to ensure no formation of free water under any operational condition. (No corrosion allowance needed.)
- What if an accidental intake of humidity?
	- Can the pipeline be considered undamaged if the situation is quickly restored to normal?
	- Should/can the pipeline be inspected for corrosion damage?
	- What kind of monitoring is required?

⇒*There is a need to understand more about corrosion rates in case of accidental intake of humidity*

Consequence analyses: Dispersion modeling

- Today's software for release and dispersion analyses are incomplete with respect to CO2
	- Phase transformations directly between gas and solid (deposition/sublimation)
- The calculations models have not been sufficiently validated by <u>large</u> scale experiments
- **Proper understanding of CO₂ dispersion is essential to setting** $\frac{\text{safety}}{\text{w}}$ zones (land sequestration) and determine insurance liability

BP tests at Spadeadam in UK (DF1)

Dispersion Modelling Examples (1)

Dispersion Modelling Examples (2)

- 10% hazard range 100 mm diameter pipeline 150 barg pressure
- **1** Onshore
- 2 Underground
- 3 Underwater
- 4 Offshore platform

Dispersion Modelling Examples (3)

Approach: Recommended Practice for design of $CO₂$ pipelines

- Π Existing pipeline design codes do not adequately address issues which are specific to $CO₂$ transmission
- DNV is developing a Recommended Practice (RP) for transportation of dense phase $CO₂$. together with 12 industry partners
- **The RP will supplement current design codes** such as ASME B31.8, ISO 13623, DNV OS-F101, API RP1111, BSI PD 8010, EN 14161, EN-1594.
- Phase 1:
	- A guideline incorporating current knowledge
	- To be issued in 2009
- Phase 2:
	- Investigations into selected knowledge gaps
	- A revised guideline within 2 3 years

■ No risk – no business …

■ … but risks have to be managed!

Thank you !

www.dnv.com