Stochastic Modeling for System Remaining Life Prognosis

Robert X. Gao

Cady Staley Professor and Chair Department of Mechanical and Aerospace Engineering Case Western Reserve University Cleveland, OH 44106-7222

Email: <u>Robert.Gao@case.edu</u>

Industry Forum: Monitoring, Diagnostics and Prognostics for Manufacturing Operations National Institute of Standards and Technology, May 8-11, 2018

Prognosis: Predictive Science

- Oxford Dictionaries Online

Definition

to forecast the likely outcome of an situation ...

- ✓ Disease/Epidemiology
- ✓ Weather forecasting
- ✓ Economic development
- Originally a *medical* term back in the 19th century:
 - Main aim was not to *cure* disease, but to give a medical *diagnosis* and *predict* the patient's chance of survival in terms of *remaining life*;
 - ✓ Focus shifted only decades later to *curing* disease.

In the Context of Manufacturing

- Predict expected *progression* of degradation in a machine or its components from its *current* state to *future* functional *failure*, and the *confidence* associated with prediction;
- Identify short-term and longterm actions/decisions to improve *remaining useful life* (*RUL*) of a machine;
- Provide scientific and technical basis for *maintenance* scheduling, asset management, and effective *decision* making.

Malhi and Gao, Prognosis of defect propagation using recurrent neural networks, *IEEE Trans. Instr. Meas.*, 2010

Outline

Background

- ✓ Basic concepts
- ✓ Major modeling techniques
- □ Particle Filter (PF)
 - ✓ Gradual degradation and time-varying rates
 - ✓ Multi-mode PF
- Case Study
 - ✓ Rolling bearing remaining life prognosis
- Conclusion and Future Work

Modeling: Inference, Tracking, and Prognosis

Inference: <u>estimate</u> system/part <u>current</u> state, based on <u>current</u> measurement *Tracking*: <u>identify</u> propagation of state using <u>historical</u> measurements (*recursive* inference) *Prognosis*: <u>predict</u> state propagation in the <u>future</u>, without available measurement

Prognostic Modeling Methods: Classification

- Physics-based: describe system behavior analytically, parameters experimentally determined
- Data-driven: rely on measured data, numerically determine relation between current and future states
- Model-based: combine the two methods for improved robustness and prediction accuracy
- Alternative classification scheme: depending on how uncertainty is handled in the prediction process:
 - <u>Deterministic</u>: machine health as defined value
 - <u>Stochastic (probabilistic)</u>: machine health as probability distribution, degradation as evolution of distributions

Analytical Representation (1)

Inference

Estimate the current part status through a *posterior* PDF ⁽¹⁾, realized Bayes' Rule ⁽²⁾

Tracking

✓ Identify the state propagation model (or recursively update the *prior* PDF) through *a series of posterior* PDF, following a <u>Markov</u> process ⁽³⁾

$$P(x_1, x_2, \dots, x_k | z_1, z_2, \dots, z_k)$$

= $P(x_1 | z_1) P(x_2 | x_1, z_2) \cdots P(x_k | x_{k-1}, z_k)$

Prognosis

✓ Predict the future state using the identified state propagation model (*a series of prior* PDF)

 $P(x_{k+1}|x_k)P(x_{k+2}|x_{k+1})\cdots$

- (1) PDF: Probability Density Function
- (2) Bayes' Rule: posterior PDF can be estimated through prior pdf and likelihood
- (3) Markov process: current state x_k is only dependent on preceding state x_{k-1}

Analytical Representation: (2)

- ✓ Also called *State Evolution* model
- ✓ Obtained from <u>physical</u> or <u>empirical</u> knowledge
- ✓ Sometimes conditional on parameters, $\{A_k, B_k\}$, which determines the <u>performance degradation rate</u> and may be *time-varying*
- Likelihood Function $P(z_k | x_k)$

$$z_k = g(x_k) + v_k$$

Sensor data or System state Measurement noise extracted features at time k

- ✓ Also called *Measurement* model
- ✓ *g: nonlinear* mapping, from data–driven model

Particle Filter

Electromechanical Systems Laboratory

- ✓ Each particle describes a specific state value and two coefficients $\{x_k^i, A_k^i, B_k^i\}$ (*k*: time; *i*: *i*th particle);
- ✓ System state (e.g. tool wear) at a certain time is the *statistical sum* of values from a chosen number N of particles, expressed as a probability distribution;
- Particles' evolution directly determined by *state evolution model*, which can be linear or *nonlinear*
- State propagation is presented as progressive updates of prior PDF

$$P(x_{k+1} | x_k) = \sum_{i=1}^{N} w_k^i P(x_{k+1}^i | x_k^i)$$

Recursively
updated Computed from
state evolution
model

Improvement on PF

• Limitation of PF

- ✓ *Particle degeneracy*: particles of weight 0 removed when estimating time-varying distribution
- ✓ Not able to track and predict *time-varying* performance degradation

• Improvement 1: Local Search PF (LSPF)

- For tracking and prognosis of *gradual* degradation with *time-varying* rates
- Improve particles' diversity through *adaptive* change of positions of resampled particles, by adding a *perturbation*

- ✓ For *transient* performance change
- Each filter mode corresponds to one deterioration scenario
- Mode transition *automatically* performed based on Bayesian inference

Wang & Gao, "Adaptive re-sampling-based PF", JMS, 2015

Wang & Gao, "Markov Nonlinear System", ASME JGTP, 2016

Bearing Failure and Life Prognosis

- Rolling bearing accounts for 30% rotating machine failure^[1]
- Common causes for bearing failure ^[2]:
 - ✓ Fatigue
 - ✓ Excessive load
 - Overheating
 - ✓ Corrosion
 - ✓ Lubricant failure
 - Contamination
 - ✓ Misalignment
- *Statistical* bearing life, L_{10} :

 $L_{10} = \frac{\left(\frac{C}{P}\right)^{e} * 10^{6}}{60 * N}$ C: dynamic load rating; P: equivalent bearing load; N: rotating speed; e: constant

- Not consider rffect of operating conditions
- May deviate significantly from actual life, in \checkmark some cases by nearly a *factor of 5*^[3]

Fatigue

Contamination

Corrosion

Misalignment

[1] Tandon, A review of vibration, 1999 [2] SKF, Bearing damage chart [3] Zaretsky, Bearing life prediction, 2000

Multi-Stage Life Modeling

Bearing life stages

- ✓ <u>Stage 1</u>: Normal operation
- ✓ <u>Stage 2</u>: *Defect initiation*
- ✓ <u>Stage 3</u>: Accelerated performance degradation

Degradation modes

✓ <u>Mode 1</u>: *gradual degradation* (small vibration variation denoted by noise)

$$x_{k} = x_{k-1} + N(\mu_{k}, \sigma_{k})$$
Vibration features Time instance Noise term

Life stagesDegradation modesStage 1All Mode 1Stage 2Onset denoted by Mode 2Stage 3Most are Mode 2

✓ <u>Mode 2</u>: *exponential defect growth* (derived form <u>spall propagation</u> model)

$$\frac{dx}{dt} = \left(\frac{\Delta \tau}{C(1-x)}\right)^m = C' x^{m'}$$

C and **m**: material dependent parameters $\Delta \tau$: shear stress range, constant

$$x_{k} = \left[x_{k-1}^{(1-m_{k})} + C_{k} (1-m_{k}) \right]^{1/(1-m_{k})}$$

Bearing Time to Failure Prognosis

• Remaining Useful Life (RUL)

✓ Calculated as the *first passage time T*, at which the predicted vibration first passes the defined failure threshold

$$\begin{cases} RUL_{p} = \inf\left\{T: x_{k} + \sum_{i=k+1}^{T} N(\mu_{k}, \sigma_{k}) \ge Threshold\right\} & \text{for Mode 1} \\ RUL_{p} = \inf\left\{T: \left[x_{T-1}^{(1-m_{T})} + C_{T}(1-m_{T})\right]^{1/(1-m_{T})} \ge Threshold\right\} & \text{for Mode 2} \\ & \text{inf}(\bullet) \text{ denotes the first passage time} \end{cases}$$

de 1
$$\mu$$
 and σ : to be estimated by PFode 2C and m: to be estimated by PF

• **RUL Model Compensation**

- ✓ Vibration maintain at a level before defect initiation
 → predicted RULs by Mode 1 almost *constant*
- ✓ A *compensation* needed for Mode 1

$$RUL_{k,comp} = RUL_{k,predicted} - k\left(1 - \frac{x_k - x_1}{x_1}\right)$$

Experimental Setup

- ✓ *Constant rotational speed* at 2,000 rpm, a *radial load* of 6,000 lb
- ✓ Four ZA-2115 double row bearings, with force *lubricated*
- ✓ vibration data were collected every 10 minutes, with 20 kHz sampling rate
- ✓ A magnetic plug placed in the oil feedback pipe to collect debris; experiments stopped when the *accumulated debris* exceeded a certain level

Lee, J, IMS, University of Cincinnati. "Bearing Data Set", NASA Ames Prognostics Data Repository, 2007

Multi-Mode Prognosis

Performance Evaluation

• Automatic detection of transition among different bearing life stages

- ✓ <u>Onset of stage 2</u>: the *first transition* point in time from Mode 1 to Mode 2
 - \rightarrow a *jump* occurs in the measured vibration
- ✓ <u>Onset of stage 3</u>: the point in time when Mode 2 is switched on
 - \rightarrow large vibration variation caused by accelerated spall propagation, accelerated material fracture

Comparison between standard PF and multi-mode PF

	Standard PF with nonlinear degradation function	Multi-mode LSPF
Prediction error RMSE [hour]	7.9	2.9

Comparison: PF vs. KF

Particle Filter		Extdended Kalman Filter	
Comp. Steps	Computational Complexity	Comp. Steps	Computational Complexity
Prediction	N * (n ² + n)	Prediction	$n^3 + 2n^2 + n$
Update	$N * (2p^2n + pn + p)$	Kalman gain	$2p^3 + 2p^2n + 2pn + p$
Resampling	$N * (2anN + n^2 + 2n + qn)$	Update	$pn^2 + 2n^2 + 2pn + p + n$

Note: N: number of particles in PF; *n*: state dimension; *p*: measurement dimension *a*: coefficient related to resampling strategy, between 0 and 1; *q*: constant

Wang & Gao, "Adaptive re-sampling-based PF", JMS, 2015

Broad Applications of PF

Moving Forward

Thank You!

