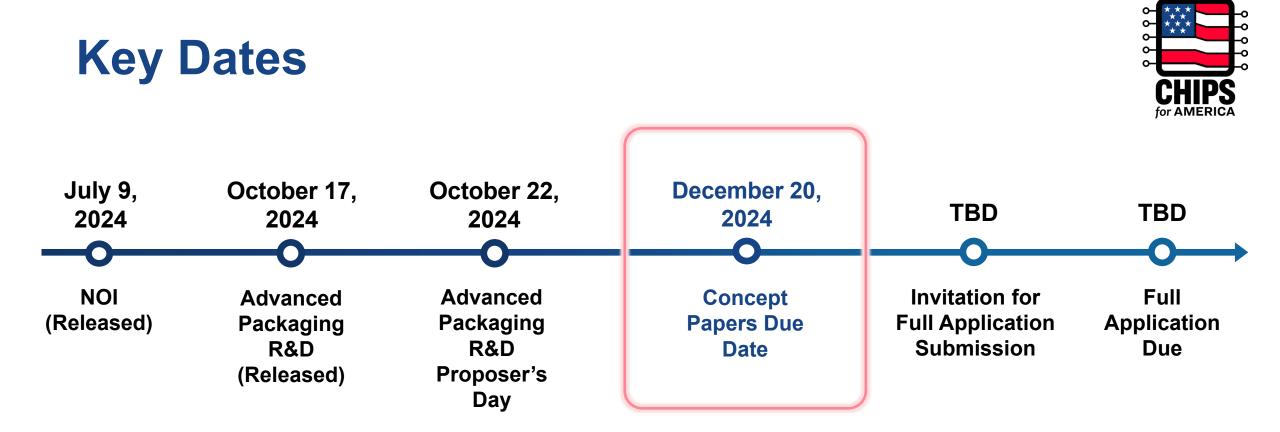


Connectors, Including RF & Photonics

PM: Christopher Myatt


Disclaimer

Statements and responses to questions about advanced microelectronics research and development programs in this webinar:

- Are informational, pre-decisional, and preliminary in nature.
- Do not constitute a commitment and are not binding on NIST or the Department of Commerce.
- Are subject in their entirety to any final action by NIST or the Department of Commerce.

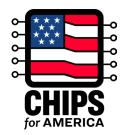
Nothing in this presentation is intended to contradict or supersede the requirements published in any future policy documents or Notices of Funding Opportunity.

Existing Connectors vs. NAPMP Vision

Connectors currently limit data communication in and out of the package

In-Package	Existing Connectors		
< 5mm	5 – 25mm	<5m	<1km
Die-to-Die Connectors	On-board	Backplane	Optical Transceivers
e.g. UCIe • 5Tb/s/mm	PCle 112G XSR1Tb/s/mm	• 0.87Tb/s/mm	800G QSFP-DD • 0.05Tb/s/mm

NAPMP Vision for high efficiency, high bandwidth, low error rate connectors


In-Package	NAPMP Connectors			
< 5mm	<25mm	<1m	<1km	
Chiplet to Chiplet Covered under Chiplet NOFO Utilizes Wire abundance	Flexible Wired Con. Sub-assembly to sub-assembly Shoreline BW density • > 10Tb/s/mm	Wired or Wireless Con. Sub-assembly to Sub-assembly Bidirectional Bandwidth = • > 100Tb/s Power Efficiency < 0.1pJ/b	Co-packaged optic Con. Sub-assembly to Sub-assembly Bidirectional BW • > 100Tb/s	

Three Length Scale Objectives

Objective	Length Scale	Key Characteristics
Short Range (e.g. Wired)	L < 25 mm	Data rates of > 10 Gb/s/channel & density of 10 Tb/s/mm Power efficiency < 0.1 pJ/bit including all energy for full functionality
Intermediate Range (e.g. RF, Wired, or Photonic)	L < 1 m	Aggregate data rate > 100 Tb/s bidirectional from package Power efficiency < 0.1 pJ/bit including all energy for full functionality
Long Range (e.g. Photonic)	L < 1 km	Aggregate data rate > 100 Tb/s bidirectional from package Power efficiency < 0.1 pJ/bit including all energy for full functionality
		Short Range (<i>L</i> < 25 <i>mm</i>)
	\prec	Intermediate Range (<i>L</i> < 1 <i>m</i>)
Wafer Scale System		Long Range (<i>L < 1 km</i>)

Connector Technology, Including Photonics and RF R&D Areas

RDA Drivers

Recent years have seen an explosion of progress in high performance computing. Data transmission in these systems requires innovation for high data-rate, low latency, small footprint, error-free, and energy efficient connections.

Objectives

- Development of short-range, wired connections to enable high speed connectivity between neighboring packages.
- Development for intermediate range wired, photonic, or wireless connectors between local wafer-scale systems (but not necessarily nearest neighbor).
- Development of long-range connectors capable of connecting wafer-scale systems at a range up to and exceeding the length of a server site, or approximately 1 km

Key Outputs

- Novel connectors, tools, materials, processes and devices with improved performance
- Standards and metrologies derived from test devices; test and evaluation at proto- and pilot-scale manufacturing
- Provide new connector solutions, including devices, equipment, tools, processes, and process integration, to research projects in other areas of packaging research

Out of Scope

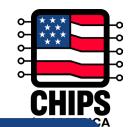
- Traditional ball grid array (BGA) or land grid array (LGA) connectors,
- Conventional wire bonding
- Traditional free space optical components

Key Technical Metrics: Connectors

- Technical Metrics are intended to push the state of the art
- Targets are aggressive, but value will be placed on versatility, flexibility, and manufacturability in approach
- Performers can call out specific targets that are out of scope or at risk
- Performers should specify their target FOM and the trade-offs considered for their technology to optimize the overall performance

	Objective 1	Objective 2	Objective 3	
Distance	5 - 25 mm	< 1 m	< 1 km	
Bandwidth Req.	10Gb/s/channel & 10Tb/s/mm	>100 Tb/s bidirectional	>100 Tb/s bidirectional	
Efficiency	< 0.1 pJ/b			
Clock Rate <i>OR</i> RF Freq. <i>OR</i> Wavelength	Applicant Defined	Applicant Defined	Applicant Defined	
	N/A	20 – 220 GHz	N/A	
	N/A	Align with existing MSA* or provide justification		
Latency	<2 ns + TOF			
BER (w/ error correction)	<10 ⁻¹²			
			* e.g. CW-WDA MSA	
Ontimiza f	о ГоМ —	(BW/shoreline)	* link length	
Opumize to	or: s-FoM = -	Efficiency * connector area * latency		

Jangam, Iyer, 10.1109/TCPMT.2020.3022760


Specifications

Applicants must call out their targets for the following parameters

Bandwidth/shoreline (Gb/s/mm)	The effective data rate assuming all signal escapes are from the edge of the sub-assembly
Bandwidth/area (Gb/s/mm²)	The effective data rate accounting for all the area used by the connector
Total chiplet area (mm²)	Total Area of the chiplet including any elements needed to enable full functionality
Link length (mm)	The length in mm between the transmitter and receiver
Energy efficiency (pJ/bit)	The amortized energy per bit transmitted, including source (laser), modulation, SerDes, error correction, etc.
Clock rate <i>OR</i> RF freq. <i>OR</i>	Proposer specified. Explain adherence to an MSA or other interoperability specifications should be
Wavelength	stated
Wavelength Latency (ns)	Total time for the electrical data being transmitted to be prepared, transmitted and received, in usable error-free electrical form, including time of flight (TOF) which can be stated separately

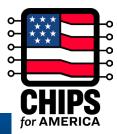
Key Outputs

3-5 Year Outputs

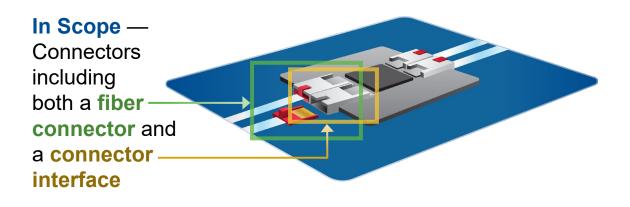
- New materials, designs, documentation, processes, and tools to prototype and demonstrate manufacturability.
- Innovative approaches for both flexible wired and wireless connections relying on RF/mm-wave and/or optical approaches
- New measurement methods for connector chiplets and substrate/sub-assembly features, to improve materials, models, designs, processes and tools for connector solutions and data transfer management.
- Connector modeling capabilities for complex advanced packaging flows; Validated connector models and connector assembly reliability data that are aligned with new design tools developed under the NAPMP Co-Design/Electronic Design Automation RDA and other semiconductor R&D initiatives.
- The assembly technologies and processes will involve development of tooling for bonding.

10 Year Outputs

- Scale down and scale out connectors are no longer gating factors limiting advanced packaging for all data rate transfer distances.
- Devices assembled with advanced packaging connectors operate reliably at higher power performance and higher energy efficiency.
- Chiplets and connector substrate features developed under this award are readily available in the chiplets ecosystem.
- Extreme interconnect density needs of next-generation packaging will drive fine pitches (< 10 µm pitch) and line/space (< 1 µm L/S) circuitry.


Goal: Drive innovation and adoption for high data-rate, low latency, small footprint, error-free, and energy efficient connections between packaged sub-assemblies.

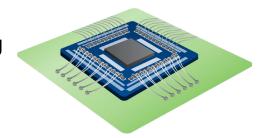
Key Deliverables


		Year 1 1Q 2Q 3Q 4Q	Year 2 5Q 6Q 7Q 8Q	Year 3 Year 3 9Q 10Q 11Q 12Q 13Q 14Q	ear 4 Year 5 15Q 16Q 17Q 18Q 19Q 20Q
Example Deliverable Plan for TA3		Phase 1: Develop preliminary connector solutions	<u>Phase 2:</u> Develop prototypes of initial solutions	Phase 3: Refinement of connector solutions	Phase 4: Transfer of the leading solutions to the NAPPF
	Faster / More accurate modulators				
PIC	Consolidate EIC / PIC	Layout/			
	Smaller footprint, denser shoreline	Determine Specs	Prototypes		Transfer to NAPPF
	Athermal design			Process/ Quality Optimization	
Connector /Coupling	Microlens vs. Evanescent	Decision on Method			
	Fiber attach: Vertical or horizontal	Determine Specs	Work w/ Tool Vendors		
	Method of wafer testing	Decision on Method	Work w/ Tool Vendors		
Operation	Energy budget per bit	Model/Estimate	Prelim. Measurements	Final Design Results	Verify results in NAPPF Parts
	Error correction	Design Circuit / Sware	Software V&V	Test in Device	Verify results in NAPPF Parts

In Scope/Out of Scope

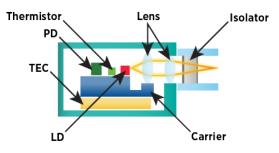
In Scope

- Chiplet sub-assembly to substrate connectors and connection techniques, such as:
 - Automated, low loss, reliable fiber attachment approaches such as high fiber count fiber array units (FAUs) that may contain polarization maintaining fibers
 - Flip-chip optical connections, including evanescent coupling, between substrate waveguides and transceiver chiplets



Out of Scope

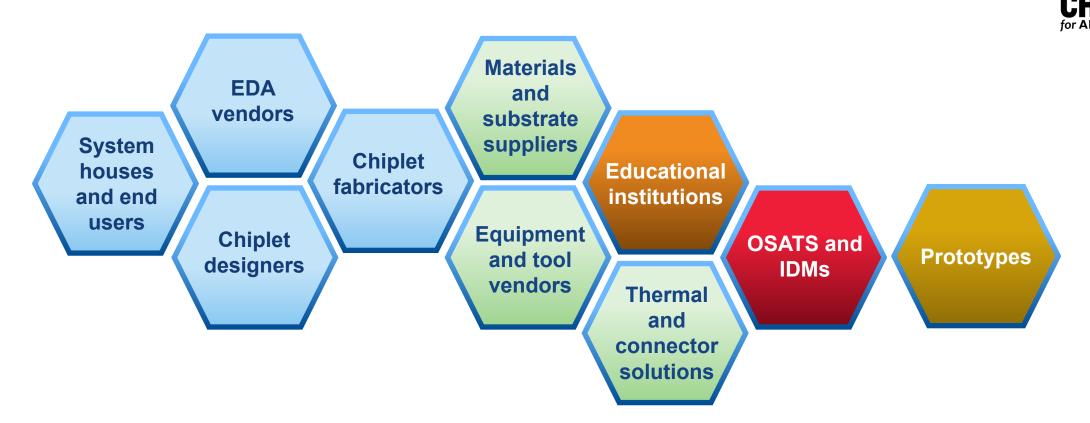
- Traditional ball grid array (BGA) or land grid array (LGA) connectors
- Conventional wire bonding
- Traditional free space optical components


Out of Scope —

Connectors utilizing wire bonds from substrate to package

Out of Scope —

Traditional free space optical components such as those used in some pluggable transceivers


Collaboration with Other R&D Areas Minimize thermal burden Tools must offer process capabilities to process Avoid localized hotspots connector technology Process flow needs to be compatible with other • Enable reliability in extreme conditions process flows (i.e. post fiber attach reflow...) • Chiplet to Advanced models power deliv substrate optical • Leverage to connectors (Photonics & RF) coupling accelerate design In-substrate optical routing • Match fine scale o-design/ & bonding ctronic chiplets ecosystem National Advanced Packaging Piloting Facility **Transition Connector** • Optimize for chiplet technology and interconnect technology processes to NAPPF Chiplet-like connector interface

Program Structure

CHIPS

- Multiple awards varying in scope and funding are expected:
 - Up to approximately \$250,000,000 anticipated for funding multiple awards in amounts ranging from a minimum of approximately \$10,000,000 up to a maximum of approximately \$100,000,000
- Multi-disciplinary, multi-organization project teams are strongly encouraged
- Applicants must propose a detailed project plan for achieving Project-Level Technical Targets
- Projects should be divided into 4 phases over a period of performance of 5 years:
 - Phase 1 (12 months)
 - Phase 2 (12 months)
 - Phase 3 (18 months)
 - Phase 4 (18 months)
- While cost share is not required, CHIPS R&D will give preference to applications that demonstrate credible cost share commitments

Collaboration is Critical for Success

Successful execution will require collaboration between proposers and each R&D Area. Proposers must clearly understand the ideas presented in each R&D Area. We encourage you to begin identifying your individual contributions to the ecosystem as well as partners who can help accomplish the vision and goals of the NAPMP.

Next Steps

- NOFO 2: Concept papers due 12/16
- Visit <u>CHIPS.gov</u> for resources, including:
 - Upcoming R&D Area Webinars
 - FAQs
 - Funding opportunities and NOFO updates
- Join our mailing list
- Contact us
 - <u>askchips@chips.gov</u> general inquiries
 - <u>apply@chips.gov</u> application-related inquiries

Thank you for attending

Visit CHIPS.gov for future updates and additional information