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& Abstract

The scale of semiconductor devices is continuously shrinking,
and the critical dimension is now expected to reach down close
to fen-nanometers in the near future. The performance of such
a fine device can be easily affected by a slight variation in the
shape of the resist pattern. It is, therefore, important to carry
out quality control over the cross-sectional profile of resists.

We have developed a new SAXS-based metrology tool (CD-
SAXS). The system utilizes the grazing incidence geometry in
order to perform quick measurements on mass production lines.

Resist line & space and hole patterns were measured by the
our new x-ray metrology. The obtained cross-sectional profiles
were consistent with those observed by cross-sectional SEM.

¥ Current status of RIGAKU CD-SAXS

CD-SAXS measures only signhal from periodic structure,

such as line & space, dot and hole. The signal cannot be

affected by the under-layer structure. OCD metrology is
low robustness for a slight variation of optical parameters

of under-layer structure.

Recently, verification metrology system (VMS) has been

proposed and introduced on mass production lines.
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€ Grazing incidence small-angle x-ray scattering

of total external reflection.
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* Monochromatic x-ray irradiates to the sample surface.
 The incident angle is set to be very close to the critical angle

* The sample has to be rotated around the vertical axis at the
irradiated point during the measurement.
* Diffracted x-rays are collected by a two dimensional pixel
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e KL —T— VMS * Line-width, line-width variation (LWR-like) and pitch
SN VPPN ot PN e Alarm variation (LER-like) can be determined by the intensity
v ; ratio of these diffraction peaks.

- Each diffraction peaks has a characteristic fringe

* Depth, sidewall shape, and corner rounding shape can be
determined by the periodicity and the phase of the

fringe patterns, which strongly depend on the order of

diffraction h.

Specification

X-ray source Micro-focus x-ray tube (30W), Multilayer mirror optics
Beam size : 15 um vertical x 2 mm horizontal

Detector

€ Cross-sectional profile analysis of resist line & space pattern

€ Sample preparation
* Four kinds of resist L/S pattern wafers with pitch size of 130 nm were fabricated with
different material composition and exposure condition, intentionally, in order to obtain
different cross-sectional profile between four resists.
* Resist A is NG product. Resist B, C, and D are OK products.

€ Motivation

* Our challenge is to distinguish the OK products and NG products.

PILATUS 100K (0.172 mm/pixel)

& Sensitivity of diffraction pattern .fo'r' the-

.

variation of cross-sectional profile

(1) Tetragonal shape

80— T

60

40

Z /mm

20

o oy

Exit angle B /deg

-100 -50 0

Y /nm

(2) Trapezoidal shape

50

80— T

60

Z /mm

Exit angle S /deg

(3) Top

and Bottom rounding shape

100

80 — — —
60 RT =10 nm

40

Z /mm

20

ol

-100 -50 0

Y /nm

50

® Analysis procedure

Depth

Top round

C

round \fodel fitting

Intensity /arb. unit

Height / nm
N w N (9] (o2} ~
O © O o o o

=y
o
-

o
T ':‘_’I'

>
Y

Width / nm

Exit angle 8 /deg

0
Least-square method '’

2.0

1.5
1.0 -

0.5

0 TV

Periodicity : constant
Phase : constant

I

|
}
l
!
A

I A A A — —

i

TR aSr A A A A —— -
Eray > a - -

Tetragonal lattice-like

5 10 15 20 25 30
Order of diffraction &
2.0 - - — _
. Periodicity : constant
152 Phase : linearly shifted

2.0

15

¥ Periodicity : gradually shifted —

s
1-0 1T "))/ o

Order of diffraction i

Phase : gradually shifted

10 15 20

04

06 08 10 12 14 16 18 20
Exit angle 8 /deg

p 10 20 30 40 50 60 70 80 90 100 110 120 130 140 150 160 170 180 190

Si
K. Omote, et al., Proc. of SPIE 7638, 763811 (2010)

€ Cross-sectional profile analysis of resist contact holes

€ Sample preparation
 Two kinds of resist hole-patterned wafers were fabricated using
different composition and exposure condition.
 The holes are arranged in a 2D square lattice-like form in the lateral
plane with the pitch size of 90 nm.

€ Experimental method

 Diffraction data were collected in two directions [1 O] and [1 -1].

€ Motivation

« CD-SEM employing top view observation cannot detect undercut shape.
* Our challenge is to detect a slight variation of the cross-sectional
profile between the two resists.
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* Side-wall profile of the resist A should be different from the others.
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Cross-sectional profiles obtained by the CD-SAXS

¢ Results
« Obtained cross-sectional profiles show an inversed tapered shape in the four resists.
» Top corner rounding shape of the resist A (NG product) is different from the others (OK products).
 These results can be regarded as consistent with the cross-sectional SEM results.

« Our new x-ray metrology, it is possible to distinguish the OK product and NG product.

& Conclusion
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Cross-sectional profiles obtained by the CD-SAXS
&€ Results

* The CD-SAXS results reproduced the characteristics obtained by the cross-sectional SEM.
 The resist E has the rather vertical cylindrical shape.
* The resist F has the heavily undercut shape.
« Our new x-ray metrology, it is possible to detect a slight variation of cross-sectional profile of

resist hole pattern.

Our newly-developed x-ray metrology tool, CD-SAXS, has been demonstrated. Cross-sectional profiles of resist
patterns were measured by the instrument. The results obtained by the CD-SAXS were consistent with those
obtained by cross-sectional SEM observation. CD-SAXS has a capability for measuring cross-sectional profile
non- destructively. Our new x-ray method is very effective in CD metrology on mass production lines.
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