Building and Fire Codes

Stephen S. Szoke, P.E. Director of Codes and Standards Portland Cement Association 5420 Old Orchard Road Skokie, IL 60077 847-972-9078

Just Another Government Report

 2005 – NIST WTC Investigation
 2003 – FEMA/ASCE Observations
 1960 – 2005 – USFA Reports and Specific Recommendations for High-Rise Construction

Fire Codes and Standards

Building Code Requirements

 International Code Council
 National Fire Protection Association

 Fire Standards

 American Society for Testing and Materials

Fire Standards

ASTM E 119 Standard Test Methods for Fire Tests of Building Construction and Materials

Time Temperature Curve Real Fires

Safety Factors

Structural Design Load Factor 1.2 Dead + 1.6 Live Load Structural Design Resistance Factor 0.60 to 0.85 concrete elements Overall Safety Factor of 1.8 to 2.7

Safety Factor Applied to Real Fires

Time

Various Combustible Content

Real Fires

Safety Factors Complications Combustible content of assemblies Type of building contents Quantity of building contents Numerous Tests Huge Expense

Standard E 119

Time-Temperature Curve may be unconservative for engineering design. **Time-Temperature Curve could be** replaced by Heat Flux-Time Curve **Reporting could be improved** Measurements and equipment could be improved and more consistent Standardized testing apparatus

Meeting Standard Test Requirements

More robust systems initially New designs of materials and systems to meet the minimum requirements of tests Need for a robustness component for all assemblies

Building Codes Requirements

- Passive fire protection requirements
 - Routinely relaxed over the last forty years
 - Routinely reduced for as economical justification for sprinklers

Building Code Requirements

- Increases in cost for structural design and construction to resist seismic forces
- Increases in cost of energy conservation with no direct relation to life safety
- No increases in costs for fire protection and relaxation of requirements to justify expense of sprinklers

Building Code Requirements

	1968 Chicago	WTC Towers	2003 IBC
Columns, girders, beams, trusses and spandrels			
Supporting floors	4 hr	3 hr	2 hr
Supporting roofs	3 hr	2 hr	1 hr
Floor Systems	3 hr	2 hr	2 hr
Roof Systems	2 hr	1 hr	1 hr

Major Burnout Without Collapse

- 2004 LaSalle Bank Building, Chicago
- 2001 90 West, New York
- 1991 One Meridian Plaza, Philadelphia (1973)
- 1988 Interstate Bank Building, Los Angeles (1973)

One Meridian Plaza

- 3 hour columns
- 2 hour floors
- Concrete and masonry shafts and stairways
- Burned for 19 hours
- Severe floor deflections

LaSalle Bank Building

- 4 hour columns
- 3 hour floors
- Burned for 5-1/2 hours
- Central core of steel encased on concrete and masonry
- Minimal floor deflections

Building Code Requirements

- Restore historic passive fire protection requirements
- Eliminate sprinkler trade offs
 - Hurricanes, earthquakes, other disruptions in water supply
- Require redundancy
 - Alarms, sprinklers, and passive fire protection
- Collapse resistance
 - Design to permit total burnout without collapse

Consideration of Other Projects May Indicate:

- Robustness component is equally as important as fire endurance
- Continued trend for reduced passive fire protection is not appropriate
- Sprinkler trade-offs not appropriate, redundancy is needed in high-rise

Thank you!

Stephen S. Szoke, P.E. Director of Codes and Standards Portland Cement Association 5420 Old Orchard Road Skokie, IL 60077 847-972-9078

