
Plates and Decking in CIS/2 09/15/01 Georgia Tech

1

Plates and Decking in CIS/2
By Frank Wang and Chuck Eastman

Purpose
Although most steel structures are made up of prismatic linear parts, decking and plates also are
often components of a steel structure. This tutorial outlines the use of surface elements in analysis
and manufacturing models. Decking and plates are defined generally as a plane surface, with three or
more connections in the plane. Any decking profile, such as corrugations, consists of a cross section
centered on that plane. Decking profiles are not defined in a flavor cross section file of AISC, thus
they must be defined explicitly. The tutorial is offered as an illustration of one of the several
approaches of how to define a decking member in CIS/2.

Like other Georgia Tech tutorials, we describe some of the Express code definitions in “flattened”
form. This means that all inherited attributes are presented, within parentheses, in the order they
would be in a Part 21 file.

Decking in Analysis Model

In an analytical model, decking can be specified as an element_surface_profiled entity, which has a
subtype of element_surface_complex and is inherited from element_surface through element. The
inheritance structure of element_surface_profiled is shown Figure One below.

element element_volume

(ONEOF)

element_with_material
(ANDOR)

element_surface

element_surface_complex

element_surface_profiled curve

element_point

element_curve

label

text

analysis_model

INTEGER

element_name

element_description

element_dimensionality

parent_model
(INV)component_el
ments S[1:?]

positive_length_
measure_with_

unitsthickness

element_node_
connectivity

connecting_element
(INV) connectivity

element_surface_simple

(ONEOF)

surface
surface_definition

element_surface_plane

(ONEOF)

profile

connectivities S[3:?]

Figure One: EXPRESS-G for element and element_surface.

 A flattened EXPRESS code is also listed to have a better understanding of the inherited relationship
between element_surface_complex and element.

Flattened EXPRESS code for element_surface_profiled

ENTITY element_surface_profiled
(element_surface_complex:
 (element_surface:
 (element:

Plates and Decking in CIS/2 09/15/01 Georgia Tech

2

 element_name : label;
 element_description : OPTIONAL text;
 parent_model : analysis_model;
 element_dimensionality : INTEGER;
 INVERSE

connectivity : SET [1:?] OF element_node_connectivity FOR
connecting_element;

 UNIQUE
URE1 : element_name, parent_model;

);
 thickness : positive_length_measure_with_unit;
 DERIVE

connectivities : SET [3:?] OF element_node_connectivity :=
bag_to_set(USEDIN(SELF,
'STRUCTURAL_FRAME_SCHEMA.ELEMENT_NODE_CONNECTIVITY.CONNECTING_ELEMENT'

);
);
 surface_definition : surface;
);
profile : curve;
END_ENTITY;

Each element carries an inverse relation that associates the element_node_connectivity and indirectly
the nodes the element is connected to. Element_surface, derives an aggregated set of these in
attribute connectivities , which requires at least three associated element_node_ connectivities.
Another attribute of element_surface is a thickness of the plate or decking member. This thickness is
specified in the x-axis direction, with the decking laid out in the y-z plane.

It is assumed that for the purposes of analysis, all plates and most decking will be defined as a plane,
using element_surface_simple . However, means are provided for structural analysis of corrugated or
other forms of bent metal decking. The element_surface_complex a subtype of element_surface,
carries the attribute surface, an entity that is defined explicitly in STEP Part 42 – “Geometric and
topological representation (ISO 10303-42 The EXPRESS-G structure for surface and its subtypes is
shown in Figure Six.

For purposes of analysis, the relevant plate or decking is bounded by the polygon defined by its
connections (which may not be its true shape). The first connecting node is assumed to be the sheet
piece’s local origin (without eccentricities). The y-axis of the sheet is assumed to be in the direction
from the first connection toward the second connection. The third connection defines the yz_pla ne.
The origin and axes will shift if eccentricities are applied. The element_surface_profiled allows an
implementer to define a non-planar cross-section by referencing a curve as a profile. Entities curve
and surface are defined and discussed later in the following tutorial.

The STEP code shown as below is an example of defining an element_surface_profiled instance
(#15). It includes a non-planar profile. The third variable in instance #15 is referenced to an
analysis_model instance at #30, the fourth va riable is an integer that specifies the dimensionality of
an element as an integer, the fifth variable pointsto a positive_length measure_with_unit instance
(#16) that indicates the thickness of the element, the sixth variable points to a surface instance (#17)
where the element surface is carried and the last variable points to a curve instance that defines the
profile (#18).

#15=ELEMENT_SURFACE_PROFILED('SURFACE_NAME','SURFACE_DESCRIPTION',#30,2,#16,#17,
#18);
#16=POSITIVE_LENGTH_MEASURE_WITH_UNIT(POSITIVE_LENGTH_MEASURE(0.125),#28);
/* surface */
#17=PLANE('NAME_OF_PLANE', #610);
#610=AXIS2_PLACEMENT_3D('AXES FOR PLANE',#620,#630,#640);

Plates and Decking in CIS/2 09/15/01 Georgia Tech

3

#620=CARTESIAN_POINT('ORIGIN FOR PLANE',(0.,0.,0.));
#630=DIRECTION('local x',(0.,1.,0.));
#640=DIRECTION('local z',(1.,0.,0.));
/* curve */
#18=COMPOSITE_CURVE('PROFILED_CURVE',(#200),.F.);
/* prototype curve */
#200=COMPOSITE_CURVE_SEGMENT(.CONTINUOUS.,.T.,#100);
/* polyline */
#100=POLYLINE('POLYLINE',(#110,#120,#130,#140,#150,#160));
#110=CARTESIAN_POINT('point-1',(0.,0.,0.));
#120=CARTESIAN_POINT('point-2',(1.,3.,0.));
#130=CARTESIAN_POINT('point-3',(3.,3.,0.));
#140=CARTESIAN_POINT('point-4',(5.,-3.,0.));
#150=CARTESIAN_POINT('point-5',(7.,-3.,0.));
#160=CARTESIAN_POINT('point-5',(8.,0.,0.));
#30=ANALYSIS_MODEL('default 3d','default 3d',.SPACE_FRAME.,$,3);

Decking in Manufacturing Model
In a manufacturing model, part_sheet_profiled is a sub-type of a part that can be used to define a
decking member in CIS/2. A detailed relationship among part_sheet_profiled and its inherited
entities are shown in Figure Two below.

part_sheet_profiled

part

part_sheet

fabrication_type

positive_length
_measure_with

_units

sheet_thickness

textmanufatcurers_ref

curve

section_properties

sheet_profile

profile_properties

part_complexpart_prismatic

(ONEOF)

part_sheet_bounded

(ANDOR)

part_sheet_bounded_
complex

part_sheet_bounded_
simple

(ONEOF)

positive_length_measure_
with_unit

y_offset

stock_z_dimension

stock_y_dimension

cut_y_dimension

cut_z_dimension

sheet_boundary
bounded_surface

fabrication_method

structural_frame_
product

label
life_cycle_stage

label

text

INTEGER

structural_frame_item

item_number

item_description

item_name

positive_length_measure_
with_unit

positive_length_measure_
with_unit

positive_length_measure_
with_unit

positive_length_measure_
with_unit

positive_length_measure_
with_unitz_offset

Figure Two: Part_sheet and its subtypes.

The flattened EXPRESS code of part_sheet_profiled is also given as follow:

ENTITY part_sheet_profiled
(part_sheet:
 (part:
 (structural_frame_product:

(structural_frame_item:
item_number : INTEGER;
item_name : label;
item_description : OPTIONAL text;

)
life_cycle_stage : OPTIONAL label;

)
 fabrication_method : fabrication_type;
 manufacturers_ref : OPTIONAL text;

Plates and Decking in CIS/2 09/15/01 Georgia Tech

4

);
 sheet_thickness : positive_length_measure_with_unit;

);
 sheet_profile : curve;
 profile_properties : OPTIONAL section_properties;
END_ENTITY;

The way that CIS/2 handles a physical decking member in the manufacturing model is similar to the
analysis model; the thickness of a decking is indicated as an attribute of entity part_sheet with a
positive length measure with units value. Same as the analysis model, thickness is normal to the
local yz-plane.

Eventually, part_sheet_profiled and part_sheet_bounded are two subtypes that are inherited from
the entity part_sheet, within an ANDOR relationship that can completely represent the geometry of a
decking member. The part_sheet_profiled will specify the cross-section profile of a sheet member
by referencing a curve entity, an entity defined in Part 42 (ISO 10303-42). (A common depiction of
this curve is presented in the next section.)The entity part_sheet_bounded will be used to define the
outer boundary of a physical sheet member. The boundary of a sheet member can be interpreted in
two ways; the first way is using a part_sheet_bounded_simple instance to define a surface boundary
of a sheet member. This is often used when the sheet has a rectangular boundary. There are six
attributes, all of them are defined as type of positive_length_measure_with_unit, which can be
categorized into three pairs of parameters: 1. A cutting dimension on both y and z axes. 2. An
optional stocking dimension on both y and z axes. 3. An optional offset distance on both y and z
axes. The cut_y_dimension and cut_z_dimension are variables to specify the length and width as a
finite boundary for a bounded sheet. Notice that the thickness of the physical decking is already
defined as an offset along the local x-axis.
If the boundary of a decking member has a more irregular shape rather than a rectangular boundary,
as in the above case, a part_sheet_bounded_complex can be used to customize an irregular bounded
surface for the physical decking member. The boundary of this surface will be defined as a
bounded_surface, an entity also defined in Part 42 (ISO 10303-42), to define the outer boundary of a
physical sheet member.

If part_sheet_bounded_simple is used, and the ANDOR part_sheet_profiled is included, the simple
case for defining a rectangular shape member, is given in an example as follows:

/* simple shape */
#400=(STRUCTURAL_FRAME_ITEM(5, 'ITEM LABEL','ITEM DESCRIPTION')
 STRUCTURAL_FRAME_PRODUCT($)
 PART(.UNDEFINED.,'MANUFACTURES_REF')
 PART_SHEET(#430)
 PART_SHEET_BOUNDED_SIMPLE(#410,#420,$,$,$,$)
 PART_SHEET_PROFILED(#300,$)
);
#410=POSITIVE_LENGTH_MEASURE_WITH_UNIT(POSITIVE_LENGTH_MEASURE(100.0),#11);
#420=POSITIVE_LENGTH_MEASURE_WITH_UNIT(POSITIVE_LENGTH_MEASURE(80.0),#11);
#430=POSITIVE_LENGTH_MEASURE_WITH_UNIT(POSITIVE_LENGTH_MEASURE(0.125),#11);
An example for a curve is given on page 7.

An example of part_sheet_bounded_complex to define a decking surface is as follows:
/* complex shape */
#400=(STRUCTURAL_FRAME_ITEM(5, 'ITEM LABEL','ITEM DESCRIPTION')
 STRUCTURAL_FRAME_PRODUCT($)
 PART(.UNDEFINED.,'MANUFACTURES_REF')
 PART_SHEET(#430)
 PART_SHEET_BOUNDED_COMPLEX(#700)

Plates and Decking in CIS/2 09/15/01 Georgia Tech

5

 PART_SHEET_PROFILED(#300,$)
);
#700=RECTANGULAR_TRIMMED_SURFACE('SURFACE_NAME',#600,72.0,72.0,72.0,72.0,.F.,.F.
);
#430=POSITIVE_LENGTH_MEASURE_WITH_UNIT(POSITIVE_LENGTH_MEASURE(0.125),#11);

In the simple case, the instance #400 is presenting as an external mapping for an ANDOR relation
between part_sheet_bounded_simple and part_sheet_profiled. Instances #410 and #420 are
represented as the length and width of the part in measurable length units. Instance #430 indicates
the thickness of the part. In the last line of #400, the part_sh eet_profiled points to the #300, a
bounded_curve instance, which is the profile of the decking. This example will also be given in the
following section.

In the complex case, #400 will point to #700 as a sheet boundary. This boundary will be defined by a
bounded surface that shown as rectangular_trimmed_surface.

Geometry Representation Items in Part 42

Curve
Curve is an abstract geometry entity and there are various ways to define a curve for a cross-section
profile in Part 42. In this tutorial, we will introduce one way to define a customized cross-section
profile. In basic idea is:
1. Define a polyline as a prototyped curve, marked as the first curve.
2. Reference the polyline as a parent curve of composite_curve_segment. The replicated polyline
will composite a bounded curve, which will be noted as the second curve and it is the curve to form
the cross-section profile.
Figure 5 and figure 6 show a detailed definition of a curve and inherited relationship of curve in part
42.

y

x

y

x

a(0 ,0, 0)

b(1,3, 0) c(3,3, 0)

d(5,-3, 0) e(7,-3, 0)

f(8, 0, 0)
stock y

st
oc

k
 z

cu
t

z

cut y

decking material

Figure Three: Compositing a Profiled Curve

Figure Four: Definea trimmed decking by
using part_boubnded_simple

Plates and Decking in CIS/2 09/15/01 Georgia Tech

6

Flattened EXPRESS code for composite_curve

ENTITY composite_curve
(bounded_curve:
 (curve:

 (geometric_representation_item:
 (represetation_item:
 name : label;

)
 DERIVE

dim : dimension_count := dimension_of(SELF);
)
)
)

segments : LIST [1:?] OF composite_curve_segment;
self_intersect : LOGICAL;

DERIVE
n_segments : INTEGER := SIZEOF(segments);
closed_curve : LOGICAL := segments[n_segments].transition <> discontinuous;

curve pcurve

line

conic

surface_curve

offset_curve_2D

offset_curve_3D

curve_replica

(ONEOF)

parent_curve

ANDOR
bounded_curve

geometric_re-
presentation_item

representation_item

label

name

dimension_count

(DER)dim

composite_curve

polyline cartesian_pointpoints L [2:?]

trimmed_curve

b_spline_curve

bounded_surface_curve

bounded_pcurve

bounded_curve

(ONEOF)

select_generic_item

LOGICAL

INTEGER

LOGICALself_intersect

(DER)n_segements

(DER)closed_curve

composite_curve_segement
segements L[1:?]

(INV)using_curves B[1:?]

BOOLEAN

transaction_code

reparametrised_composite_
curve_segement

same_sense

parent_curve

transition

parameter_value

param_length

composite_curve_
on_surface

curve_on_surface

surface

boundary_curve

 (DER)basis_surface S[0:2]

curve

Figure Five: Definition of Curve in Part 42

Figure Six: Detail Definition of cure in Part 42

Plates and Decking in CIS/2 09/15/01 Georgia Tech

7

WHERE
WR1:
NOT closed_curve AND (SIZEOF(QUERY (temp <* segments| (temp.transition =
discontinuous))) = 1) OR closed_curve AND (SIZEOF(QUERY (temp <* segments|
(temp.transition = discontinuous))) = 0);

END_ENTITY;

The bounded_curve, a finite arc with two ends defined, is an ANDOR subtype of curve and it also is
a supertype of both composite_curve and polyline, which will geometrically define the profile of a
decking member and the prototyped curve. There exists an inverse relationship between entities
composite_curve_segment and composite_curve. The aggregated list of segments defines a
collection of curve segments, which assemble the composite_curve. The inverse relation between
composite_curve and composite_curve_segment defines that a curve is composed by replicated
segments of a curve.

The following P21 instances are the example of the prototyped curve and the profiled curve.

/* PROFILED CURVE */
#300=COMPOSITE_CURVE('PROFILED_CURVE',(#200),.F.);

/* PROTOTYPE CURVE */
#200=COMPOSITE_CURVE_SEGMENT(.CONTINUES.,.T.,#100);

/* POLYLINE */
#100=POLYLINE('POLYLINE',(#110,#120,#130,#140,#150,#160));
#110=CARTESIAN_POINT('point-1',(0.,0.,0.));
#120=CARTESIAN_POINT('point-2',(1.,3.,0.));
#130=CARTESIAN_POINT('point-3',(3.,3.,0.));
#140=CARTESIAN_POINT('point-4',(5.,-3.,0.));
#150=CARTESIAN_POINT('point-5',(7.,-3.,0.));
#160=CARTESIAN_POINT('point-5',(8.,0.,0.));

Instance #300 is a composite_curve instance that indicates the profile curve for the decking. The first
variable within it is a named label of the instance, the second variable is an aggrega ted list of
segments that reference the previous composite_curve_segment instance at #200 and the last variable
is a logical flag to determine if the curve has intersected to itself.
The first variable in #200 is the enumerated transaction code, a CONTINUES type is selected to
identify that the curve is replicated. The second variable is a Boolean parameter, which indicate
whether or not the direction of the segment agrees with the parent curve. If the sense is “false”, a
point that has a higher value will become the start point of the curve. The last variable is the
reference to a parent curve that defines the polyline in #100.
The prototyped curve is composed by a polyline that continuously linked by a series cartesian point,
shows from line #110 to line # 160.

Bounded Surface

Plane
The plane is an entity, which has no attribute
associated within it, and it is also a subtype
of surface. The location of a plane will be
specified in its super type, the
elementary_surface, which is a type of
axis2_placemen t_3d . Plane is also defined
by a point on a plane plus a normal direction
of the plane in part 42. The plane is an

surface
normal

u1

u2
v1

v2

bounded_surface

plane

Figure Seven:
Bounded Surface on

a Plane

Plates and Decking in CIS/2 09/15/01 Georgia Tech

8

unbounded surface where the parameterization ranges are infinite.

(If surface => s =(u,v), then plane => s =(u,v), when -8<u,v<8)

One of the ways to represent a bounded_surface is applying a rectangle_trimmed_surface entity, a
subtype of bounded_surface, which defines the boundary of a plane.
The parameters u1, u2, v1 and v2 define the dimension of the boundary (see figure 7) as a value of
parameter. The parameter_value is referenced externally to Part 41 ”Fundamentals of product
description and support”, defined as a measure schema. Another attribute of
rectangular_trimmed_surface is a basis_surface that points to the unbounded plane.

The following EXPRESS-G figure is a detailed definition of bounded_surface in Part 42.

surface

surface_replica

parent_surface

offset_surface

geometric_representation_item

elementary_surface swept_surfacebounded_surface

rectangle_composite_
surfaceb_spline_surface rectangular_trimmed_surface

curve_bounded
_surface

basis_surface

surface

parameter_value

parameter_value

parameter_value

parameter_valueBOOLEAN

BOOLEAN

basis_surface u1

u2

v1

v2

usense

vsense

axis2_placement_3D
position

direction

directiondirection
axis

ref_direction

p L[3:3]
plane

representation_item

Flattened EXPRESS code for plane

ENTITY plane
(elementary_surface:
 (surface:
 (geometric_representation_item:
 name: label;
)
)
 position : axis2_placement_3d;
)
END_ENTITY;

Flattened EXPRESS code for rectangle_trimmed_surface

ENTITY rectangle_trimmed_surface
(bounded_surface:
 (surface:
 (geometric_representation_item:
 name: label;
)
)

Figure Eight: Definition of Surface in Part 42

Plates and Decking in CIS/2 09/15/01 Georgia Tech

9

)
 basis_surface : surface;
 u1 : parameter_value;
 u2 : parameter_value;
 v1 : parameter_value;
 v2 : parameter_value;
 usense : BOOLEAN;
 vsense : BOOLEAN;
)
END_ENTITY;

In the instance level, there are two parameters associated with defining a plane. The first parameter
is a label that indicates the name of the plane. The plane is an infinite surface with no boundary
specified and carries the prospected bounded surface of a decking member.
The second is the position of a plane by pointing to an axis2_placement_3d instance. It defines an
origin and two vectors in the relevant coordinate system, defining the coordinate system for the
surface.

Instance #700 shows the way to define a bounded surface by creating a rectangular_trimmed_
surface instance. The first parameter is a name label of the instance; the second parameter is the
basis surface where the surface is going to be located on as pointing to #600. The parameters that are
represented in real numbers are values of u1, u2, v1 and v2. The last two Boolean parameters are
senses to verify if the second parameter values, u2 and v2, consist in an opposite direction of u1 and
v1.

#600=PLANE('NAME_OF_PLANE', #610);
#610=AXIS2_PLACEMENT_3D('AXES FOR PLANE',#620,#630,#640);
#620=CARTESIAN_POINT('ORIGIN FOR PLANE',(0.,0.,0.));
#630=DIRECTION('local x',(0.,1.,0.);
#640=DIRECTION('local z',(1.,0.,0.);
#700=RECTANGULAR_TRIMMED_SURFACE
(‘SURFACE_NAME’,#600,72.0,72.0,72.0,72.0,.T.,.T.);

