
September 18, 2007
Shahram Orandi

Image Group

XML Schema and Validation
Approaches

What’s on the menu…

• Brief look at origin of markup languages
• XML validation approaches and origins
• Benefit / pitfall comparison

A Brief Look at History

Everything that has happened so far…

• First…there was GML (~1960s)
• Then came SGML…(~1980s)
• Then came XML (~1990s)

– Initial Standard Included Basic Validation (DTD)
• Then came XML Schema (2001)

– Offered Better Validation

Markup Languages

• A traditional text data stream may look like
this:

John Doe 65000 (14 bytes total)

• This same data stream when marked up can
look like this:

<employeename>John Doe</employeename>

<salary>65000</salary> (60 bytes total)

• Cost is higher, but benefits are many

Validation

Validation

• How can we make sure salary is valid?

<salary>65000</salary> 9

<salary>$65000</salary> ?

<salary>65000.00</salary> ?

<salary>65k</salary> ?

Popular Validation Options in the Early Days

• Standard: XML DTD (Document Type
Definition), part of the XML 1.0 spec.

• Proprietary: Write your own code or COTS

DTD (Document Type Definition)

• DTD is part of the XML spec, but limited:
…
<!ELEMENT employee (name,salary)>
<!ELEMENT name (#PCDATA)>

<!ELEMENT salary (#PCDATA)>

…
Where #PCDATA = parsed character data

(string)

• Basically checks if something is there or not.

Code it Yourself

• Write your own validation code

If IsCurrency(sSalary$) and
val(sSalary$)> 0 and
val(sSalary$)< l_MaxSalary then
return True

else
return False

endif

• It takes lots of code to validate data

Then Came XML Schema

• Ratified a few years after 1.0 spec
• Both XML Schema and DTD allow:

Element nesting, attribute types/defaults,
element occurrence constraints.

• XML Schemas adds much more: User
defined types, namespaces, better data
constraints, etc.

Salary Validation Revisited

• Lets tighten up the rules with XML
Schema:
<xs:attribute name="salary" type="xs:integer">

<xs:annotation>

<xs:documentation>Specifies a
salary.</xs:documentation>

</xs:annotation>

</xs:attribute>

How strict do you want to be?

• What if someone sends over the wire
“65000”? Or “65000.01”?

• We could loosen rules a little:
<xs:attribute name="salary" type="xs:decimal">

Allows “65000” or “65000.01”

• Or relax things completely…
<xs:attribute name="salary" type="xs:string">

Allows “65000”, “65000.00”, “$65000” or “65k”… but everything else may
come through as well…

https://65000.00
https://65000.01
https://65000.01

Validation Challenges

Validation Challenges: Off-Spec Data

• Would ideally be relaxed enough to allow valid-
but-off-spec transactions that otherwise would be
rejected with strict validation:

65000 ok! 65000.00 ok! $65000 ok!

• Too lax and you may allow ambiguous or
incorrect transactions through as well:

You might let “-65000.%” through

https://65000.00

Validation Challenges: Mapping Asymmetry

Conventional(Legacy) XML Standard

 1 � Í Î �
(Easiest Case, One to One Mapping… Life is good!)

 2 � Í? ?Î �
(XML side is superset of legacy, will you accept legacy transaction?)

 3 � Í? ?Î �
(Legacy is a superset, will you keep extra info? reject transaction?)

Looking at some options

XML + No Validation: Not going to happen.
• What it is: Hope all data coming down the wire

was constructed properly, cross fingers.
• Benefits:

– Not much… maybe some development time savings?

• Pitfalls:
– Format errors, missing/ambiguous data, disasters of

grand scale.

Looking at some options (cont’d)

XML + Custom Code Validation
• What it is: Build your own validation into business

logic to verify data
• Benefits:

– Flexibility, genetic diversity

• Pitfalls:
– Redundant work, genetic diversity, as rules change you

need to keep up, lots of effort (code)

Looking at some options (cont’d)

XML + DTD
• What it is: A liberal contract on data format and

structure
• Benefits:

– Simple, standard, centralized

• Pitfalls:
– Simple (limited)... Much of higher level validation has

to be implemented in redundant code

Looking at some options (cont’d)

XML + XML Schema
• What it is: A contract (liberal or strict) on data

format and structure
• Benefits:

– Comprehensive, centralized, saves code
• Pitfalls:

– Going too strict can cut certain parties out, may
lock everyone in… (continued on next slide)

Lax vs. Strict
Benefits: Benefits:
• Allows off-spec

transactions through.
• Provides some tolerance

for slight changes due to
improvements in
technology or precision.

Pitfalls:

• May allow incorrect or
ambiguous data through.

• May muddy the database
as more and more off-spec
data is enrolled.

• Puts greater burden on
individual
implementations for
higher-level error
checking.

More Strict

Less Strict

• Ensures consistency in
data, facilitates inter-op.

• Reduces additional
validation workload from
core application.

Pitfalls:

• Greater chance of
rejecting transactions
(some of which may be
off-spec but valid)

• Any changes to
underlying data due to
improvements in
technology will require a
new (updated) schema.

Partings thoughts…
• Prepare to be open minded on validation approach

after an XML data standard has been agreed to.
• Try to think about what we can and can’t live with

early in the process of defining strictness.
• There are some lessons learned by other

enterprises in going to XML (HL7) that may be
helpful to examine.

• Genetic diversity in the user population can be a
strength not a weakness, but can push limits of
inter-op. Try to build in some flexibility.

Q&A / Contact Info

Shahram Orandi
NIST Image Group
sorandi@nist.gov

	Structure Bookmarks
	September 18, 2007 Shahram Orandi Image Group
	XML Schema and Validation Approaches
	What’s on the menu…
	• Brief look at origin of markup languages • XML validation approaches and origins • Benefit / pitfall comparison
	A Brief Look at History
	Everything that has happened so far…
	– Offered Better Validation
	Markup Languages
	• A traditional text data stream may look like this:
	John Doe 65000 (14 bytes total)
	• This same data stream when marked up can look like this: <employeename>John Doe</employeename> <salary>65000</salary> (60 bytes total)
	• Cost is higher, but benefits are many
	Validation
	• How can we make sure salary is valid? <salary>65000</salary> <salary>$65000</salary> ? <salary>65000.00</salary> ? <salary>65k</salary> ?
	Popular Validation Options in the Early Days
	DTD (Document Type Definition)
	• DTD is part of the XML spec, but limited: … <!ELEMENT employee (name,salary)> <!ELEMENT name (#PCDATA)> <!ELEMENT salary (#PCDATA)>
	…
	Where #PCDATA = parsed character data (string)
	• Basically checks if something is there or not.
	Code it Yourself
	• Write your own validation code
	If IsCurrency(sSalary$) and
	val(sSalary$)> 0 andval(sSalary$)< l_MaxSalary then return True
	else return False endif
	• It takes lots of code to validate data
	Then Came XML Schema
	Salary Validation Revisited
	• Lets tighten up the rules with XML Schema:
	<xs:attribute name="salary" type="xs:integer">
	<xs:annotation> <xs:documentation>Specifies a salary.</xs:documentation>
	</xs:annotation> </xs:attribute>
	How strict do you want to be?
	<xs:attribute name="salary" type="xs:decimal">
	Allows “65000” or “65000.01”
	• Or relax things completely…
	<xs:attribute name="salary" type="xs:string">
	Allows “65000”, “”, “$65000” or “65k”… but everything else may come through as well…
	Validation Challenges
	Validation Challenges: Off-Spec Data
	incorrect transactions through as well: You might let “-65000.%” through
	Validation Challenges: Mapping Asymmetry
	Conventional(Legacy) XML Standard
	 1
	(Easiest Case, One to One Mapping… Life is good!)
	(XML side is superset of legacy, will you accept legacy transaction?)
	(Legacy is a superset, will you keep extra info? reject transaction?)
	Looking at some options
	XML + No Validation: Not going to happen.
	– Format errors, missing/ambiguous data, disasters of grand scale.
	Looking at some options (cont’d)
	XML + Custom Code Validation
	– Redundant work, genetic diversity, as rules change you need to keep up, lots of effort (code)
	Looking at some options (cont’d)
	XML + DTD
	– Simple (limited)... Much of higher level validation has to be implemented in redundant code
	Looking at some options (cont’d)
	XML + XML Schema
	– Going too strict can cut certain parties out, may lock everyone in… (continued on next slide)
	Lax vs. Strict
	Benefits:
	Benefits:
	Partings thoughts…
	Q&A / Contact Info
	Shahram Orandi NIST Image Group sorandi@nist.gov

