Routes for Rapid Synthesis of Photovoltaic Absorber Materials: The Need for Diffusion Data

Ranga Krishnan, Gabriel Tong, Chris Muzzillo, Woo Kyoung Kim, Tim Anderson (UF), Andrew Payzant (ORNL), Carelyn Campbell, Ursala Kattner (NIST), and Jianyun Shen (Beijing Inst. Met.)

Jevons Paradox

Technological progress that increases the efficiency with which a resource is used, tends to increase (rather than decrease) the rate of consumption of that resource.

William Stanley Jevons

Cu(In_{1-x}Ga_x)Se₂ Solar Cells

Most Promising Thin Film Absorber Material

- Direct band gap (Eg $\sim 1.2 \text{ eV}$)
- High optical absorption coefficient: $\sim 2 \ \mu m$
- High radiation resistance
- High reliability
- Lower cost per Watt installed
- High conversion efficiency: cell: 20% and module: 13%
- Efficient in low-angle & low-light conditions
- Flexible substrates possible (BIPV, cheaper substrates?)
- Positive response under concentration

Comparison between a Chemical Processing Plant and an Integrated Circuit

	TYPICAL CHEMICAL PLANT	TYPICAL INTEGRATED CIRCUIT
Raw material source	Many but depleting	Electrical ground
Number of species	10 ² or more	2 (electron, hole)
Transport	Pipe (10 inch O.D.)	Wire, metal interconnect (10 ⁻⁵ inch O.D.)
Storage	Tank (10 ⁶ moles)	Capacitor (10 ⁻¹⁰ moles)
Pump	10 hp	10 ⁻⁹ hp (bipolar transistor)
Control	Gate valve	FET
	On-off valve	Transistor
	Check valve	Diode
Reactions	Many	Recombination/generation
Flow Rates	10 ³ moles/s	10 ⁻¹¹ moles/s
Unit operations	10 ⁴ /mi ²	10 ¹⁶ /mi ²
Cost	\$10 ⁸ (\$10 ⁹ /mi ²)	\$10 ² (\$10 ⁹ /mi ²)
Diffusion coefficient	10 ⁻² to 10 ⁻⁵ cm ² /s	10 to 10 ³ cm ² /s
Reaction Rate	10 ⁶ 1/moles/s	10 ¹⁶ 1/moles/s