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ABSTRACT Emerging Artificial Intelligence (AI) systems are revolutionizing computing and data process-
ing approaches with their strong impact on society. Data is processed with automated labelling pipelines 
rather than providing it as input to the system. The innovative nature increases the overall performance 
of monitoring/detection/reaction mechanisms for efficient system resource management. However, due to 
hardware-driven design limitations, networking and trust mechanisms are not flexible and adaptive enough to 
be able to interact and control the resources dynamically. Novel adaptive software-driven design approaches 
can enable us to build growing intelligent mechanisms with software-defined networking (SDN) features 
by virtualizing network functionalities with maximized features. These challenges and critical feature sets 
have been identified and introduced into this survey with their scientific background for AI systems and 
growing intelligent mechanisms. Furthermore, obstacles and research challenges between 1950-2021 are 
explored and discussed with a focus on recent years. The challenges are categorized according to three 
defined architectural perspectives (central, decentral/autonomous, distributed/hybrid) for emerging trusted 
distributed AI mechanisms. Therefore, resiliency and robustness can be assured in a dynamic context with 
an end-to-end Trusted Execution Environment (TEE) for growing intelligent mechanisms and systems. Fur-
thermore, as presented in the paper, the trust measurement, quantification, and justification methodologies 
on top of Trusted Distributed AI (TDAI) can be applied in emerging distributed systems and their underlying 
diverse application domains, which will be explored and experimented in our future related works. 

INDEX TERMS Trusted AI, distributed systems, software defined networking (SDN), trusted execution 
environment (TEE). 
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I. INTRODUCTION 
Intelligent systems are able to adapt to change dynami-
cally in varying contexts by keeping the trustworthiness of 
a system within the limits of available resources. However, 
increasing computational and storage capacities require the 
decentralization of resources and algorithms. Trusted scala-
bility of analytical functions and resources is still an open 
issue. Large-scale matrices generated by the novel meth-
ods, which are used to formally state the data and context, 
have to be merged and dynamically fused to be able to 
scale/train [1] the decentralizing algorithms. Furthermore, 
an increasing number of nodes in the system cause swarm 
behavior [2]–[4] due to the use of complex computational 
systems for co-operative missions of autonomous system 
units. The components utilized to interact with these units 
are called edge devices, and have densified storage and 
computational facilities, which enable them to cover broader 
additional contexts and a wider spectrum. This is a key 
enhancement for running novel machine-learning algorithms 
at the edge by ensuring trust and security [5]. Nevertheless, 
the dynamic context exponentially triggers data/transaction 
flows in the system. The flows lead recent challenges for 
intelligence valorization in a dynamic context. 

Valorizing the swarm intelligence and keeping the system 
resilient require real-time updates and predictions in different 
system layers [6], [7]. Ledger-based chain structures and 
big-data technologies can accomplish transaction scalability 
and memory-speed analytic performance to a certain extent. 
Despite this, mission/safety/operation-critical applications, 
such as tracking a moving object, monitored by a swarm, 
require trust to be verified at the critical checkpoints while 
maintaining the performance of the overall system. Extending 
data locality to the edge in a trusted scalable manner with 
holistic views can help to manage the complexity of the 
data/transaction-flow and maintain the memory speed per-
formance of the total system and analytical transactions [5]. 
Furthermore, holistic abstraction can maximize the trust fac-
tor of the system while enabling trusted scalability of the 
transactions and keeping the memory speed of large-scale 
trusted analytics on massive-systems. 

Co-operation between these units can be maximized 
with micro-service architectures, which have innovative 
approaches for layer-wise structures. Thereby, trust can be 
verified at critical checkpoints to maximize the targeted 
throughputs of these units. The approaches can help to 
dynamically define user feature sets and the management of 
these features can be enabled at run-time to maximize the 
performance of the co-operative mission, and the trust factor 
of a resilient system. Therefore, the system can consider the 
trust indicators that can give confidence concerning the pre-
dictions processed by the distributed AI/ML algorithms at a 
massive scale by ensuring trusted scalability with the justified 
features. Thereby, resiliency and robustness can be assured 
in a dynamic context with an end-to-end Trusted Execution 
Environment (TEE) for the growing intelligent mechanisms 
and systems. These critical feature sets are explored in the rest 

TABLE 1. Keyword definitions. 

of the paper as components of a distributed computing system 
with novel trusted distributed AI-driven approaches with a 
comprehensive scientific background definition. In this way, 
the trust justification features can be explored and identified 
for the emerging intelligent systems and mechanisms. 

As a main target in this survey, we introduced the concept 
of Trusted Distributed AI (TDAI), which is the ability to 
make the right decision in a mathematically well-defined 
context within the critical, distributed, autonomous system 
constraints [15]. Main contribution of such benchmarking 
is to help to understand the new concept of TDAI, with a 
comprehensive review of the major related contributions in 
the current literature. So that, we can obtain comprehen-
sive view on emerging AI systems concepts and its’ critical 
components like SDN, TEE etc. Table 1 introduces selected 
keyword definitions that will be used in the rest of the paper. 
Section. II introduces the general scientific background and 
definitions of AI vs Distributed AI and intelligent systems, 
Section. III introduces related use-case specifications and 
descriptions, Section. IV includes a comparative analysis of 
the literature and gives details about the security, privacy, and 
trust metrics considered in this study, Section. V includes the 
discussion, current challenges, and a comparative analysis of 
the literature. Section. VI concludes the paper and introduces 
future directions. 

II. BACKGROUND AND DEFINITIONS 
A. DISTRIBUTED SYSTEMS VS TRUSTED DISTRIBUTED 
SYSTEMS 

In order to characterize a distributed system, it is useful to 
use the logical functional distribution of the processing 
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FIGURE 1. Parallel and distributed systems. 

capabilities of a given system composed of a set of comput-
ers. The logical distribution of such capabilities is based on 
the following criteria like: Multiple processes, Inter-process 
communication, Shared memory and Collective goals. Some 
examples of distributed systems can be related to Peer-to-peer 
networks, Process control systems, Sensor networks and Grid 
computing. 

The computers in these systems are identified as sys-
tem units, which are generic components called nodes. 
A distributed system is a system with set of nodes Ni : 
{No, N1, N2, . . . , Nn,, which can operate coherently as a sin-
gle system. Depending on the memory system design, it is 
called (1) a parallel system with shared memory resources 
or (2) a distributed system with decentralized/distributed 
memory resources in each system node Ni, as illustrated in 
Figure 1. 

The systems can be designed for specific purposes or 
as generic mechanisms for multi-purpose implementa-
tions. Examples of this are: (1) Distributed computing 
system, which can be a cluster computing system or a 
grid computing system; (2) Distributed information sys-
tem for a transaction-processing system (mainly database 
applications) or enterprise applications; and (3) Distributed 
pervasive systems with mobile and embedded comput-
ing devices. This category can include wireless nodes as 
networking devices for low latency communication, such 
as emerging 1/2/3/4/5/6G communication and networking 
technologies [14]. 

Features for networking and communication technolo-
gies and current research challenges for distributed sys-
tems will be discussed in Section. IV, but we can already 
say that emerging communication and networking technolo-
gies together with system abstraction approaches enable us 
to categorize that as a fog layer with novel holistic view 
approaches [5], with a feedback controller mechanism. Some 
examples of emerging wireless communication technologies 
such as 5/6G can be defined as a network component for 
distributed pervasive systems with a set of interacting nodes 
Ni . . . n, which have very low latencies for real/near real time 
critical systems. It is a core mechanism for emerging Soft-
ware Defined Networking (SDN) and virtualized network 
functionalities (NFV), as well as for the growing intelligent 
systems. 

The concept of trust is very subjective, having been used 
by many researchers in many domains for different purposes. 
The generic definition of trust is as follows: 

‘‘trust (or, symmetrically, distrust) is a particular level of 
the subjective probability with which an agent will perform 
a particular action, both before [we] can monitor such action 
(or independently of his capacity of ever to be able to monitor 
it) and in a context in which it affects [our] own action’’. 

Trust can then be defined as the belief that a rational entity 
will resist malicious manipulation or that a passionate entity 
will behave without malicious intent [40]. 

If we look at the distributed systems from a service 
point of view, the emerging digital environments and infras-
tructures, such as distributed security and computing ser-
vices, have together generated new means of communication, 
information-sharing, and resource utilization. However, using 
these distributed services results in the challenge of how to 
trust service providers to not violate security requirements, 
whether in isolation or jointly. Answering this question is 
crucial for designing trusted distributed systems and selecting 
trusted service providers [41]. 

When designing distributed systems, trust has to be consid-
ered as a major factor in all development stages. Therefore, 
the trust-based design and development would need a frame-
work to guide system developers towards identifying a set of 
comprehensive requirements and simultaneously preventing 
any possible conflicts [42]. These conflicts are observed via 
layering and logical operations with a multi-layer design 
principle and paradigm approach, as illustrated in Figure 2, 
which interacts via data between the layers. Thereby, data 
can be the key components to track the states and critical 
knowledge regarding the required framework. 

In [5], authors propose the Markov chain Monte Carlo 
(MCMC) method, which can be analytically considered as an 
inference problem, i.e. computing the posterior distribution 
via prior distribution information. Given a dataset D = 
{x1, x2, . . . , xN }, the posterior probability of P (x ∗ | D) for 

∗the excess state x can be calculated using the Bayesian 
Rule with a probabilistic distribution. Knowing the proba-
bility distribution of the initial state P(x0) and the transition 

∗kernels T (x ← x), the marginal probability of the Markov 
chain at the specific state x ∗ is computed dynamically. If the 
prior states are likely to link to the posterior states, then, the 
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FIGURE 2. Layering and logical operations of a distributed system [14]. 

Markovian chain is ergodic and converges to an invariant 
distribution. So that, trust can be transferred between the 
contexts. This approach can be considered for a dynamic 
context with a rational agent function to obtain a well-defined 
context to elaborate on the challenges. 

In order to formulate interactions with the environment 
within the well-defined dynamic context, the behavior of a 
given node can be described as a dynamic system node in the 
environment E, which produces a sequence of states or snap-
shots of that environment. A performance measurement U () 
evaluates this sequence. Let V (f , E, U ) denote the expected 
utility according to U () of the agent function f() operating 
in E{}. Each Environment has a set of nodes, NE{N1, N2, 
N3, . . . , Nn} and can be monitored with a set of trusted agents 
or nodes. Each node can be defined as a trusted agent, which 
can be defined as system nodes depending on their context. 
We can identify the rational agent with a function as follows: 

fopt = arg max V (f , E, U ). (1)
f 

Throughput of each Node X(N) is monitored via trusted 
Agent A{} as well as via other nodes N{}. A trusted Agent 
is formulated as follows: 

A{} = {iN i and with activation function ai}. (2) 

The goal of the set of agents A{} and nodes N{} is to maxi-
mize the expected utility V() of the set of environments E{} 
by monitoring behaviors with fopt () function via trusted chan-
nels. The interactions with the environment and identified 
trust justification features can be observed dynamically with 
(1) centralized, (2) decentralized and (3) distributed system 
design paradigms within an architectural design perspective. 
Thereby, the trust factor of the system, P (x ∗ ) ∝ t with the 
set of nodes; NE:{N1, N2, N3, . . . , Nn} can be aggregated 
in order to maximize the throughput in the well-defined 
dynamic context. 

The dynamic context and environment in which the set 
of nodes NE interacts, require an optimal level of trust in 
the context in order to be able to ensure the interactivity of 
the nodes and system components. Depending on this level 
of trust, the system can be identified as a trusted distributed 
system with the hard constraints of a critical system in real 
time. This set of features can be mainly identified and mea-
sured with dynamic metrics such as the latency, throughput, 

and power values of the nodes. The values have to be set up 
accurately for the context dependencies and adapted dynam-
ically to the changing context. Next chapter introduces the 
background of these AI principles and paradigms with a com-
parative analysis on centralized and distributed perspectives. 

B. CENTRALIZED AI VS DISTRIBUTED AI 
Artificial/computational intelligence has been described from 
many aspects in literature. The main challenge is finding the 
abstract and numeric definitions of thinking, learning, and 
intelligence. In this chapter, we will provide the major def-
initions of machine intelligence, computing, and AI, in order 
to emphasize the roots of our conceptual and abstract basic 
definition for trusted AI mechanisms available in the liter-
ature. This section articulates and discusses state-of-the-art 
conceptual definitions of artificial intelligence. 

In spite of not having a standard definition for artifi-
cial intelligence, most accepted definitions can be catego-
rized into four main groups. (1) behavior, acting humanly; 
(2) thought processes and reasoning, thinking humanly, 
cognitive modeling; (3) success measurement respective to 
human performance, thinking rationally; and (4) the ideal 
performance measure, rationality; acting rationally is a com-
bination of mathematics and engineering [13]. The remain-
der of the section briefs on the four main categories and 
introduces the state-of-the-art definitions. Current challenges 
will be addressed with a comparative analysis of the state of 
the art. 

The first category is behavior, acting humanly and is initi-
ated by the Turing test approach. Natural language process-
ing methods enable computers to communicate with other 
computers like humans. A computer passes the test if a 
human interrogator cannot differentiate whether the sender of 
the message is a human or machine. Knowledge representa-
tion stores heard or known data. Automated reasoning uses 
stored information to answer questions and inference new 
conclusions. 

Machine learning adapts a system to new contexts and 
detects/extrapolates patterns. There is no direct physical inter-
action between the computer and the interrogator, since the 
physical simulation of a person is unnecessary for intelli-
gence. A video signal is included to test the subject’s per-
ceptual abilities and pass physical objects through a hatch. 
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Computers need computer vision to perceive objects and 
robotics that manipulate/move objects in order to be able 
to pass the test. AI researchers prefer studying the underly-
ing principles of intelligence rather than duplicating exem-
plary scenarios. Therefore, little effort is needed to pass the 
Turing test. 

The second category is the thought processes and 
reasoning, thinking humanly, cognitive modeling approach. 
Cognitive science merges computer models from AI and 
experimental methods from psychology to imitate the human 
mind. Each field is growing rapidly and fertilizing the other. 
One of the most popular definitions of intelligence is the 
ability to adapt to change (Hawking, 1992), which has 
inspired most AI systems. Neuropsychological evidence sup-
ports computer vision to develop innovative computational 
models. However, the systems used in real life have mis-
sion/safety/operational critical system constraints. Rational 
and formally proven methods are preferred by AI researchers. 
The third category is rational thinking, success measure-

ment with respect to human performance. Logicians develop 
precise notations for statements about all kinds of objects in 
the world and relationships among them. Logic-based com-
putational reasoning systems are applicable to some extent. 
However, formalizing and stating informal knowledge in for-
mal terms with uncertainty factors is not an approach that 
is fully applicable. Furthermore, an insufficient number of 
facts make the use of problem-solving methods impossible 
and would exhaust computational resources. Reasoning steps 
can be added to increase the performance of a computational 
reasoning system, but it would remain limited due to uncer-
tainty and informal knowledge resources. 

The fourth category is the acting rationally, rational agent 
approach, a combination of mathematics and engineering, 
based on an ideal performance measure known as rationality. 
A computer agent operates autonomously, perceives the envi-
ronment, persists in a defined time period, adapts to change, 
reasons logically, and generates and pursues goals. A rational 
agent operates/acts under uncertain conditions to achieve the 
best expected outcome. All skills are required for the Turing 
test enable agent to act rationally. Knowledge representation 
and reasoning skills enable agents to reach good decisions. 
Comprehensible sentences in natural language need to be 
generated to communicate with the environment. Continuous 
learning is needed to improve the ability to generate effective 
behavior with the agent function fopt (). This category of AI 
can enable us to obtain a mathematically well-defined context 
to interact with the environment. In this way, we can extend 
a definition for trust to AI systems as illustrated in Figure 3, 
where we have a dynamic context and where we see the AI 
based categories and trust impact. For instance, in IV part of 
the figure we can have mathematically well-defined context, 
where we can extend, quantify and qualify the trust with 
precise definitions of rationality principles. 

Based on the comprehensive view of AI system method-
ologies, we can see that the rational agent approach is 
preferred by AI researchers. The standard of rationality is 

mathematically well-defined and completely general. It can 
enable an agent to be generated for any well-defined context. 
Achieving perfect rationality and always doing the right thing 
is not feasible with the uncertainty factors intensive envi-
ronments. Computational requirements cannot be satisfied in 
the context. A computer system that has (1) storage, (2) an 
executive unit, (3) control units does not have to be a cen-
tral mechanism. Decentralized and distributed system design 
approaches can enable us to get closer to achieving perfect 
rationality. 

Architectural views and perspectives can be used to differ-
entiate and categorize the features of emerging AI systems. 
The categories can be named as (1) centralized AI (2) decen-
tralized AI (2) and (3) distributed/hybrid AI. 

The centralized approach is not considered feasible with 
the current state-of-the-art approaches, since the emerging 
intelligent environments are data-intensive and they have 
limited agent cooperation interactivity features due to the 
bandwidth limits of interaction channels. Thereby, the num-
ber of nodes in the limited context inflates exponentially. The 
agent functions fopt () also grow exponentially and the systems 
exceed the limits of computational scalability [5]. 

As the second alternative, decentralized design features 
can help to control the independent nodes with limited 
capabilities of the autonomous agents, mainly with limited 
knowledge storing and processing features to make the right 
decision in uncertainty-intensive contexts and environments. 
However, decentralized design is also limited due to the 
capacities of the independent node, which is only feasible for 
a well-defined limited context. 

Fortunately, distributed design paradigms can help to 
merge critical feature sets of centralized and decentralized 
design paradigms within a hybrid design approach for coop-
eration and interaction with the agent function fopt () under 
uncertainty-intensive conditions. Thereby, we can define the 
distributed AI as the ability to make the right decision in 
a mathematically well-defined context within the critical, 
distributed, autonomous system constraints [15]. The main 
difference between centralized and distributed approaches is 
the dynamic data-driven cooperation with a set of nodes; 
NE:{N1, N2, N3, . . . , Nn} in a set of dynamic environments 
E{} to achieve the expected utility V 

As cooperation between the nodes increases, system level 
trust becomes a more critical requirement to ensure the 
behavioral integrity of a system. The distributed design 
approach can enable us to maximize the critical feature sets 
(memory, storage, processing capacities etc.) of distributed 
AI/ML algorithms for the intelligent systems and mecha-
nisms targeted. The following chapter discusses these feature 
sets in a dynamic context, where we introduce the need and 
increasing interest for Trusted Distributed AI in the litera-
ture as the core generic mechanism of the emerging trusted 
distributed systems. In this way, the agent function fopt () 
can dynamically control distributed resources to maximize 
the performance of the expected utility V By this means, 
the system can cover wider contexts and spectrums with the 
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FIGURE 3. Main categories of artificial intelligence. 

TABLE 2. Artificial intelligence system state-of-the-art targeted feature summary (X: Yes, X: No). 

distributed features of trusted distributed AI, as explained in 
the next chapter. 

C. TRUSTED AI VS TRUSTED DISTRIBUTED AI 
In a broader context, Trusted Distributed AI (TDAI) can 
be defined as the ability to make the right decision in a 
mathematically well-defined context within the critical, dis-
tributed, autonomous system constraints. The constraints can 
be observed with agent function fopt () to reach ultimate 
rationality in uncertainty-intensive environments. In order 
to identify these features, the rest of the section introduces 
basic definitions of (1) distributed systems, (2) security, pri-
vacy, and trust, (3) distributed AI and multi-agent systems, 
(4) end-to-end paradigms, and swarm mechanisms to maxi-
mize cooperation between the agents and thus maximize the 
performance measure U () in a set of environments E {}. 

Table 2 introduces selected critical feature set compar-
isons between trusted AI and Trusted Distributed AI with the 

architectural perspectives. The rest of the section explains the 
key features of TDAI and its advantages with decentral and 
hybrid design approaches, which enables us to maximize the 
performance of the agent function fopt () and overall system. 

1) SECURITY, PRIVACY, AND TRUST FEATURES 

Security, privacy, and trust are the key elements of grow-
ing intelligent distributed systems. The scientific princi-
ples and paradigms are investigated in all design lifecycles 
with hardware/software co-design approaches. These fea-
tures can make systems more flexible and undertake the 
necessary configurations to tackle the challenges of hardware 
dependencies. 

Scientific views and challenges can be categorized into 
many perspectives, such as the authors [14] roughly divide 
the issues of security in a distributed system into two 
parts. (1) concerns the communication between users or pro-
cesses, possibly residing on different machines that have 
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secure communication channel mechanisms. The mecha-
nisms are more specifically designed for authentication, mes-
sage integrity, and confidentiality. (2) concerns authorization, 
which deals with ensuring access rights to the resources with 
an access control mechanism. The mechanism can manage 
the user access level, system node confidentiality classifica-
tion, and data protection policies with cryptographic keys and 
certificates. 

In a broader context, the security of a computer system 
is strongly related to the notion of dependability, which 
means that the computer system must have justifiable trust 
to deliver its services. Dependability includes availability, 
reliability/liability, safety, maintainability, and robustness. 
Furthermore, recently emerging concepts like anti-fragility 
can also be a notion of the resilience and dependence of the 
system. The authors include the confidentiality and integrity 
of the computer system as a prerequisite of trust. 

Confidentiality feature can be ensured by the security 
mechanisms in some manner with a layered logical and 
security mechanism. However, the integrity and coherency of 
the system require holistic views and end-to-end transaction 
monitoring approaches within the limits of critical system 
constraints [15]. In this way, alterations and state changes can 
be detected and rectified in real or near real time at massive 
scale. By this means, Alice can trust the computer system 
and interact with Bob via trusted channels in real or near real 
time. Trust features, metrics, and measurement/quantification 
approaches will be discussed in detail in Section. IV after 
the brief background definitions of end-to-end paradigms and 
swarm mechanism feature sets in the next chapter. 

2) END-TO-END PARADIGM AND SWARM MECHANISMS 

The data-intensive nature of emerging AI systems and 
context-dependent programs makes the problem much more 
complicated due to the increasing complexities of the trans-
actions. Nevertheless, a generalization approach is possi-
ble. Distributed caching policies and system abstractions 
have recently been tested. Performance improvements are 
observed with distributed file systems and different con-
figurations for memory bottlenecks and congestions as an 
improvement to the Turing and McCarthy abstraction mod-
els [3], [29]. The studies prove that the end-to-end imple-
mentations of machine-learning pipelines with modern cloud 
systems, which have browser-based interface architectures, 
can be implemented in real time or near real-time. The authors 
define the diversity of emerging data growth as big data 
concept. It is 3V (Volume, Variety, Velocity) data, which 
cannot be processed with classical database systems. 

A proof-of-concept study was experimented with basic 
machine-learning use cases for an opinion-mining appli-
cation to understand social polarization and convergence 
features. The proposed distributed file system-based design 
enables us to overcome the memory bottleneck with a 
90% true clustering performance [29] for designed scoring 
algorithms. 

System-level innovations and new conceptual definitions 
and abstractions have enabled us to develop advanced 
computational systems to automate many manual pro-
cesses. Thereby, trusted distributed AI methodologies can 
be implemented with end-to-end machine learning pipelines 
and trusted execution of transactions with holistic views 
to the total system. Baydin et al. [1] propose automatic 
differentiation for machine-learning applications to build 
end-to-end pipelines. The approach can enable end-to-end 
machine-learning models/knowledge bases to be merged 
and trained in different contexts. Emerging AI systems and 
computational/storage resources can support the end-to-end 
design of AI systems. Data can be managed and fused with 
knowledge bases within reasonable latency thresholds for 
many applications to keep the rationality of the agents in a 
well-defined dynamic context [30]. 

Machine learning and statistical techniques can help to 
transform big data into actionable knowledge with a sim-
ple user-interface via an efficient distributed system design 
approach [2]. End-to-end differentiable pipelining frame-
works can support the automatic composition of a learn-
ing framework within acceptable latency thresholds [3]. The 
innovations enable cooperation between diverse contexts 
for the tasks, and trigger novel trust modeling approaches. 
Cohen et al. [4] propose a multi-agent-based trust model 
to be able to ensure the expected behaviors of system 
units. In order to increase cooperation between system-level 
transactions, swarm-based coherence is proposed as a collec-
tive adaptation for swarm intelligence with artificial neural 
networks [31]. 

The emerging technologies associated with swarm mech-
anisms enable trusted distributed AI to be developed, with 
an increase in processing capacity together with the distribu-
tion/decentralization of resources (data units, AI processes, 
etc.). Real-time management/exploitation of such systems 
and consideration of them from a holistic point of view 
becomes much more critical. [5] is an example of holistic 
system abstraction proposed for end-to-end transaction flow 
monitoring of trusted AI systems. In addition to this, some 
research work focuses on transaction management consider-
ing the X-AI concepts together with the lineage aspects (data 
locality and tracking) [32]–[35]. In terms of the development 
and engineering of AI-based systems, cloud-based lifecycle-
based trust modeling and monitoring approaches are also 
proposed by the authors [8], [9]. 

As a brief overview to the explored background, the 
challenges can be categorized into three main architectural 
design views with a system level perspective. (1) Decentral-
ized (Autonomous/ Embedded/Local) (2) Centralized/ Fully 
connected (3) Distributed (Edge/Hybrid/Hierarchical/Multi-
layer). Within these, the interactivity and cooperation 
of the agents and dynamic system components can be 
observed in the dynamic context within a holistic point 
of view. 

The features in the literature targeting trustworthy mech-
anisms for either centralized AI or Distributed AI can be 
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summarized as illustrated in Table. 2. These categories and 
main feature sets can be listed as follows: 

- trust measurement, quantification, and justification 
- trusted scalability 
- trust assurance 
- swarm manipulation 
- system and user/agent behavior monitoring 

From this initial literature survey, we can see that there is 
little research work that is related to the field of TDAI. Indeed, 
this research field requires all five key features dedicated to 
pure distributed AI-driven systems, as mentioned above, to be 
considered. The next chapter describes the novel feature sets 
of TDAI with a use-case focus for the growing intelligent 
systems. Section. IV analyses the literature comparatively 
with comprehensive tables. 

III. USE-CASE SPECIFICATIONS AND DESCRIPTIONS 
The scenario targeted in this work is related to mobility use-
cases and considers a mix of connected autonomous (SAE 
level 5) and non- or semi-autonomous vehicles. Each vehicle 
is deployed with a sensing unit as system node that has a 
processing and reasoning capability – to process the raw 
data collected from a vehicle’s sensors and subsequently 
interpret them into useful outcomes of emerging AI systems. 
In this context, we can imagine a given number of vehicles 
on the road moving from a starting point to a destination 
with all vehicles connected to each other and sharing some 
data measured and/or interpreted locally, using their sensing 
capabilities, or collaboratively, using each other’s knowledge. 
In such a situation, each node could implement its own AI 
module to estimate/predict or learn, not only from what has 
happened in the past, but also from what the other nodes are 
sharing with it (using its reasoning capability). 

We can also assume that for some tasks, a given node 
might rely on the processing power offered (vs allowed) by a 
remote node due to the lack of processing power or learning 
capability of the original node. In other words, vehicles that 
are not equipped with this AI feature or with a too weak 
computing capability can potentially rely on other vehicles’ 
modules by using low-latency communication capabilities 
provided by P2P or cellular communication networks. This 
can be achieved via a collaboration feature that a distributed 
system can offer to give all mechanisms for the ability to run 
in real time. This heterogeneity (in the nature and capacities 
of vehicles) makes this collaborative approach particularly 
efficient, allowing a single node to benefit from the overall 
knowledge and processing capabilities. In such a scenario, 
we see a double (win/win) benefit, where a local node can 
profit from neighboring nodes to help make decisions locally 
and anticipate decisions for the next steps. 

The resulting distributed architecture can become com-
plex and may involve self-organizing techniques with mul-
tiple hierarchical layers to better manage the decisions 
between several nodes. A node which might play the role 
of master would benefit from an overall view for global 
decision-making. Many applications might be related to this, 

especially those related to mobile, edge and ubiquitous com-
puting where vehicles are equipped with context-aware and 
user-centric technologies. 

Applications that cover this could be related to driver 
behavior profiling, with different possible outcomes, like 
low-emission driving where the user or the car (if fully 
autonomous) would need to follow precise instructions 
depending on the way that is driving and, on the environment, 
(i.e. other vehicles). 

One challenge of particular interest is when a mix of 
fully autonomous and semi-autonomous vehicles are collab-
orating. This specific scenario involves different behaviors 
and ways of sending, processing, and reacting to a given 
situation. This might of course lead to conflicting decisions, 
with semi-autonomous vehicles, still operated by a driver, 
sending requests or information that might be badly inter-
preted by the other vehicles. This type of scenario, when 
coupled with the complexity of the underlying distributed 
architecture, can lead to trust issues. This is even more true 
when AI algorithms are distributed over several disparate 
entities, since one of them may misinterpret an outcome 
interpreted by another vehicle. Another possible scenario is 
a complementary mobility application being related to an 
emergency where an ambulance can process data (related 
to early medical diagnosis) of the patient being transported, 
to be transmitted in real time before arriving at the hospital. 
In such a case, a patient’s mobile device (e.g., smartphone 
or smartwatch) could be used for such a transmission via a 
roadside unit node (like a 5G edge node), which is utilized 
for transmitting the packets to the destination. 

This process involves low latency and a high quality of 
service, as well as cooperation. Sometimes, it might indeed 
occur that we rely on such a node to request ad hoc compu-
tation if an edge node (hospital edge node) is not available or 
not trusted anymore. In such a scenario, the main challenge 
is ensuring that the actors in the value chain trust the services 
at the top of such a distributed system since they mainly 
rely on AI systems capabilities: sensing, processing and 
reasoning features. In other words, what are the measurable 
trust indicators that can be considered to gauge confidence 
and correlate with trust in the overall services offered by such 
a distributed system? 

Looking at the trusted conceptual background provided by 
the literature, we can already specify the following key trust 
indicators that are specific to the distributed nature of a given 
intelligent and growing system: 

- AI and the underlying distribution/architecture (versus 
organization) of its analytics functions: local learning 
(like in centralized systems), federated learning (like in 
distributed systems), etc. 

- Processing over the nodes: processing power and orga-
nization within the distributed system 

- Reputation of the distributed nodes, meaning how can 
we exclude any of the nodes if the overall reputation is 
degraded and how can we detect such a failure? 
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FIGURE 4. Intelligent system intelligence flow mechanism. 

- Impact assessment of the overall trust value at both the 
node and global level. 

- Measure/quantify/justify the trust factor coefficient of 
each node and the context dynamically in different time 
spans by observing the throughput levels expected for 
them. 

All these indicators may require simulation tasks to under-
stand and measure the ability of a distributed system solu-
tion to solve complex (near) real-time mobility problems 
compared to conventional centralized approaches. Figure 4 
illustrates an intelligence flow mechanism in this dynamic 
context, in which the learning and growth is correlated with 
an end-to-end trust mechanism. Thereby, the high-level mon-
itoring dashboards of intelligent systems can have a holistic 
view of the growing mechanisms in a dynamic context. The 
next chapter comparatively analyses the state of the art for 
the identified principles and paradigms and introduces the 
emerging challenges and potentials in detail. 

IV. COMPARATIVE ANALYSIS OF LITERATURE 
A. AI SYSTEM CATEGORIZATION 

Continuously growing intelligent systems can enable 
massive-scale AI support for many critical systems. However, 
challenges also increase, mainly in terms of complexity, 
inflation of size/volume, reaching limits of resource central-
ization, and an increased need for decentralized/distributed 
mechanisms due to non-deterministic alterations and 
uncertainties in system components. In this chapter, we will 
discuss related studies, which categorize the challenges and 
introduce the main features to be targeted for a trusted 
distributed AI methodology as a core mechanism of growing 
intelligent systems. 

Data is the most valuable digital dynamic asset of the 
intelligent systems. Since computing machines have existed, 
the most interesting challenge has been to tackle the 

computational complexities in a timely manner and access 
the system resources with the right credentials. [42] Proper 
identifies the current state of the data as fuel for the digital 
age. Business analytics, statistics-based AI, digital twins, etc. 
are defined as ‘‘data-hungry’’ applications, which are com-
ponents of complex systems, and which can be thought of as 
data ecosystems. The research challenges below are defined 
as the main categories: 

- Data as a key resource 
- Trust at the core 
- Regulation of data ecosystems 
- Data need semantics 
- From data to information 

The challenges within the identified categories can help 
define the role of data in the current context of smart sys-
tems. However, data is not fully separated concern from 
computation, it has to be mapped to computation. Trust 
has to be measured and quantified. Novel holistic system 
abstractions are required to track the transaction flow at 
the system level and to assign trust values to each cate-
gory. Furthermore, semantic web-based ontology modeling 
approaches with RDF (Resource Description Framework, 
Subject-Predicate-Object) [43], [44], scenario-based strategy 
planning tools [45], or any other system design tools can 
help to model a lifecycle with a conceptual modeling per-
spective to better interact with intelligent system components 
at run time or (near) real time. Thereby, explainability and 
justifiability features with socio-dynamical perspectives can 
also be tracked more coherently to contribute to the continu-
ous growth of the emerging intelligent mechanisms. 

Within the digital-dynamics perspective, system-level end-
to-end transaction monitoring can be succeeded by a holistic 
view [5], which enables data-state and lineage tracking in a 
trusted manner with a robust core mechanism. System-level 
trust features, metrics, and measurement approaches will be 

55316 VOLUME 10, 2022 



M. A. Ağca et al.: A Survey on Trusted Distributed Artificial Intelligence 

discussed later in this chapter to indicate the justification 
of trust prerequisites, such as robustness, reliability/liability, 
resiliency, and integrity. 

The digitization of everyday life, cause the amount of 
data to grow exponentially, and the challenges emerging 
from this have made the need for system reconfigurabil-
ity more critical. Hardware-dependent designs are replaced 
with software-driven mechanism and hardware/software co-
design approaches are utilized when necessary. The software-
driven approaches also adapted the software challenges 
to the current intelligent system context with software-
intensive mechanisms. Aksit [46] has summarized these chal-
lenges/research directions into six categories with a focus on 
smart-city systems and presents them in a single list as briefed 
below; 
1. Developing models for smart cities; 
2. Designing a framework for managing and optimizing the 

configurations of clusters; 
3. Designing models, methods and tools for critical infras-

tructures; 
4. Optimizing the necessary quality attributes through sys-

tem adaptation at run-time; 
5. Integrating software systems; 
6. Designing a smart infrastructure with a high degree 

of interoperability, configurability, adaptability, and 
evolvability. 
The challenges can help to synchronize coherency between 

the related research studies. However, new software and 
hardware co-design principles are emerging. System-level 
hardware/software integrated views, which can interact with 
all verticals at run-times, are required for emerging smart 
city systems. Trust is not only required for dependability, 
which already ensures the security, robustness, resilience, 
integrity, and coherency of a system [46], but must be 
measured and quantified for smart systems, in order to 
inspire confidence in system architectural level disruptive 
innovations. 

The next chapters will identify these architectural design 
differences to emphasize the need for distributed design 
and the potential benefits of hybrid mechanisms. Thereby, 
we will be able to introduce the methodology to be used 
for the concept of SDN to ensure the interactivity of 
trusted agents in near/real-time for smart systems. Hybrid 
approaches also define a core mechanism for emerging 
networking/communication methodologies for close-to-long-
range systems as the generic IT core, which can be imple-
mented in emerging software intensive systems, such as 5/6G. 
In order to be able to focus the identified features on the 
TDAI, these system-level paradigms can be categorized as 
architectural (1) and (2) networking/communication perspec-
tives. Thereby, we can obtain the trust justification features 
of novel computing systems with a focus on distributed com-
puting concerns for the targeted trust frameworks. Rest of the 
section introduces these identified system-level features and 
explains them as the trust-justification features of emerging 
AI systems. 

1) ARCHITECTURE 

Architectural modeling and the models are the basic method-
ology and critical feature for system-design paradigms. 
These are mainly considered with hardware and software-
level design concerns. The approaches can be limited to 
board-level architecture-design paradigms for computing and 
intelligent system mechanisms [47]. Chip-level designs can 
enable us to implement computing facilities on any system 
components as an integrated unit, such as edge devices and 
mobile units. However, increasing amounts of the data manip-
ulated by the systems require major updates of the hardware 
and software abstraction principles. 

Existing approaches can enable us to process and 
manipulate data with virtualization and caching policies [48]. 
Chip-level interconnection [49] mechanisms can enable us 
to transfer the data between the processes with available 
scheduling policies [50]. These design approaches are lim-
ited with 3D-Stack board/memory design principles [51] 
and network interconnection issues [52], such as scalability, 
performance, energy consumptions, and most of all, with 
bandwidths of the transmission and buffering channels. 

Emerging intelligent computing architectures [53] can 
enable us to process and manipulate data with more intel-
ligent approaches. For instance, caching performances [54] 
can be optimized and streaming buffers can be designed 
more coherently and adaptively [55] to interact more effi-
ciently with the system components. The interactions can 
be designed with online approaches with an event-based 
trigger mechanism [55] with data-center networking [56] 
protocols. The architectural concerns can be modeled as 
generic core mechanisms with the holistic abstraction and 
end-to-end system design paradigms with throughput max-
imization approaches [5]. 

Interactions with the environment and the dynamic state 
changes of the components also trigger behavioral com-
plexities. These require the dynamic modeling of system 
view points and snapshots of the states, and can be suc-
ceeded by available system engineering architectural frame-
works [57] up to the specific requirements of the dynamic 
context changes. In addition, business processes can also 
be modeled conceptually [58] to interact more efficiently 
with the environment. Therefore, system resource mod-
eling and management paradigms can be improved with 
novel learning heuristics [59]. Furthermore, system resource-
management knowledge bases can be trained for continuous 
growth and the heuristics can be improved with holistic 
abstraction [5] paradigms. These architectural features can 
be categorized into three main groups with centralized (fully 
connected), decentralized (autonomous/embedded/local), 
and distributed (edge/hybrid/hierarchical/multi-layer) system 
design approaches. 

• Centralized/(Fully connected): Processing and memory 
resources are fully centralized 

Centralized architecture can enable to build smart sys-
tems with intelligent mechanisms, which have centralized 
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processing and memory/storage components. Furthermore, 
robust networking/communication channel-based abilities 
are supported with strong back-end units, such as quan-
tum computing mechanism, to interact with the environment 
and dynamic context efficiently. However, these architec-
tural design paradigms are limited by system integration 
and performance issues [60]. Fortunately, parallelizable por-
tions of these issues can be identified with trust factor max-
imization principles, and integrity concerns can be mini-
mized with holistic interfaces [61], and holistic total system 
throughput maximization methodologies [5]. Nevertheless, 
the design/manufacturing costs and physical limits of these 
designs require decentralized and distributed approaches, 
which are explained briefly in the next chapters. 

• Decentral/(Autonomous/Embedded/Local): Processing 
and memory resources are fully de-centralized 

The decentralization of the mechanisms requires trusted 
computing units [37] on edge devices and secure channels 
for trusted interactions with the environment. The trust con-
straints can be ensured to a certain extent, but the edge/mobile 
components are limited by digital design paradigms and 
require novel holistic interfaces [61]. 3D-stack digital design 
technologies can help to improve edge/mobile units as den-
sified system components [15], [62]. These features can 
dynamically adapt to the context changes with the holistic 
interface’s digital design approaches [61] and end-to-end 
holistic abstraction and views [5], [14]. Thereby, the avail-
able features of edge/mobile devices can be maximized with 
densified design paradigms, and the overall system perfor-
mance can be improved with a distributed design approach. 
Next chapter introduces the basics of distributed design and 
details are discussed in a comparative matrix in Section. IV C. 

• Distributed/(Edge/Hybrid/Hierarchical/Multi-layer): 
Processing and memory resources are distributed 

Distributed system design issues can be grouped into 
(1) algorithm-level and (2) system-level concerns with a focus 
on distributed computing [14] principles and paradigms. 
Algorithm-level challenges include learning paradigms with 
statistical and AI/ML optimization approaches, such as learn-
ing cardinality estimator performance maximization [63] 
with a flow loss model, a source code compiler to minimize 
algorithmic complexities [64], and other AI/ML challenges to 
automate the data pipelines of training and test data-sets [65]. 
One of the most critical concerns of these challenges, estima-
tor performance maximization, can be improved with holistic 
abstraction paradigms, which can enable the dynamic training 
of multi-layer data models [5]. 

However, increasing complexities and uncertainties of the 
algorithms trigger more system-level concerns and require 
computational tractability of the processes and transactions. 
For instance, critical database ACID (Atomicity, Consis-
tency, Integrity, Durability) features need to be extended 
to edge devices in a trusted, scalable manner [5]. These 
challenges require updates in logic design and hardware 
level updates within the polynomial time threshold values 

FIGURE 5. Networking and communication systems range-based 
categorization. 

to minimize latency concerns [66]. Holistic interfaces can 
help to design reconfigurable hardware with a dynamic end-
to-end logic structure [61]. However, middleware design 
paradigms are also critical for software/hardware co-design 
issues [5], [62]. Fortunately, rational verification methods in 
polynomial time [66] can help to improve the transaction flow 
to enable the computational tractability of the processes. 

Behavioral strategies of these mechanisms can also be 
dynamically configured [67] to improve the intelligence 
mechanism of the intelligent systems. Therefore, AI systems 
can be improved with novel methodologies, so that we are 
able to mention trust on these systems, which have more 
opportunities and challenges than ML features [68], due to 
their behavioral integrity constraints [5], [62]. Intelligent 
agents [69] are key components for these intelligently behav-
ing smart systems, and trust measurement and maximization 
with swarming approaches are promising indicators and fea-
tures of these paradigms [15]. Comparative analysis matrix in 
Section. IV B summarizes potential research directions. Dis-
cussions in the next chapter will be limited to networking and 
communication perspectives in order to observe the method-
ologies that can maximize critical features of an intelligent 
system with the set of nodes Ni : {No, N1, N2, . . . , Nn,, such 
as connectivity and interactivity paradigms. 

2) NETWORKING AND COMMUNICATION 

As the emerging technologies grow faster, intersections 
between the fields are also increasing and multi-disciplinary 
fields are converging with AI systems-driven design 
paradigms. For example, networking and communication 
technologies are improved, with the critical features of 
emerging AI systems and novel functionalities are being 
enabled with software-driven design paradigms, such as 
NFV (Network Function Virtualization) and SDN (Software 
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FIGURE 6. Advance wireless communication systems emerging features [72]. 

Defined Networking). In this way, emerging networking 
and communication technologies like 5/6G technologies can 
enable massive-scale AI System deployments to be imple-
mented with novel hardware/software codesign paradigms, 
and the challenges can be explored with AI systems perspec-
tives. The rest of the section explores these critical features 
with a range-based categorization approach as illustrated in 
Figure 5. 

Networking and communication features, which trigger 
growth acceleration in the computing paradigms and the 
densified computing/storage system units, can enable dis-
tributed massive data to be processed in real time and help 
to ensure the connectivity and interactivity of the compo-
nents within the critical system constraints. These features, 
which are the key enablers for the SDN mechanisms with 
virtualized network functionalities, are called NFV. Thereby, 
the connected mechanisms can help to design software-driven 
dynamic systems rather than hardware-dependent designs to 
make the networking and communication systems flexible 
and adaptive to dynamic context changes. In doing this, 
the critical networking and communication components of 
emerging technologies can enable us to ensure the interac-
tivity of the agents within hybrid-cloud mechanisms [49] and 
Radio-Network technologies, which have multi-layer design 
with network slicing features [56]. 

Standard definitions are still on progress of improving 
signal transmission and edge/mobile processing latencies to 
meet the critical system constraints [57]. In spite of making 
good progress with these challenges, distributed computing 
and system design paradigms [14], [15] still need to be inves-
tigated and tested with the critical feature sets of the emerg-
ing networking and communication systems. These features 
are mainly categorized into two groups: (1) beamform-
ing and signal transmission and (2) edge/mobile processing 

mechanism for networking mechanisms and systems. Fig-
ure 6 [72] illustrates the basic characteristics of wireless 
features, with GHz frequencies and advanced emerging fea-
tures, which are mmWave and THz waveforms. These signal 
transmission abilities can help to improve the interactivity of 
system nodes and edge/mobile units within the limits of total 
system throughput principles and paradigms [5]. Further-
more, available networking protocols and mechanisms can 
enable the transmission and processing of [86] packages with 
multi-layer connectivity paradigms, as illustrated in Figure 7. 
Transmission latencies and edge/mobile package processing 
features are promising for ensuring the interactivity and con-
nectivity of an intelligent system with a set of nodes Ni : 
{No, N1, N2, . . . , Nn,. Detailed features are discussed with a 
focus on end-to-end trust mechanism justification features 
and indicators. In this chapter, we will limit the discussion to 
critical networking and communication features with a range-
based categorization approach as illustrated in Figure 5, con-
sist of (1) Close (2) short (3) mid (4) long ranges. 
• Close-Range (PAN < 100m): Bluetooth, Wi-Fi, 
802.11p/ITS G5 for V2X, low latency networks etc. 

An increasing number of networking and communication 
technologies can provide a wide variety of options for the 
connectivity and interactivity maximization of the system 
nodes and edge/mobile units. However, the growth and diver-
sity of options increase complexity and trigger behavioral 
anomalies, which require (near)-real-time channel selection 
mechanisms. 

Fortunately, intelligent control mechanisms can enable us 
to design vision-based control mechanisms [87] or hybrid 
controllers with a wireless/visual sensor-based [5] control 
structure inside the edge/mobile units. These challenges trig-
ger the requirement for novel synchronization and concur-
rency features [88] at the edge/mobile units. Networking and 
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FIGURE 7. Networking protocols for package transmission [98]. 

communication services can also be adapted to the dynamic 
internet/intranet [89] applications. Energy efficiency of these 
nodes is also a critical feature for the available wireless/wired 
communication channels and required wireless communi-
cation protocols [90], and wireless sensor network archi-
tectures [91] can be adapted to change dynamically. These 
features can be designed as open-flow mechanisms [92] for a 
selected region, and adaptive protocols [93] can help to pro-
cess packages and disseminate information in edge/mobile 
units with a distributed design approach [93]. Multi-layer 
topologies [94], such as MAC 802.11 ad hoc protocols, can 
be maintained dynamically to adapt the physical layers at 
run-time. 

The resiliency of overlay networks [95] is also a criti-
cal concern for the edge/mobile device surface [96] signal 
processing abilities within the critical system constraints. 
Thereby, advances in edge/mobile device features and abil-
ities like ultrasonic ranging hardware [97], congestion con-
troller mechanisms [98], miniaturized beamforming devices 
[99] can operate and help to ensure the interactivity and 
connectivity of the components with ms-scale latency val-
ues [100]. On the other hand, these advanced features require 
hardware-level code management challenges with context-
aware computing paradigms. Fortunately, this adaptiveness 
can be improved with Machine Inferred Code Similar-
ity (MISIM) systems [101], which can be part of a future 
research challenge in terms of the run-time reconfigurability 
of the systems. In order to limit discussions on close-range 
communication in terms of end-to-end trust mechanism and 
justification features, the rest of the section will only mention 
short-to-long range paradigms briefly and will focus on the 
identified trusted computing feature sets. 
• Short-Range (LAN < 10km): Cellular networks, 
4G/LTE, 5G NR etc. 

Short-range feature sets and end-to-end networking/ com-
munication mechanisms can maximize the connectivity and 

interactivity of the system components and edge/mobile units 
in real/near-real time. Figure 7 illustrates these protocol 
categories, which include link-layer and end-to-end connec-
tivity features. These features need to be extended to short-
range cover, especially for smart-city use cases. For instance, 
emerging mobility technologies like autonomous cars can 
behave like a mobile computer device, which can help to 
implement urban air transport with the cars having a dual 
functionality as mobile computers. 

Connectivity and interactivity of these mobile units can 
be ensured with emerging systems and methods in order to 
obtain [102] telematic data with wireless/wired sensor tags. 
These protocols can be adapted dynamically to the dynamic 
context changes as explained in the previous section. The 
discussions can be limited to the V2X (vehicle to every-
thing) domain to explain the most promising feature sets. 
For instance, ITS-G5 (IEEE 802.11p) and C-V2X (3GPP 
Release 14) are promising technologies in terms of sam-
pling/transmission frequencies and power/energy efficien-
cies [103] with minimized congestion and latency values. 
Nice progress is saved with 5G hybrid-mechanisms [85], 
which are supported by hybrid clouds with maximized band-
width limits to exceed theoretical thresholds like Edholm’s 
law of bandwidth [81]. Distributed computing paradigms 
are still under investigation to maximize the total system 
throughput values of the system [5] with novel AI/ML sup-
ported designs [6], [32]. These feature sets will be sum-
marized in Section. IV C. The rest of the section briefs 
on mid/long-range challenges and potential future research 
directions. 
• Mid-Range (MAN < 100km): High Speed Wireless 
Internet, cable TV systems 

As the amount of data traffic increases to the peta/exa-
scale, controller mechanisms become more complicated and 
require advanced intelligent controllers inside edge/mobile 
devices with distributed mechanisms to be able to cover 
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FIGURE 8. A distributed mobile sensor computing system [12]. 

wider ranges. The diversity of the components and interac-
tion require advanced package processing features and real-
time decision mechanisms. Fortunately, the state-of-the art 
methodologies can enable distributed sensor computing sys-
tems, as illustrated in Figure 8. [12]. The detailed feature sets 
of these mechanisms are explained in the next chapter with 
a focus on the end-to-end trust features of computing prin-
ciples and paradigms. As a brief introduction, these features 
can cover on-board computing units with mobile/edge query 
processing mechanisms. Therefore, dynamic measurement 
metrics can be collected to help to ensure the connectivity 
and interactivity of mobile units with maximized trust values, 
as explained in the next chapter, as advanced feature sets 
of the trust mechanism to be able to extend networking and 
communication features to mid-range. 

• Long-Range (WAN > 1000 km): Space Networks, 
Sat Com, Space Internet, Futuristic (Drones, Low-Orbit 
Satellite etc.) 

The growth in communication technologies and signal 
transmission features can enable us to reach higher signal 
frequency transmission features up to PHz scales. Futur-
istic components of the emerging smart systems, which 
have higher bandwidths, can ensure the connectivity and 
interactivity of the components at massive scale within 
continental scope and low-mid-high orbit space systems. 
These innovative space missions can cover space internet, 
space aircrafts, and other advanced high-throughput connec-
tivity mechanisms like 6G and InfiniBand optical systems. 
These advanced radio signals and mm-to-ultraviolet frequen-
cies are illustrated in Figure 9 [72]. 

Swarming and end-to-end trust mechanisms can help to 
maximize the throughput of each node and the total sys-
tem within the critical system constraints [15] with novel 
AI-supported distributed computing system designs as the 
core mechanisms. Main characteristics of these features are 
summarized in Section. V.B within the detailed comparative 

features matrix. Figure 5 illustrates the categorization of these 
emerging networking and communication technologies with 
a range-based classification approach. Advanced communi-
cation and future networking systems will be considered in 
future related works. In this survey, the focus is on distributed 
computing paradigms and principles of emerging intelligent 
systems. 

3) TRUST: END-TO-END TRUST MECHANISM JUSTIFICATION 
FEATURES AND INDICATORS 

Trust paradigms are widely explored in technical and human 
science disciplines. Since our focus is on technical concerns 
with distributed computing scientific paradigms and com-
munities, the categorization and futures are selected from 
the computing perspectives of a system with a set of nodes 
Ni : {No, N1, N2, . . . , Nn,. In this way, the continuous growth 
acceleration of an intelligent system can be maximized with 
dynamic feedback structures [5]. These justification features 
can be categorized into four main groups: (1) Performance, 
(2) Run-time monitoring, (3) Security, and (4) Test-based 
features and indicators. This chapter will explain these justifi-
cation features by using a selection of the main related studies 
in the literature. 

a: PERFORMANCE 

Performance elements are the key metrics for the justification 
features and defined trust indicators. These can be measured, 
quantified, and monitored from many perspectives. In order 
to focus the indicators on distributed computing domains and 
improve the feedback control structure of the generic mech-
anism, we can address and focus mainly on the scalability, 
elasticity, connectivity, and energy efficiency features of the 
nodes and total system. 

Thereby, the rationality and performance features of 
AI/ML methodologies can adapt to the dynamic context [13] 
and (near) real-time threshold constraints, and ensure the 
interactivity of mobile agents. This chapter explains the 
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identified performance elements of these trust justification 
features. 
a. Scalability, Elasticity, and Connectivity Limits: Total 

number of nodes and users in the system 
The scalability, elasticity, and connectivity features of a 

node can be identified as basic features of the performance-
measuring approaches in system sciences. These are mea-
sured with number of nodes, users, data volume, and other 
system/algorithm level computational scalability limit met-
rics [5]. The approach has been widely applied with AI 
methodologies, such as distributed AI and multi-agents in 
many industries. For example, telecommunication systems 
became data intensive and improved with scalable system 
design paradigms [16]. Thanks to the advances in data-
processing technologies, these features can be queried in real 
time and correlated with knowledge bases of the systems with 
dynamic holistic views [15]. The challenges will be discussed 
with a comparative feature analysis matrix in the next chapter. 
b. Energy Efficiency: Average energy consumption of 

nodes and critical transactions 
Dynamic management of system resources and physical 

capacity features requires both hardware and the physical 
layer monitoring of the units in real time. Energy efficiency 
average consumption value is the key capacity metric for the 
interactivity features of the mobile agents for the required 
power constraints. A novel system abstraction approach can 
enable the physical layer parameter/metric monitoring to be 
extended to ensure interactivity and adaptivity in near or near 
real-time [5]. 
c. Energy Efficiency: Average EMF (v/m), SAR(w/kg), 

Power(W) environment friendliness 
Emerging networking/communication systems like 5/6G 

can enable the implementation of novel features of the AI 
methodologies, such as real-time massive scale analytics. 
However, this triggers risks pertaining to human health, 
include cancer, COVID-19, etc. [73], [74]. These challenges 
can be mainly identified and are rooted in EMF, SAR, and the 
power features of the nodes. In order to be able to justify trust 
in a dynamic context, these features have to be monitored in 
real time with the local/global regulative constraints. Thanks 
to the holistic view [5] of innovations in emerging com-
putational ecosystems, this can also be achieved within the 
regulative constraints and it is discussed in the next chapter. 

b: RUN-TIME MONITORING 

In order to be able to maintain overall performance; 
dynamically justified trust features, the growth progress 
of the systems, and other trust indicators have to be 
monitored continuously. Active and passive systems have 
different constraints and limits, which trigger diverse chal-
lenges in distributed computing paradigms. AI methodol-
ogy approaches can be improved to satisfy the need of 
the active system constraints at run-time with dynamic 
approaches. Trust features and indicators can be guaran-
teed for machine-learning systems [18] and distributed AI 

techniques [8]. Programming approaches like probabilis-
tic/concurrent [20], dynamic/differential [1], [18] can enable 
knowledge bases and data states to be updated at run-time 
coherently. Therefore, the justification features can be trained 
and updated dynamically for a continuously growing mech-
anism. We focus these challenges on distributed computing 
and caching policies in the next chapter discussions. This 
chapter is a brief on data-state tracking/transitions for an 
efficient end-to-end feature embedding/manipulation mech-
anism of a running system. 
a. Data-flow monitoring: Data state monitoring between 

applications 
Data is the fuel and most valuable asset for the emerging 

intelligent systems [42]. It is the critical element of the justifi-
cation features to ensure the integrity of the mechanisms and 
systems. Each state-change has to be tracked and manipulated 
during the whole lifecycle of the data. Emerging AI technolo-
gies can improve data challenges [30] with novel end-to-end 
paradigms and scientific improvements in the field. Improved 
ML systems can also help to improve knowledge bases and 
are dynamically generated up to data-state dependencies [2]. 
However, the training process is not only required for data 
states, it also has to be mapped to the pipelining [3] and 
feedback mechanisms of system nodes with trust indicators 
[4]. The features that can help to justify trust are discussed in 
the comparative matrix table in Chapter 4. B. 
b. Transaction-Flow Monitoring: Transaction lifecycle 

monitoring 

The diversity and heterogeneity of the emerging systems 
require decentralized and distributed designs to be able 
to ensure the growth of the mechanism [30]. Distributed 
computing paradigms are core features for managing the 
resources and mapping the data and computation where nec-
essary. Swarm intelligence techniques at the algorithm and 
system levels can help to resolve the challenges and complex-
ities that trigger swarm behavior in emerging intelligent sys-
tems [2]. Novel designs for control structures and abstraction 
hierarchies [5] can help to embed trust justification features 
and ensure continuous growth with the necessary updates at 
runtime with real-time threshold values. Thereby, transaction 
life-cycle can be monitored dynamically and failures can be 
recovered with minimum latency via the feedback controllers 
and holistic views. These features will be discussed in the next 
chapter. 
c. Trust Monitoring: Periodical trust verification 

Technical and human science concerns around trust mod-
eling are critical paradigms and features for the justification 
mechanisms. Our focus will be on technical concerns of trust 
with distributed computing principles and paradigm chal-
lenges. In order to improve the quality attributes with user-
level measurement metrics, we can consider the regulative 
aspects of the trust issues. Emerging trends like explainability 
features [32] can provide growth acceleration metrics, and 
these can be improved with lineage-tracking features [15]. 
Furthermore, these features are strongly dependent on the 
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secure execution of the monitored transactions. In [118], 
authors explored and improved hardware-based SEE (Secure 
Execution) with a Trusted Execution Environment (TEE) 
concept. Storage and user interfaces are identified as critical 
features and compared with some of the available technolo-
gies like ARM TrustZone-based TEEs. 

However, these features have (near)real time interactivity 
constraints with diverse system components. For this reason, 
hardware isolation and separated kernels are far from achiev-
ing these latency, interactivity and scalability thresholds. 
Fortunately, dynamic holistic views can help to maximize 
the trusted scalability of the emerging AI Systems [28,29]. 
Additionally, holistic abstraction paradigms [5] can also help 
to measure and quantify trust with a trust factor coefficient-
based throughput maximization approach as an extension 
to Amdahl’s notation. Thereby, trust can also be verified 
periodically with the identified trust justification features. 
From a system-level perspective, the trustworthiness features 
of AI/ML principles [6], [7], [8], [33], [34], [36] can be 
interpreted as basic structures of feedback and other mechan-
ical/digital control loops for the growing mechanisms [5]. 
Furthermore, the uncertainty of the harsh conditions [75] can 
also be measured and quantified at run-time as calibration 
metrics [15]. 

In order to obtain measurable and quantifiable met-
rics for trust concerns, we will keep the focus on 
regulative features, such as EMF/SAR/power values for 
health-care limits, privacy of data etc. with local/global 
perspectives [10], [76], [77]. These are the critical metrics 
of the massive-AI system justification features for real-time 
alerting and risk prediction algorithms [6]. 

Risk predictions can also improve the scalability limits 
of large-scale optimization algorithms [10] at run time [5]. 
Therefore, trust performance and node regulative constraint 
thresholds can be justified and can help to improve the growth 
of the mechanism by ensuring the behavioral integrity of 
the total system. Next chapter summarizes and discusses 
the scope of the technical concerns with trust measure-
ment and quantification perspectives in distributed comput-
ing paradigms with AI/ML pipelining features of growing 
intelligent systems. 

d. AI/ML Pipelining: Dynamic knowledge base monitor-
ing and update 

Dynamic contexts, in which mobile agents and system 
components interact, require real-time updates in different 
system layers, data models, and most critically, knowledge 
bases for critical decision-support mechanisms. In order to 
be able to justify the trust features and indicators, interac-
tivity of mobile agents has to be ensured with distributed 
computing paradigms and challenges. System acceleration 
units and algorithm level improvements can be designed for 
these purposes [11]. In order to be able to manage the system 
resources dynamically for the changing context parameters, 
AI/ML pipelining mechanisms can be designed [78] with 
novel digital control structures [79]. Swarming approaches 

are also useful for mission-critical constraints of the growing 
smart systems. Resiliency, robustness, durability, locality, and 
anti-fragility features [5], [80] are critical features of the trust 
justification mechanisms for the trusted computing units [37], 
which are explained in the next chapter. 

e. Run-time feature embedding and interaction: Data 
fetching at run-time to knowledge bases 

Previous sections introduced background information on 
the intelligent-system growth mechanisms. Some additional 
advanced system features can be explored in terms of trust 
justification features with technical concerns with a focus on 
distributed computing paradigms. Sensor-based approaches 
with wireless/visual detection/actuation interactors are 
promising for dynamic and fully-automated/autonomous 
designs. Detected features can be integrated within the lim-
its of current networking/communication technologies [81]. 
Dynamic heuristics [82] and knowledge bases can be trained 
dynamically with critical-system constraints of massive AI 
systems [15]. Multi-layer neural networks and tree structures 
with different data structures can improve the interactivity 
and performance of training [119], [120]. 

Other critical feature sets like data poisoning, backdoor 
attack can also be monitored to improve the data collection 
process of training transactions [121]. The features can be 
extracted dynamically within the critical data sets like fin-
gerprint images and can be embedded into other knowledge 
bases and used for critical missions like spoof detection 
[122]. Furthermore, privacy-preserving deep learning models 
with homomorphic encryption and chain structures can be 
designed. However, these feature definitions and interactions 
are limited due to computational scalability and critical sys-
tem design constraints [5]. Emerging hybrid-cloud and dis-
tributed computing design paradigms can help to maximize 
total system throughputs in order to handle the limitations 
in a trusted scalable manner [29], [117]. The challenges 
and future directions will be summarized in a comparative 
analysis matrix in Section. IV B. 

c: SECURITY 

Security is also a critical system constraint for the justifiable 
trust features. Security concerns for distributed computing 
paradigms cover a wide scope from physical protection to 
digital security mechanisms. The trust features can be jus-
tified with digital security design principles for any system 
with the set of nodes Ni : {No, N1, N2, . . . , Nn,. Therefore, 
we can limit the scope to digital security concerns. Justifiable 
trust features can be ensured by improving system think-
ing paradigms [83] and artificially intelligent cyber-security 
mechanisms [84]. Adaptive protocols for dynamic contexts 
with checksum verification-based approaches can justify the 
trust features and indicators [5] dynamically. Next chapter 
will discuss the details of these features and future challenges. 
In this section, we will introduce the basic principles of 
context awareness and trusted computing paradigms. 

VOLUME 10, 2022 55323 



M. A. Ağca et al.: A Survey on Trusted Distributed Artificial Intelligence 

FIGURE 9. Frequency spectrum paradigm shift by communication and sensing features (3 kHz–30 PHz) [72]. 

a. Context aware dynamic adaptiveness: Event-based 
secure connection policies and protocols 

Context change detection/actuation and correlation extrac-
tion between the system resource allocation abilities are 
increased with the capacity improvements of computing 
technologies. Event-based abstraction approaches can adapt 
to change and reconfigure the required trust justifica-
tion features with the available policies and protocols [5]. 
Context-aware computing paradigms can distribute comput-
ing and process/extract the required features at the edge 
or on mobile units [27] with trusted computing mecha-
nisms [37]. Furthermore, the bandwidth limitations of com-
munication systems can also be made trusted with secure 
channels/interfaces [81], [85] and the interactivity of agents 
and nodes can be ensured for continuous growth [15]. Next 
chapter introduces checkpoint and verification approaches 
based feature for dynamic context change. 
b. Context aware dynamic adaptiveness: Dynamic pack-

age check-sum verification 
Thanks to the growth of distributed computing mecha-

nisms, transaction flows can be verified at available check-
points with dynamic package monitoring approaches to 
extract the required metric with sets of justification features. 
Package checksum verification approaches can verify the 
integrity check mechanism [5], and this can be applied to 
generic IT core mechanisms with end-to-end paradigms [15]. 
By that means, targeted justification features of the related 
context can be extracted dynamically within the edge units 
and merged the transaction flows at (near)-real-time. There-
fore, we can rely on and limit the scope to package check-sum 
verification approaches to justify the defined trust features, 
which are summarized and discussed in the comparative 
matrix in Chapter 4. B. 

d: TEST 

Testing is also a de facto component for the system 
design lifecycle. Continuous testing mechanisms (black box, 

white box, grey box etc.) can detect anomalies and future 
risks with digital twins of the system units for continuous 
growth-assurance paradigms. Performance metrics are the 
key elements of trust justification features for both techni-
cal and human-level trust justification features. Behavioral 
anomaly detection/reaction-based monitoring approaches 
can detect/recover potential risks within the critical system 
design constraints [80]. Therefore, we can limit the testing 
scope to verification and confidence-building approaches. 
a. Verification (survey, benchmarking, expert): Formal 

verification with regulative and technical standards 
Verification mechanisms are part of the holistic sys-

tem lifecycle for distributed computing paradigms. These 
challenges can be defined and categorized as software 
engineering [46] paradigms with system design per-
spectives. Therefore, the necessary quality attributes can 
be defined/tracked/monitored as performance indicators. 
In order to make the approaches dynamic and adaptive to 
changing contexts, we can limit the scope to check-point 
controller and feedback mechanism principles for continuous 
growth assurance concerns. Detailed features are summarized 
in the next chapters with the comparative matrix tables. Rest 
of the chapter briefs about the selected trust justification 
features of the testing and verification mechanisms of the 
growing intelligent systems. 
i. Dynamic check-point locating with feedback con-

trollers and optimization: End-to-end holistic check-
point structures 

Improvements in the distributed computing can enable 
packages to be processed at the edge or using mobile units 
as discussed in previous sections. Feedback controllers can 
be correlated with the total system performance and each 
system unit’s throughput values can be correlated dynam-
ically with the behavioral anomalies for feature extrac-
tion/detection/reaction mechanisms [5]. Novel structures and 
holistic abstraction approaches can be implemented on the 
edge devices and used to build end-to-end TEE. Dynamic 
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optimizers can be merged as critical supplementary compo-
nents with respect to the context dependencies. 

Therefore, the system can ensure growth acceleration and 
improve the performances of the mobile units and agents with 
the trust justification mechanism via the holistic views, which 
provides dynamic feedback for the continuous growth of an 
intelligent system. Critical feature sets are summarized within 
the comparative matrix in Table. 3. B. 

ii. Resiliency and robustness monitoring with holistic 
views and feedback controllers: Data-driven dynamic 
control structures for monitoring mechanisms 

User-level concerns are also critical metrics for the trust 
justification features at the technical and human/socio-
dynamics levels. Resiliency and robustness features can be 
tracked with semantic or graph-modeling approaches, which 
are used to represent and visualize [43], [44] the correlations 
between the entities. These features can be named and gen-
eralized as conceptual modeling [42] and monitored with a 
holistic end-to-end trust mechanism [15] as part of the generic 
IT core structure. Thereby, it can used to monitor regulative 
constraints in related contexts to observe the identified thresh-
olds and improve train sets of alerting mechanisms. 

These features can be improved with scenario-based strat-
egy planning paradigms [45]. Therefore, trust justification 
features can ensure the acceleration of the growth of the sys-
tem with the monitored performance indicators and quality 
attributes of resiliency and robustness features with dynamic 
controllers and testing operations/processes. Table. 3 gives a 
summary of the identified features and emerging challenges 
to ensure the continuous growth of the intelligent systems. 

b. Confidence-Building: Trust and confidence measure-
ment/quantification in intelligent systems 

Trust can be defined as the behavioral integrity of a system, 
that is, the system behaves as expected at all times, in com-
puting paradigms and sciences [37]. Human/socio-dynamics 
level concerns can be limited to regulative legal metrics with 
IT audit paradigms. Socio-dynamical visions can help us to 
understand changing requirements and contexts dynamically 
and provide continuous feedback on the defined/monitored 
trust justification features to accelerate the growth progress 
of the intelligent systems. 

Building confidence in these systems also requires crit-
ical constraint feature predictions and forecasts for poten-
tial anomalies. This level of confidence can be maximized 
with strategy planning and a vision of the future cases and 
predictions about the states of the contexts [45]. Therefore, 
the trusted mechanisms can keep learning and accelerate 
growth continuously with an increasing confidence in the 
total system. Regulative legal constraints are dependent on 
the digital dynamic operation context and socio-dynamic 
regulation within the client context. This field is a future 
possible direction and challenge in our research. Next chapter 
will elaborate on the user-level monitoring metrics, which 
can be identified as critical system threshold values of the 
alerting mechanisms. So that, user-oriented critical alerts can 

be minimized and confidence can be built with maximum 
level. Next chapter briefs about these metrics/parameters. 

c. User-level continuous trust measurement: Facial 
expressions/body language, behavioral anomalies 

In order to retain the validity of the metrics for trust mea-
surement mechanisms in distributed computing paradigms, 
these justification features can be improved with novel indi-
cators, such as facial expressions, body language or any other 
human-level behavioral anomalies that can be correlated as 
sensor units of opinion-mining algorithms [29]. Therefore, 
the impacts of socio-dynamical changes can provide dynamic 
feedback to the control loops of growth mechanisms via 
trusted channels [29], and the interactivity of the mobile units 
can be maximized with minimum latencies and fault penalties 
with a dynamic holistic view [5]. These features are observed 
dynamically with respect to the identified regulative legal 
constraints of the targeted context. 

Regulation mechanisms are also disrupted by growth 
acceleration and the diverse structure of emerging intelli-
gent systems. Real-time alerting mechanisms are required in 
daily life also be able to observe socio-dynamic changes and 
make dynamic alerts for the critical risks in the observed 
context. Mathematically well-defined structures can enable 
us to implement swarming approaches within the agent func-
tions fopt () and maximize the cooperation between the expo-
nentially increasing number of components and exa-scale 
data resources [15]. Thereby, measurable metrics of the reg-
ulative legal constraints of observed subject matter can be 
visualized within the high-level monitoring dashboards of the 
intelligent systems within the intelligence-flow mechanisms. 
Figure 4 visualizes the correlation between the end-to-end 
trust mechanism and growth-flow structure, which can enable 
to build dynamic intelligence flow within regulative legal 
constraints of the observed context. Thereby, trust can be 
quantified with respect to dynamic legal metrics of the socio-
dynamic metrics and parameters. This field is also a research 
domain will be investigated in related future works, in this 
survey we will keep focus on behavioral anomaly observa-
tions of the observed context. 

On the other hand, data processing capabilities are still 
limited by edge device processing limitations and the latency 
values of these units. Fortunately, the current state regulatory 
standards define the critical constraints, which are emissions, 
power limits, and other critical factors. These have an impact 
on our health and can be monitored and extracted as trust 
justification features in real time or near real time via the 
alerting mechanisms. Nevertheless, massive scale deploy-
ment is still limited with scalability concerns at the algorithm 
and system levels [5]. These include critical risks for human 
health and environmental concerns. These features are also 
part of the future research directions. Table. 3 summarizes 
major concerns and identifies critical feature sets of trust 
justification features to be able to maximize trust in emerging 
intelligent systems and minimize socio-dynamic risks within 
the identified regulatory legal constraints. 
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B. COMPARATIVE MATRIX 

TABLE 3. A. Related works. B. Trust justification features. 
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TABLE 3. (Continued.) A. Related works. B. Trust justification features. 
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TABLE 3. (Continued.) A. Related works. B. Trust justification features. 
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TABLE 3. (Continued.) A. Related works. B. Trust justification features. 

C. RESULT ANALYSIS 

As a brief summary to the explored research challenges iden-
tified in the previous section, we emphasize major concerns 
and express a strong interest in the trusted distributed AI 
mechanism with the identified justification features. The fea-
tures and indicators of the end-to-end trust mechanism can be 
listed as below. 
• Performance 

• Scalability, Elasticity, and Connectivity Limits: 
Total number of nodes and users in the system 

• Energy Efficiency: Average energy consumption 
of nodes and transactions 

• Energy Efficiency: Average EMF (v/m), SAR 
(w/kg), Power(W) environmental friendliness 

• Run-time Monitoring 

• Data-flow monitoring: Data-state monitoring 
between applications 

• Transaction-Flow Monitoring: Transaction life-
cycle monitoring 

• Trust Monitoring: Periodical trust verification 
• AI/ML Pipelining: Dynamic knowledge-base 

monitoring and update 

• Security 

• Context-aware dynamic adaptiveness: Event-
based secure connection policies and protocols 

• Context-aware dynamic adaptiveness: Dynamic 
package checksum verification 

• Test 
• Verification (survey, benchmarking, expert): 
• Dynamic check-point locating with feedback 

controllers and optimization 
• Resiliency and robustness monitoring with 

holistic views and feedback controllers 
• Confidence-Building: Trust and confidence mea-

surement/quantification in smart systems 
• User-level continuous trust measurement: Face 

mimics/body language, behavioral anomalies. 

(3) Security (4) Test-based dynamic metrics. These can build 
the end-to-end trust mechanism with technical computing 
paradigms and user-level concerns. The rest of the section 
will provide information on the main related works identified 
that introduce the emerging challenges. 

The reviewed literature shows that distributed AI has 
been investigated in many domains, such as telecommuni-
cation technologies [16]. It has been merged with multi-
agent systems as a joint approach for complex system [17] 
design. Trust features are also explored for the AI/ML 
paradigms, which are [18] Fair, Explainable, Auditable and 
Safe (FEAS), to be explored in different stages of a sys-
tem lifecycle, with each stage forming part of a Chain of 
Trust. Formal definitions of trust are also elaborated widely 
in literature [4], [19]. The mechanisms are improved with 
ML and statistical perspectives to cover data management 
challenges [2] with end-to-end pipelining mechanisms [3]. 
Programming paradigms, such as concurrent [20], probabilis-
tic/dynamic/differential [1] are also explored to adapt the 
mechanisms to change in a dynamic context. 

Performance modeling paradigms are widely discussed 
in the literature. For instance, an acceleration framework 
is proposed for the performance increase of distributed 
machine-learning algorithms. Noises, such as straggler 
nodes, system failures, or communication bottlenecks are 
identified and elaborated with a coding theory technique to 
provide resiliency in different engineering contexts [11]. The 
authors state a bandwidth reduction gain of O(1/n) from the 
fundamental limit of communication rate for coded shuffling. 
Another current problem identified is to find an information-
theoretic lower boundary for the rate of coded shuffling. 
AI methods have been reviewed for robot teaming and human 
cooperation methodologies. Mobile robotic communication 
and swarm UAVs will be explored with CNN and RNN 
methods for the data processing of the obtained image/video 
data [78]. 

AI techniques are proposed for challenges of mission-
critical autonomous software. Novel abstraction paradigms 
are identified as a requirement in order to reduce the com-

The main categories of these features and indicators plexity of swarm systems. The heterogenous structure of 
identified are: (1) Performance (2) Run-Time Monitoring emerging intelligent swarms is identified as a challenge 
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for system behavior monitoring and verification. Require-
ments in engineering, nontrivial learning and planning, agent 
technology, self-modifying systems, and verification tech-
nologies are emphasized as future challenges for critical 
swarm mission autonomous software [79]. Formal methods 
and techniques are explored for the verification, validation, 
and assurance of future swarm-based missions, such as the 
ANTS (Autonomous Nano Technology Swarm) mission. 
It has 1,000 autonomous robotic agents designed to cooper-
ate in asteroid exploration [80]. Its non-deterministic nature, 
high degree of parallelism, intelligent behavior, and emergent 
behavior, and new kinds of verification methods remain to be 
explored. Formal specification language to predict and verify 
the emergent behavior of future NASA swarm-based systems 
is currently being designed and developed. 

In order to have a comprehensive overview of the chal-
lenges, it is proposed to limit the scope to the system-
level thinking process for AI systems [83]. Comprehensive 
transdisciplinary approaches are proposed, which include 
Axiomatic Design (AD), AI/ML techniques, and Information 
Theoretic Methods (ITM) to reduce risks and complexities 
by improving cyber-system adaptiveness, enhancing cyber-
system learning, and increasing the cyber-system prediction 
and insight potential [84]. The growth perspectives of the 
mechanisms are another research direction [27] in context 
awareness surveyed from an IoT perspective, and include 
techniques, methods, models, functionalities, systems, appli-
cations, and middleware solutions. The growth progress of 
context-aware computing, from desktop applications, web 
applications, mobile computing, pervasive/ubiquitous com-
puting to the Internet of Things (IoT) is explained. There-
fore, trusted computing paradigms can help to ensure the 
behavioral integrity of the mechanisms, in which trusted 
computing, trusted platforms, and trusted systems are defined 
as the system components which behave as expected for all 
transactions [37]. 

These challenges for the mechanisms can be identified 
in a nutshell as major points. Key challenges for emerg-
ing smart-system mechanisms are identified as computing, 
communication, and control. In order to ensure resilience 
against manipulation threats, the other research directions 
concern end-to-end trust mechanisms (integrated view of the 
three pillars: networking, processing/optimization, as well as 
security) and swarm controller methods guaranteeing safety, 
which aim to enable the trusted scalability of the swarm 
systems. These features are called CCAM Connected, Coop-
erative, Autonomous Mobility) as generalized use/business 
cases [15]. Chapter. V briefs on these emerging features and 
discusses the challenges with a focus on the last ten years 
between 2011-21. 

V. DISCUSSION AND CHALLENGES 
Previous sections presented a comprehensive scientific 
background on emerging intelligent systems with a focus 
on TDAI concept and trust justification features. Poten-
tial research directions and challenges are also discussed 

in detail from a historical perspective. In this section, 
these features will focus on the challenges between 
2011-21, and potential directions will be summarized in 
Table. 3. 

Intelligent systems require more elaboration on distributed 
computing principles and paradigms to improve the identified 
challenges. Based on the explored literature, we can say that 
the system resource management principles and AI system 
perspectives introduced in previous sections can enable con-
tinues growth for smart-system mechanisms with the set of 
nodes Ni : {No, N1, N2, . . . , Nn,. Thus, critical features like 
robustness, resilience, reliability, and trust of the nodes can 
be ensured. We can identify the research challenges and AI 
systems research studies with the four main questions below: 

• How can trust in distributed systems be mea-
sured/quantified/justified? 

• How can the trusted scalability of autonomous sys-
tems be enabled? 

• How can trust for swarm intelligence mechanisms be 
ensured? 

• How can swarm system units with a search and 
mining focus be manipulated to implement trusted 
distributed AI methodology in real time? 

These questions can help us to understand how to build 
a growth-flow mechanism for emerging intelligent systems, 
which have dynamic and untrusted contexts. For this reason, 
the trusted distributed AI methodologies need to be imple-
mented to maximize confidence and accelerate the growth 
of intelligent systems. Table. 3. summarizes the recent chal-
lenges and require main feature sets and is followed by 
the conclusion with a focus on the distributed computing 
principles and paradigms of the identified trust justification 
features. 

An intelligent system with of nodes Ni : {No, N1, N2, . . . , 
Nn, which have critical selected features can be categorized 
into five main groups as in Table. 3: 

- Trusted scalability and elasticity for throughput maxi-
mization 

- Resilience to adversarial/adversarial threads 
- Simulation-based validation and verification with digital 
twins or limited context simulations 

- Monitoring with holistic views of the system 
- Thread detection and reaction with dynamic feedback 
controllers for continuous growth flow. 

As summarized in Table. 3, state-of-the-art approaches 
investigate the challenges with disruptive system-level inno-
vations. For instance, a data-centric operating system is 
proposed with limited features [106]. Higher-throughput 
lower-latency features are also studied with protected data 
planes [107]. The approach has triggered paradigm switches 
on transaction definitions and implementations, such as 
a device [108] is proposed for a secure transaction with 
advanced feature sets like dynamic feedback controllers. 
Although trusted scalability remains an open issue but novel 
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TABLE 4. Artificial intelligence system state-of-the-art and main research challenges between 2011–2021. 
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TABLE 5. Summary of future directions. 
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holistic abstraction approaches [5] can help maximize the 
throughput of nodes and total systems. 

AI-driven system modeling is also a hot topic, espe-
cially for decentralized and distributed systems [109]. 
Adversarial/un-adversarial thread monitoring and transaction 
approval approaches [110]–[113] also promising to minimize 
system-level anomalies and failures in (near)-real time. Quan-
tum computing and quantum cryptography features [114] are 
becoming a critical challenge and feature for the growing 
intelligent systems. Simulation-based digital twins are [115] 
widely implemented to minimize potential future failures and 
improve knowledge bases and training sets. 

In a nutshell, we can say that decentralized and dis-
tributed designs enable us to implement massive-scale AI/ML 
algorithms within the growing intelligent systems as hybrid 
clouds [116], [117] with novel accelerator components, 
as indicated in Table. 3. The next chapter summarizes these 
challenges and main findings and introduces potential TDAI 
research fields. 

VI. CONCLUSION 
A. SUMMARY OF THE MAIN FINDINGS 
As a brief conclusion of the research challenges explored, 
we ascertain that TDAI is seen as a missing, and as yet, largely 
unexplored area. Critical feature sets can be summarized as 
illustrated in Table.2, that is: (1) trust measurement and quan-
tification (2) trusted scalability (3) trust assurance (4) swarm 
manipulation (5) system and user behavior monitoring. The 
feature sets identified can help to ensure the continuous 
growth of the intelligent systems, which are core mechanisms 
of emerging smart ecosystems, with software-driven dynamic 
systems to ensure adaptiveness and flexibility in a dynamic 
context, rather than hardware-dependent designs. Thereby, 
the trust factor of the system, P (x ∗ ) ∝ t with the set of 
nodes NE:{N1, N2, N3, . . . , Nn} can be increased to maxi-
mize the throughput in the well-defined dynamic context with 
the adaptive agent function fopt (). The critical feature sets 
selected in Table.3.B can be considered as the key elements of 
the end-to-end trust mechanism for the continuous growth of 
intelligent systems. The better the features justified, the faster 
the growth for the dynamic objectives of the mechanisms is 
ensured. 

The challenges summarized in Tables.2 and 3 briefly 
introduced potential research directions. Architectural design 
principles are critical concerns for the novel innovations 
in the growing context. Decentralized approaches can build 
autonomous/embedded/local components with basic func-
tionalities like swarm manipulation. In order to improve the 
components with trusted scalability and monitoring features, 
end-to-end fully connected channels are required. Centralized 
designs can guarantee these features with respect to end-to-
end latency limits. Identified advanced justified functional-
ities are required for the novel futuristic designs, which are 
possible with the distributed design paradigms, which include 
edge/hybrid/hierarchical/multi-layer features with emerging 
holistic abstraction principles [14], [15], [31]. These features 

and research challenges are also included in the growth-flow 
of the emerging intelligent systems with advanced trusted 
AI capabilities. Next chapter introduces potential research 
challenges and future directions within a summary table. 

B. POTENTIAL TDAI RESEARCH FIELDS 

Disruptive innovations proposed for growing intelligent sys-
tems trigger acceleration to obtain an end-to-end fully 
trusted execution environment, which can be operated in the 
distributed context within the limits of critical systems con-
straints. However, the limitations of the decentralized com-
ponents can only provide basic functionalities, like swarm 
manipulation features. These features can be improved with 
decentralized designs and hybrid mechanisms for the recent 
challenges. Table.5 introduces major points from the related 
works and reviewed literature between 1950 and 2021, with 
a focus on recent years. These challenges remain open 
issues to be explored in detail to obtain a fully trusted 
execution environment for growing intelligent systems with 
dynamically correlated and observed socio-dynamic features, 
which mainly focus on the regulative legal measurement met-
rics of alerting methodologies. These identified challenges 
will be investigated in detail in future related works. 

In the TDAI research field, we identify the following 
emerging areas as being of increasing interest within the 
distributed computing communities: 
• Trust measurement, quantification, and justification 
in distributed systems and its underlying diverse 
components. 

• Trusted scalability of autonomous systems with algo-
rithms and system levels with end-to-end holistic views. 

• Trusted architecture mechanisms (e.g. Machine Learn-
ing) with novel abstraction approaches of end-to-end 
paradigms. 

• Real-Time swarm manipulation to implement trusted 
distributed AI methodology. 

The challenges and future directions identified in this 
survey can be defined as key features and milestones for 
massive scale trusted AI. Thereby, an intelligence flow can 
be assured for growing intelligent mechanisms via end-to-
end trust mechanisms, which have TEE based trusted inter-
action with the environments within the smart-ecosystems 
and dynamic contexts. The more features justified within the 
critical systems constraints, the more trust can be obtained 
with TDAI for the growing intelligent systems. 

On the other hand, in spite of the major progress made 
in computing systems with distributed design innovations, 
there are still challenges for the critical system constraints 
for the continuous growth of the intelligence systems. For 
instance, in [37] experiments have recently reported with 
trusted computing paradigms in real life use-cases. In [81] 
high throughout mobile and wireless communication tech-
nologies have recently been replaced with tethered ones. 
More critically, [117] HPC limitations are still set to be 
improved with modern AI/ML frameworks with hybrid cloud 
design paradigms. 
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Table.5 gives the summary of the major parts of the identi-
fied future directions. Fortunately, defined architectural per-
spectives (central, decentral/autonomous, distributed/hybrid) 
for emerging trusted distributed AI mechanisms can enable 
to ensure resiliency and robustness in a dynamic context with 
an end-to-end TEE for growing intelligent mechanisms and 
systems. Furthermore, the trust measurement, quantification, 
and justification methodologies can be applied in emerging 
distributed systems and their underlying diverse application 
domains with TDAI, which will be explored and experi-
mented in our related future works. 
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