
CIS/2 Notes 05/30/00 Georgia Tech

1

REPRESENTATIONS AND MEASUREMENTS
IN CIS/2
By Chuck Eastman

There are several complex structures that are used repeatedly throughout CIS/2. Most of these
structures come from the integrated resources that are common to all ISO-STEP product models.
A limitation of using such shared definitions is that they are completely general and can be used
in the representation of airplanes and cars, as well as buildings. The benefit is that they are
general and can be easily integrated with models addressing piping and process plants,
mechanical and electrical subsystems, and complex models as used by some architects, such as
Frank Gehry, that are using CAD/CAM techniques from the aerospace industry.

All objects are defined in STEP separately from their various representations. Shape and material
properties, especially are considered representations. Representations have a context that can be
used to define the units used in defining geometry and material properties globally (they can also
be defined locally.)

representation_item
geometrical_

representation_item
topological_

representation_item

material_
representation_item

name
label STRING

placement,
point,
direction,
curve,
surface,
vector,
solid_model,
half_space_sold,
sphere,
block,
right_angular_wedge,
torus,
right_circular_cone,
right_circular_cylinder,
boolean_result,
shell_based_surface_model,
face_based_surface_model,
shell_based_wireframe_model,
edge_based_wireframe_model,
cartesian_transformation_operator,
vertex_point,
edge_curve,
poly_loop,
face_surface,
geometric_set

material_elasticity,
material_mass_density,
material_thermal_expansion,
material_strength,
material_hardness,
material_toughness

vertex,
vertex_point,
edge,
edge_curve,
oriented_edge,
path,
oriented_path,
open_path,
loop,
vertex_loop,
edge_loop,
poly_loop,
face_bound,
face_outer_bound,
face,
face_surface,
oriented_face,
subface,
connected_face_set,
vertex_shell,
wire_shell,
open_shell,
oriented_open_shell,
closed_shell,
oriented_closed_shell,
connected_edge_set

(ONEOF)

(ONEOF)

(ONEOF)(ONEOF)

representation
_context

items S[1:?]

context_of_items representation

shape_
representation

material_
representation

definitional_
representation

(ONEOF)

(ANDOR)
(INV) representations_
in_context S[1:?]

labelname

Figure One: The EXPRESS-G model of the high-level Entities defining a CIS/2
structural model.

High Level Geometry and Material Definitions
All representation entities in CIS/2 are initiatedas a representation, as shown in Figure One.
Representations are classified as definitional_representaitions, shape_representations or
material_representations. They all inherit the same attributes from their supertype A
definitional_representation is a parametric representation.

A representation is a grouping of representation_items that all have the same context.
Representation_item has three subtypes: material_ representation_item, geometrical_
representation_item and topological_ representation_item, These classify and distinguish
entities that define material, simple shapes, or complex shapes, respectively. The material_

CIS/2 Notes 05/30/00 Georgia Tech

2

representation_items will be grouped into various material_representations, while
geometrical_ and topological_representation_items will be grouped as shape_
representations or definitional_representations.

Below each type of representation_item in Figure One are large sets of more detailed entities of
that general type. These are diagrammed in a compact manner; each of the Entities listed in the
box below topological_representation_item are subtypes of it. The same applies to those
under geometrical_representation_item and for material_representation_item. Elements of
interest include point and curve.

All of these subtypes inherit a name label fromrepresentation to identify the set using the same
representation_context and another to identify the representation_item. They also inherit the
reference to representation_context, shown at the left of Figure One. It defines the units and
measurement types that areused in the representation_items grouped by representation.
Dimensions may be defined both globally and at lower levels of detail. This potentially allows an
analysis model or design model to be laid out in one set of units and coordinate systems and
manufacturing assemblies in another.

Measures and Units
One of the trickier aspects of ISO-STEP models is the handling of units and measures. They are
defined in a standard manner for ALL step models (making every user of a STEP model pay the
cost of its complexity).

representation
_context

context_of_items

geometric_
representation

_context

(ANDOR)

global_unit_
assigned_context

unit

named_unit

units S[1:?]

representation

parametric_
representation

_context

(ABS)material_
property_
context

(ONEOF)
(INV) representations_in_context S[1:?]

global_uncertainty_
assigned_context

text context_type

derived_unit

REAL
exponent

measure_with_unit

unit_component

derived_unit
_element

elements S[1:?]

identifier
context_identifier

(ANDOR)

force_per_length_unit
inertia_unit
linear_acceleration_unit
linear_stiffness_unit
linear_veolcity_unit
modulus_unit
moment_unit
rotational_acceleration_unit
rotational_stiffness_unit
rotational_velocity_unit
mass_per_length_unit

length_measure_with_unit
mass_measure_with_unit
time_measure_with_unit
thermodynamic_temperature
_measure_with_unit
plane_angle_measure_with_unit
area_measure_with_unit
volume_measure_with_unit
ratio_measure_with_unit
force_measure_with_unit
frequency_measure_with_unit
positive_length_measure_with_unit
derived_measure_with_unit
uncertainty_measure_with_unit

 Figure Two: The EXPRESS-G model of the detail structure of
representation_context.

Units are defined globally through the representation_context entity, defined at the top level of
a model. Its EXPRESS-G organization is shown in Figure Two.

Representation_context has two sets of subtypes. One classifies the type of representation:
geometric, parametric or material. Each provides the appropriate units for that type of

CIS/2 Notes 05/30/00 Georgia Tech

3

representation. Additional optional multiple subtypes (using ANDOR) are global_unit_
assigned_context , which provides global default units for all measures without local units and
global_uncertainty_assigned_context, which provides tolerance information for imprecise
measurements. We develop the globally_assigned_context below. CIS/2 uses
measure_with_unit extensively. We show that example also.

The global_unit_assigned_context has a single attribute of a set of units. A unit is a select
type, meaning it may be either a named_unit or a derived_unit. Both are used in CIS/2. The
main subtype of named_unit is si_unit and optionally a type of unit -- length, mass, plane angle
etc. Each named_unit has a dimensions attribute giving the expected exponent. CIS/2 relies on
a large number of derived units, dealing with forces, stiffness, moments and velocity. The
derived_unit has a derived_unit_element (value) and is subtyped into a set of specific, derived
units. They are shown is a shorthand format at the lower right of Figure Three. (Not all possible
exponents are shown in Figure Two; neither are all the types of named units.)

The corresponding EXPRESS is shown below.

ENTITY representation_context; -- from Part 43
 context_identifier : identifier;
 context_type : text;
INVERSE
 representations_in_context : SET [1:?] OF representation
 FOR context_of_items;
END_ENTITY;

ENTITY global_unit_assigned_context -- from Part 43
 SUBTYPE OF (representation_context);
 units : SET [1:?] OF unit;
END_ENTITY;

ENTITY global_uncertainty_assigned_context -- from Part 43
 SUBTYPE OF (representation_context);
 uncertainty : SET [1:?] OF uncertainty_measure_with_unit;
END_ENTITY;

ENTITY parametric_representation_context -- from Part 43
 SUBTYPE OF (representation_context);
END_ENTITY;

TYPE unit = SELECT -- from Part 41
 (named_unit,
 derived_unit);
END_TYPE;

ENTITY derived_unit; -- from Part 41
 elements : SET [1:?] OF derived_unit_element;
WHERE
 WR1 : (SIZEOF (elements) > 1) OR
 ((SIZEOF (elements) = 1) AND (elements[1].exponent <> 1.0));
END_ENTITY;

CIS/2 Notes 05/30/00 Georgia Tech

4

measure_with_unit

unit_component

measure_value

value_component

length_measure_
with_unit

REAL

length_measure

plane_angle_
measure_with_unit

plane_angle_
measure

named_unit

length_unit

conversion_factor

conversion_based_unit context_
dependent_unitmass_unit

time_unit

plane_angle

solid_angle

area_unit

volume_unit

ratio_unit

dimensions

(ONEOF)(ONEOF) (ANDOR)

name label

unit

REAL

length_exponent

mass_exponent
time_exponent

amount of
substance_
exponent

dimensional
_exponents

name si_unit_name

si_prefix
prefix

si_unit

name

Figure Three: The more detailed structure for measures and units in Part 41.

The named_unit is defined in Figure Three. It consists of a unit and/or one of three types of
units -- a conversion-based unit, a Si unit or a context dependent unit. Si units are a unit name,
optionally with a prefix (.KILO., .MILLI.). A conversion_based_unit is a measure value and a
named unit. These are referenced together and checked for consistency by a subtype of
measure_with unit. Two such measures_with_unit subtypes are defined here, for plane angles
and length.

The associated EXPRESS code is below.

ENTITY named_unit -- from Part 41
 SUPERTYPE OF ((ONEOF

(length_unit,
mass_unit,
time_unit,
thermodynamic_temperature_unit,
plane_angle_unit,
solid_angle_unit,
area_unit,
volume_unit,
ratio_unit,
force_unit,
pressure_unit))

ANDOR (ONEOF (si_unit,
conversion_based_unit,
context_dependent_unit)));

 dimensions : dimensional_exponents;
END_ENTITY;

ENTITY conversion_based_unit -- from Part 41
 SUBTYPE OF (named_unit);
 name : label;
 conversion_factor : measure_with_unit;
END_ENTITY;

ENTITY context_dependent_unit -- from Part 41
 SUBTYPE OF (named_unit);

CIS/2 Notes 05/30/00 Georgia Tech

5

 name : label;
END_ENTITY;

ENTITY si_unit -- from Part 41
 SUBTYPE OF (named_unit);
 prefix : OPTIONAL si_prefix;
 name : si_unit_name;
DERIVE
 SELF\named_unit.dimensions : dimensional_exponents
 := dimensions_for_si_unit (SELF.name);
END_ENTITY;

ENTITY measure_with_unit -- from Part 41
 SUPERTYPE OF (ONEOF (length_measure_with_unit,
 mass_measure_with_unit,
 time_measure_with_unit,
 electric_current_measure_with_unit,
 thermodynamic_temperature_measure_with_unit,
 amount_of_substance_measure_with_unit,
 luminous_intensity_measure_with_unit,
 plane_angle_measure_with_unit,
 solid_angle_measure_with_unit,
 area_measure_with_unit,
 volume_measure_with_unit,
 ratio_measure_with_unit));
 value_component : measure_value;
 unit_component : unit;
WHERE
 WR1: valid_units (SELF);
END_ENTITY;

ENTITY length_measure_with_unit -- from Part 41
 SUBTYPE OF (measure_with_unit);
WHERE
 WR1: ’MEASURE_SCHEMA.LENGTH_UNIT’ IN TYPEOF
(SELF\measure_with_unit.unit_component);
END_ENTITY;

ENTITY plane_angle_measure_with_unit -- from Part 41
 SUBTYPE OF (measure_with_unit);
WHERE
 WR1: ’MEASURE_SCHEMA.PLANE_ANGLE_UNIT’ IN
 TYPEOF (SELF\measure_with_unit.unit_component);
END_ENTITY;

ENTITY length_unit -- from Part 41
 SUBTYPE OF (named_unit);
WHERE
 WR1:(SELF\named_unit.dimensions.length_exponent = 1.0)AND
 (SELF\named_unit.dimensions.mass_exponent = 0.0) AND
 (SELF\named_unit.dimensions.time_exponent = 0.0) AND
 (SELF\named_unit.dimensions.electric_current_exponent = 0.0) AND
 (SELF\named_unit.dimensions.thermodynamic_temperature_exponent =

0.0) AND
 (SELF\named_unit.dimensions.amount_of_substance_exponent = 0.0)AND
 (SELF\named_unit.dimensions.luminous_intensity_exponent = 0.0);
END_ENTITY;

ENTITY plane_angle_unit -- from Part 41
 SUBTYPE OF (named_unit);
WHERE
 WR1:(SELF\named_unit.dimensions.length_exponent = 0.0) AND

CIS/2 Notes 05/30/00 Georgia Tech

6

 (SELF\named_unit.dimensions.mass_exponent = 0.0) AND
 (SELF\named_unit.dimensions.time_exponent = 0.0) AND
 (SELF\named_unit.dimensions.electric_current_exponent = 0.0) AND
 (SELF\named_unit.dimensions.thermodynamic_temperature_exponent =

0.0) AND
 (SELF\named_unit.dimensions.amount_of_substance_exponent = 0.0)AND
 (SELF\named_unit.dimensions.luminous_intensity_exponent = 0.0);
END_ENTITY;

Only length unit and plane angle unit are shown above. The subtype units each have a WHERE
rule that checks that all the named unit dimensions are consistent for the unit type: zero except for
length_exponent for length measures.

Given the above definitions, a length measure and unit might be:

#20 = LENGTH_MEASURE_WITH_UNIT (40.0, #30);
#30 = (NAMED_UNIT(*) LENGTH_UNIT (#40) SI_UNIT ($, .METRE.));
#40 = DIMENSIONAL_EXPONENTS (1.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0);

Length_measure_with_unit is one of the subtypes of measure_with_unit. Its two attribues,
value_component and unit_component are inherited from measure_with_unit. In the
named_unit, two subtypes are used. One subtype is length_unit, with the inherited exponents,
and the other are the SI_units, with the SI_unit_name. The attribute type of unit is a SELECT
of either a named_unit or derived_unit. The SELECT requires surrounding parentheses. An
implication of the method used for representing measured units is that three lines of definition are
required for each value stored at the instance level: for the measure type and value, for the type of
unit, and one for the dimensional exponents. The easiest way to write out the values is to generate
three lines for each value. However, the last two lines are likely to be the same for large sets of
measurements and may be written once and referenced many times, allowing significant savings.
In the latter case, the application program must maintain an in-memory listing of the instance
entities that are to be shared by multiple value assignments.

An example of two different derived units and measures might be:

#14 = MOMENT_MEASURE_WITH_UNIT(4.7838, #5);
#5 = MOMENT_UNIT (#6, #7);
#6 = DERIVED_UNIT_ELEMENT (#3, 1.0);
#7 = DERIVED_UNIT_ELEMENT (#8, 1.0);
#3 = (NAMED_UNIT($) FORCE_UNIT() SI_UNIT(.KILO.,.NEWTON.));
#8 = (NAMED_UNIT($) LENGTH_UNIT() SI_UNIT($,.METRE.));

In the first case, we see that the force measure requires only a single extra line. In the second
case, the moment measures require four extra lines, in addition to the value carried in instance
#14. Again, these four lines may be written once and referenced multiple times by different
MOMENT_MEASURE_WITH_UNITS.

Imperial Units
In the second meeting, the Leeds people presented how to specify "imperial units". These are
specified in the Part 16c of CIS/2 (on the CD-ROM). The base units also are defined with three
lines, as shown below. The main change appears to be in the NAMED_UNIT becoming defined as
a CONTEXT_DEPENDENT_UNIT.

#22 = LENGTH_MEASURE_WITH_UNIT (240.0, #111);
#111 = (NAMED_UNIT(#10)CONTEXT_DEPENDENT_UNIT(’INCH’)LENGTH_UNIT());
#10= DIMENSIONAL_EXPONENTS(1.0,0.0,0.0,0.0,0.0,0.0,0.0);

CIS/2 Notes 05/30/00 Georgia Tech

7

All length measure in CIS/2 are specified in inches. The other base units are defined similarly:
/* area units */
#22 = MASS_MEASURE_WITH_UNIT (100.0, #221);
#221=(NAMED_UNIT(#220)CONTEXT_DEPENDENT_UNIT(’POUND’)MASS_UNIT());
#220= DIMENSIONAL_EXPONENTS(0.0,1.0,0.0,0.0,0.0,0.0,0.0);

/* plane angle units */
#23 = PLANE_ANGLE_MEASURE_WITH_UNIT (95.0, #551);
#551=(NAMED_UNIT(#50)CONTEXT_DEPENDENT_UNIT(’DEGREE’)

PLANE_ANGLE_UNIT());
#50= DIMENSIONAL_EXPONENTS(0.0,0.0,0.0,0.0,0.0,0.0,0.0);

/* area units */
#24 = AREA_MEASURE_WITH_UNIT (2295.5, #771);
#771=(NAMED_UNIT(#70)AREA_UNIT()CONTEXT_DEPENDENT_UNIT(’SQUARE_INCH’));
#70= DIMENSIONAL_EXPONENTS(2.0,0.0,0.0,0.0,0.0,0.0,0.0);

/* volume units */
#25 = VOLUME_MEASURE_WITH_UNIT (360.0, #881);
#881=(NAMED_UNIT(#80)CONTEXT_DEPENDENT_UNIT(’CUBIC_INCH’)VOLUME_UNIT());
#80= DIMENSIONAL_EXPONENTS(3.0,0.0,0.0,0.0,0.0,0.0,0.0);

/* force units */
#26 = FORCE_MEASURE_WITH_UNIT (300.0, #991);
#991=(NAMED_UNIT(#100)CONTEXT_DEPENDENT_UNIT(’KIP’)FORCE_UNIT());
#100= DIMENSIONAL_EXPONENTS(1.0,1.0,-2.0,0.0,0.0,0.0,0.0);

It should be noted that the default value of the dimensional_exponents are angle units. The
derived units are specified similarly. For example, a distributed load, defined as force per unit
length, has the following units definitions:

#14 = FORCE_PER_LENGTH_MEASURE_WITH_UNIT(4.0, #32);
#32= FORCE_PER_LENGTH_UNIT((#130,#131));
#130= DERIVED_UNIT_ELEMENT(#1111,1.0);
#131= DERIVED_UNIT_ELEMENT(#11,-1.0);
#1111=(NAMED_UNIT(#100)CONTEXT_DEPENDENT_UNIT(’KIP’)FORCE_UNIT());
#100= DIMENSIONAL_EXPONENTS(1.0,1.0,-2.0,0.0,0.0,0.0,0.0);
#11= (NAMED_UNIT(#10)CONTEXT_DEPENDENT_UNIT(’INCH’)LENGTH_UNIT());
#10= DIMENSIONAL_EXPONENTS(1.0,0.0,0.0,0.0,0.0,0.0,0.0);

Thus eight instance entities seem to be required for each derived unit. Again, the last seven can be
shared for all values having the same unit.

