STATISTICAL THEORY FOR LIKELIHOOD RATIOS IN FORENSIC ANALYSIS

Daniel Rabinowitz

Department of Statistics Columbia University

NOTATION INDIVIDUAL(S)

- D Defendant
- S Source
- A Perpetrator of the alleged **A**ct

THEIR CHARACTERISTIC(S)

 $\theta_D, \ \theta_S$ distributed according to $\pi(\theta), \ \theta_A$

Data

- Y_1 evidence about θ_S modeled via $f^{\theta_S}(y)$
- Y all the rest of the evidence

FACTS OF CONSEQUENCE TO CULPABILITY

 $\theta_S = \theta_D \longrightarrow D = S \longrightarrow D = A$

STATE'S PRESENTATION OF Y_1

LIKELIHOOD RATIO

- State D = S
 - operationally: $Y_1 \sim f^{\theta_D}(y)$
- Defense $D \neq S$
 - operationally: $Y_1 \sim \int \pi(\theta) f^{\theta}(y) d\theta$
 - Not $\theta_D \neq \theta_S$ because want to compute LRs?
 - or because point null embedded in composite alternative?
 - Turing's rule and "protection" on average.

STATE'S WITNESS REPORTS

$$LR = \frac{f^{\theta_D}(Y_1)}{\int \pi(t) f^t(Y_1) dt} = \pi(\theta_D | Y_1) / \pi(\theta) \text{ is large,}$$

"providing strong evidence" for ... the State's hypothesis.

STRENGTH OF EVIDENCE FOR STATE'S HYPOTHESIS

PROBABILITY DEPENDS ON LR AND TARGET, PRIOR

 $\frac{P\{\text{target}\} \times LR}{P\{\text{target}\} \times LR + (1 - P\{\text{target}\})}$

 $P\{\theta_S = \theta_D \mid Y_1\}$

$$\frac{\pi(\theta_D) \times LR}{\pi(\theta_D) \times LR + (1 - \pi(\theta_D))} \quad \text{(miniscule)}$$

Or $P\{S = D \mid Y_1, Y\}$

$$\frac{P\{S=D\mid Y\}\times LR}{P\{S=D\mid Y\}\times LR + (1-P\{S=D\mid Y\})}$$

"Providing strong evidence for the prosecution's hypothesis" a *de facto* (and unusual) instruction about the standard for culpability? Also, implicitly, testifying beyond personal knowledge.

STATE'S FINDER-OF-FACT'S CALCULATION

 $P\{S = D \mid Y_{1}, Y\}$ $P\{S = D \mid Y_{1}, Y\} = \frac{P\{S = D \mid Y\}LR}{P\{S = D \mid Y\}LR + (1 - P\{S = D \mid Y\})}$ $P\{S = D \mid Y\} = (a_{D} + b_{D}) / \sum_{i} (a_{i} + b_{i})$

Followed by $P\{A = D \mid Y_1, Y\}$

$$P\{A = D \mid Y_1, Y\} = P\{S = D \mid Y_1, Y\}P\{A = D \mid S = D, Y\} + (1 - P\{S = D \mid Y_1, Y\})\frac{a_D}{(a_D + b_D)}$$

How helpful for the purposes of FRE 702(a) is it to report the LR without explaining the subsequent calculations?

AS APPLIED CHALLENGES TO "PROVIDING STRONG EVIDENCE FOR" THE HYPOTHESIS

 $\sum_{i} (a_i + b_i) \text{ is large,}$

or most $(a_i + b_i)$ are larger

The Model for θ_S and Y_1

(Posterior probability given Y_1 that) θ_S is consistent with $\pi(\theta)$ Y_1 is consistent with $\int f^{\theta}(y)\pi(\theta)d\theta$

VALIDATION

• Leverage statistics measuare "edge" not "hole."

ISSUES

- Power (sample size, State's quantile and the Confrontation Clause)
- Burden Shifting and Multiple testing
- Statistical versus practical significance

Reporting Uncertainty

WHOSE BURDEN?

• Standard in *the discipline*: burden on analyst to report uncertainty ... *including* uncertainty in assessments of uncertainty.

UNCERTAINTY IN LR

- Propagate standard errors.
- Sensitivity analyses for assumptions. Subjective priors are judicial admissions of uncertainty?
 - random, known distribution
 - random, uncertain distribution
 - not random, subjective beliefs about distribution
 - randomness as a deliberate fiction because
 - only^{*} Bayes' rules are admissible (as statistics term of art),
 - need Bayes factor to have an LR.

"approximations" and "restrictions" are assumptions, too.

• Validation of π and f^{θ} to complement "black box" studies.