

Calculating Label Distances Within Biomolecules Using **Anomalous Small Angle X-ray** Scattering

Student: Benson Chan Mentors: Joseph Curtis, Susan Krueger School: Thomas Sprigg Wootton High School

Distances in Biomolecules

- Interaction between proteins is important
- Learning how proteins interact helps us learn their function and can lead to medicines for diseases

- Proteins and nucleic acids are dynamic
- Many possible structures, an ensemble
- Distances are dynamic as well

SASSIE / SASSIE-web

- Provides simulation and modeling tools
- Program process:

A

0.01

SANS data interpolated data

(b) 0.001

Use of Anomalous Small Angle X-ray Scattering (ASAXS)

- Used in materials science for determining distances
- Uncommon for biological systems
 - Limited by sample preparation labeling methods
 - Lack of adequate tools to generate and evaluate ensembles and their theoretical ASAXS data

OPEN CACCESS Freely available online

PLOS ONE

Anomalous Small Angle X-Ray Scattering Simulations: Proof of Concept for Distance Measurements for Nanoparticle-Labelled Biomacromolecules in Solution

Valerie J. Pinfield¹, David J. Scott^{2,3}*

https://doi.org/10.1371/journal.pone.0095664

Program to calculate the intramolecular distance of a single labeled biomolecule by simulating ASAXS But, biological systems are dynamic and often flexible.

Accounting ensembles and direct comparisons to experiments are needed.

Our goal: extend these ideas and use the simulation and experimental comparison tools of SASSIE-web toward Ensemble-ASAXS

Small Angle X-ray Scattering (SAXS)

What is measured?

Standards and Technolog U.S. Department of Commerce

Anomalous Small Angle X-ray Scattering (ASAXS)

• Fluorescence X-ray photon emitted at very specific energy (absorption edge).

 Scattering length now has new energydependent terms near the absorption edge.

 $f = f_0 + f'(E) + if''(E)$

Gruzinov et al. (2021). J. Synchrotron Rad. 28, 812-823.

5

Relatively high-Z atom, e.g. Au

Experimental Strategy Using ASAXS

- 1. Incorporate high-Z atoms (Au) into biological molecule
- 2. Perform SAXS measurements at several energies near the Au absorption edge
- 3. Separate I(q) into resonant (R) and non-resonant (NR) terms
- 4. Solve for $I_R(q)$, $I_{NR}(q)$ and $I_{R,NR}(q)$

$$I(q) \sim f_R^2 I_R(q) + f_{NR}^2 I_{NR}(q) + 2f_R f_{NR} I_{R,NR}(q)$$

Probability Distance Distribution Function

• Related to I(q) by a Fourier Transform:

$$I(q) \sim \sum_{r=0}^{D_{max}} P(r) \frac{\sin(qr)}{qr}$$

Dmax: maximum distance in the molecule

$$P_R(r) \sim \sum_q I_R(q) q \sin(qr)$$

R: resonant term (Au)

The new code will extend the process to handle ensembles and experimental data.

Workflow

Validating Visualization

atoms)

National Institute of

Standards and Technology

U.S. Department of Commerce

Progress

	Original Code	Independent Script	Prototype Code	Ensemble- ASAXS
Initialization		\checkmark	\checkmark	
Calculate Scattering	\checkmark		\checkmark	\checkmark
Construct T and Obtain G				
Obtain P(r)	\checkmark			

Future Work

- 1. Complete the remaining bits for the calculation process steps & enable CUDA/GPU.
- 2. Successfully use Ensemble-ASAXS for DNAprotein experimental data
- 3. Release Ensemble-ASAXS to the community in the Beta stage
- 4. Manuscript!

388	SASSIE-web
ASAXS	
	run_0
reference pdb	Browse local files or Browse server
use simulation trajectory file	
Intensity Calculation Inputs	
magnitude of Gaussian noise (fraction of value of I(0))	0.001
number of q-values	31
maximum q-value	1
number of D-values	31
maximum D-value	1
model single atom in PDB files as a nanocluster	•
	Au
choose atom name to simulate nanocluster	

Thank you for listening!

Special thanks to Joseph Curtis and Susan Krueger!

