Communicating Forensic Findings: Some Framing the Issues

Steve Lund Evidential Statistics Focus Area Lead Statistical Engineering Division

Acknowledgement

• Collaboration with colleagues Hari Iyer and Will Guthrie

Disclaimer

• Viewpoints expressed are our own and are not intended to reflect those of anyone else at NIST

Communicating Forensic Findings (CFF)

Dictionary

Definitions from Oxford Languages · Learn more

com·mu·ni·ca·tion /kə.myoonəˈkāSH(ə)n/

noun

 the imparting or <u>exchanging</u> of information or news. "at the moment I am in communication with London"

CFF: Experts imparting information to other parties in the judicial system.

What type of information?

Observations about the evidence

- Descriptive, demonstrable
- Often high-dimensional or complicated

• Opinions of the expert(s)

- Interpretive, personal, some variability expected "range of opinions"
- Typically simpler than observations

CFF Goal: Help others make better decisions

How to Measure/Grade CFF?

- What's the greatest potential gain from the expert?
 - Among ground-truth-known tests, could compare experts' ability to distinguish between propositions of interest with recipients' to measure the gap

How to Measure/Grade CFF?

- What's the greatest potential gain from the expert?
 - Among ground-truth-known tests, could compare experts' ability to distinguish between propositions of interest with recipients' to measure the gap
 - No gap would imply no meaningful information to communicate. Typically expect a gap

See how well CFF approaches close the gap

- Consider multiple approaches:
 - Presenting observations vs presenting opinions
 - Accompanying supporting information (e.g., population study summaries, theoretical explanations)
 - Attempts to educate decision makers vs. attempts to instruct the decision makers

- Experts
- Recipients shown raw features
- Recipients shown raw features & pop. study
- Recipients given expert's opinion
- Recipients given expert's opinion and validation
- Blend of Communication Strategies

How to Measure/Grade CFF?

- This approach may encourage suggesting recipients adopt expert's sentiment as their own (since then they'd have the same discrimination power as the expert)
 - Ignores range of opinions / treats personal and subjective interpretation as communal fact
 - What to do with disagreements among equally competent experts?
 - What about uncharted territory?
- Blindly accepting an expert's opinion opens a doorway for junk science or pushing boundaries too far (extrapolation)
- Focusing on validation data could help close the door
 - Recognize overconfidence or unsupported claims
- Reliable communication is critical, including validation details

Important Caveat

- Judicial outcomes relying on forensic science provide less observable feedback than real world outcomes relying on other applications of science. E.g.,
 - Building remains standing or collapses (e.g., Champlain Towers South)
 - Side effects of drug released for public consumption (e.g., Vioxx with ~30,000 adverse cardiac events)
 - Most forensic casework applications are like rockets disappearing immediately after launch
- More difficult to recognize real world successes and failures for forensic applications
 - Allowed overconfident performance conjecture unsupported by empirical testing (e.g., to the exclusion of all other sources, error-free method, etc.)
 - Prior to DNA, no obvious signs of trouble means these claims largely avoided scientific scrutiny
 - Following public errors and work of the Innocence Project, legal and scientific communities increase demand for empirical studies

Validation...

- ... is even more important to assessing reliability of forensic methods than it is for most applied sciences
- ... has a critical role in...
 - Labs deciding whether to use a method in a particular case
 - Recipients deciding how much weight to give a method's result in a particular case
 - High-stake decisions made by peers rather than specialists
- ... is an important component in CFF

So how do we talk about validation?

• "Validated"

• "Error rate"

(Google Gemini result for "generate an image for the word unsatisfactory")

"Validated"

- Falsely implies there's a checklist that, once completed, renders uncertainty regarding method performance inconsequential
 - "How many samples do I need?"
 - Overlooks benefit to collecting additional validation data
- Suggests performance is one-size-fits-all
- Masks subjectivity of chosen validation criteria as consequence of statistics and science, making it harder to question

Error rates

- Biggest Positive: Brings attention to empirical performance studies
- Biggest Drawback: Requires oversimplifying to label each opinion/conclusion as either correct or incorrect
 - Most opinion/conclusion scales are on a more refined spectrum
 - Throws away relevant information
 - Leads to many proposals for handling inconclusive conclusions, some of which can be misleading

Forensic Science International: Synergy Volume 8, 2024, 100472

Inconclusive decisions and error rates in forensic science

H. Swofford Q 🖾 , S. Lund, H. Iyer, J. Butler, J. Soons, R. Thompson, V. Desiderio, J.P. Jones, R. Ramotowski

Example

Pauw-Vugts, P., Walters, A., Øren, L., & Pfoser, L. (2013). FAID2009: proficiency test and workshop. AFTE Journal, 45(2).

Pauw-Vugts et al. -- FAID2009

125

	ts es	Number of times a conclusion was given							One of	r two fireai	ms				
				А	В		С	D	E	Ζ					
	А	cartridge cases		63	1		0	0	0	0	1				
	В	bullets		1	1		0	7	58	0	2				
	С	cartridge cases		35	14		7	0	7	1	1				
	D	bullets		4	0		19	23	14	3	2			Known Matches	
	E	cartridge cases		0	1		2	14	46	1	2				
	F	bullets		61 (1*)	1		0	1	0	0	1			Known Nonmatch	es
	G	cartridge cases		14	0		9	17	22	0	2				
	Η	bullets		3 (4*)	15 ((2*)	34	1	2	3	1				
	J	cartridge cases		1	1		2	9	51	0	2				
	Κ	bullets		13 (1*)	16 ((4*)	17	8	4	1	1				
		Identification	Pro	bable ID)	Incor	nclus	ive	Pro	babl	e Ex	Exclus	ion	Unsuitable	
Known Matches		83		38		51			10			6		4	
Known Nonmatches		5		1		19			27			72		3	

Example

Pauw-Vugts, P., Walters, A., Øren, L., & Pfoser, L. (2013). FAID2009: proficiency test and workshop. AFTE Journal, 45(2).

Quote Part 1: "Scientifically, an inconclusive result has to be automatically incorrect: a comparison is either from a same-source or a different-source. AFTE rules allow inconclusives to be counted as both identifications and eliminations, and therefore artificially decrease error rates."

Quote Part 2: "If we focus on a correct source decisions only, the percentage of correct decisions can be as low as 49%, leaving at least 51% of the decisions as errors (correct source identification rate taken from bullet comparisons in Pauw-Vugts et al. (2013))."

Full quote: "Scientifically, an inconclusive result has to be automatically incorrect: a comparison is either from a samesource or a different-source. AFTE rules allow inconclusives to be counted as both identifications and eliminations, and therefore artificially decrease error rates. If we focus on a correct source decisions only, the percentage of correct decisions can be as low as 49%, leaving at least 51% of the decisions as errors (correct source identification rate taken from bullet comparisons in Pauw-Vugts et al. (2013)). This is statistically worse than random chance - that is, examiners would perform about as well if they were flipping a coin to make the decision!"

Credit: https://craftbits.com/project/diy-collage-of-pages-bookcase/

Validation Nuances

- Attempt to assign weight to an opinion in a particular case
- Efficacy expected to vary across case types
 - E.g., expect mostly IDs and Exclusions when comparing two exemplars, expect mostly inconclusives for very low-quality questioned impressions
- Some factors describing case type may allow us to predict changes in examiner performance
 - What are these factors? What are their effects?
- Available data is not ideal
 - Fewer tests than we'd like (cost-benefit analysis)
 - Few, if any, tests match circumstances of current case (e.g., different quality sample(s), different lab or expert, awareness of being tested, etc.)
 - Departures from ideal statistical sampling approaches: volunteer participants, convenience sample materials, not all tests are answered
 - Important details that changes or adds uncertainty to the meaning of the data
- Despite limitations, available data can be (are) informative
 - E.g., demonstrate that some experts perform well in some scenarios (i.e., not coin-tossers)
 - How informative will depend on subjective reactions to limitations
- How to reasonably summarize or present available validation information?

- Validation testing remains the primary means by which society can understand the efficacy of forensic science methods (more so than many other areas of science)
- Forensic science relies more on general population (e.g., fact finders) to carry out its mission than do other scientific applications
 - Don't take 12 random people to approve space shuttle launch or decide whether open heart surgery will be performed
- We need to improve how we communicate about validation
 - "Error rates" and "validated" oversimplify in potentially misleading ways
- Looking forward to hearing your thoughts and perspectives on these, and other, important CFF topics!