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Abstract

In this presentation, we propose the systematic comparison of systems as a method to transfer security
assurances obtained for one system into assurances for a similar system, by arguing that any attack against
the latter can be converted against an attack against the former, perhaps with the side conditions for the
implementation of the latter system. We suggest that this method can give us good security assurances,
and can be accessible with a relatively shallow learning curve. For comparing systems that are less
similar to each other, we suggest the definition of intermediate systems, similar to the sequence of game-
based proofs in cryptography. We have used our method to compare a threshold cryptography based
authentication solution to a smartcard based solution, and internet voting to postal voting; we will
present at least some of the details of these comparisons in our talk.

1 Introduction

Security evaluation is a costly and resource-consuming process, which can be even more complicated if we
are dealing with systems built using novel technologies and/or cryptographic primitives. Therefore, it would
be beneficial to have a methodology that allows us, having evaluated the security of certain system, to argue
about the security of similar systems.

One of the most widely used frameworks for security evaluation is Common Criteria (CC) Certification [4].
In CC terms, one has to define a Target of Evaluation (ToE) – a system that is expected to pass certification.
Passing the certification means that competent people have verified, up to a certain assurance level, that
the ToE T is fulfilling a certain set of Security Functional Requirements (SFR). The methodology that we
developed [5] allows to argue about the security of a modified ToE T ′, showing that T ′ is at least as secure as
T . The paper [5] presents a methodology and provides an example of its application by comparing a smart-
card based authentication system with an authentication system that relies on threshold cryptography [2]. A
follow-up paper [6] compares voting through Internet and voting by mail (in Estonian setting), showing that
our methodology is applicable also in contexts differing from the Common Criteria. Our methodology [5]
can be divided into the following steps:

1. construct models of the systems that need to be compared;

2. identify the main data elements, processes and decision points that can be targeted by the adversary;

3. construct lists of potential weaknesses of the system by analysing / enumerating the identified data
elements, processes and decision points in the system;

4. identify the relations between the listed weaknesses;

5. compare the sets of weaknesses for both systems.

Below, we give a short discussion of these steps. Appendix A contains copies of the papers [5, 6].
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2 Systems and Attacks

The first step of the comparison process is to construct models of two systems T and T ′ that are chosen for
comparison. We propose to use Business Process Model and Notation (BPMN) to create detailed models of
the analysed systems. The BPMN diagrams allow detailed modeling the steps of the processes of T and T ′,
depicting visually the sequence of activities performed by the different parts of the systems. Additionally,
BPMN diagrams model the information flows that are needed to complete the process, while making it explicit
which data elements are used for which processes. The BPMN models can also depict the resources that
the processes use, and use annotations to describe non-functional properties of various elements. Therefore,
constructed BPMN models allow us to perform the second step of our method: identifying all the information
components (data elements), processes and decision points that can be targeted by the adversary.

Once the primary sources of weaknesses – main data elements, processes and decision points are identified,
we can proceed to the third step: constructing lists of weaknesses in systems T and T ′. To identify weaknesses,
we consider the process steps where any data element is being stored, processed, or transmitted. These are
the points where the adversary can interfere with the process, perform modifications, or get access to some
data elements. We also consider computation and processing steps, which the adversary can interrupt or
modify. Finally, we consider how the adversary can interfere with the decision-making (branching) steps in
the process. The adversary may corrupt several of the system components and either exploit the identified
weaknesses fully or not exploit them at all (e.g. if these are too expensive to exploit). To ease the analysis,
we group weaknesses in the sets based on which party’s process or data element is targeted by the adversary.

The fourth step consists of identifying relations between the identified sets of weaknesses W for system T
and W ′ for T ′. To each subset of weaknesses of T or T ′ we attach two quantities: the difficulty of exploiting
this set of weaknesses, and the seriousness of the effects of successful exploitation by the adversary. We
define two preorders on the set of all subsets of W ∪W ′. Namely, for two sets of weaknesses w1,w2 ∈ W ∪W ′

we write:

• w1 ≺D w2, if exploiting all weaknesses in w1 is no more difficult for the adversary than exploiting all
weaknesses in w2,

• w1 ≺S w2 if the effects of exploiting weaknesses in w1 are no worse than the effects of exploiting
weaknesses in w2.

A natural corollary of these definitions is, that if w1 ⊆ w2, then also w1 ≺D w2 and w1 ≺S w2.
The fifth step of our method is to compare the sets of weaknesses of both systems T and T ′. For each

set w′ ⊆ W ′ we want to show that there exists some w ⊆ W , such that w′ ≺S w and w ≺D w′. It is also
likely that we only consider “reasonable” adversaries, where reason is defined by restricting the considered
subsets of both W ′ (simplifying this step of our method) and W (making this step harder).

In order to compare sets of weaknesses and identify relations between the weaknesses, it is important to
understand what is the result of a successful exploitation of a weakness (attack). Additionally, it is needed
to identify which attacks can be combined with each other to result in a more serious attack. For example,
learning one private key share in a threshold signature scheme (2-out-of-2) does not allow adversary to create
valid signatures, but in combination with the second private key share, it gives the adversary the ability
to create signatures on various messages. Additional important aspect to consider is the criticality of the
identified attack. Critical attack is the one that is targeting the main security properties (e.g. for voting
systems – vote secrecy, vote integrity, ballot box integrity).

3 Sequences of systems

The processes in the initial models for the systems T and T ′ can be too different for direct comparison,
meaning that the relations ≺D and ≺S between the sets of weaknesses are too sparse. Therefore, we propose
to introduce intermediate systems to be able to complete comparison process. We use the concept similar
to the game-based security proofs in cryptography [1]. In these security proofs, it is common to introduce
intermediate games, such that any two neighbouring games differ only slightly from each other. The zeroth
game comes directly from the security definition, and the final game is the one where the adversary’s win is
obviously unlikely.
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We use similar strategy in our methodology, the zeroth system T ′ is the novel one that we want to
certify/reason about its security, the final system T is the one that has already been certified/analysed,
and we may introduce “intermediate” systems that are easier to compare against the previous and next
ones. Intermediate systems are created by introducing some smaller changes to the process making it
successively more similar to the final system T . Systems that are introduced in this way are not intended to
be implemented; they may make no economic sense, or may even be impossible to implement. However, they
have their well-defined sets of weaknesses, such that the subsets of weaknesses can be compared against each
other. We present intermediate systems as BPMN models again. We analyse which attacks are removed
during a switch from one intermediate system to the next one (including T and T ′), and which new attacks
are introduced. The examples can be found in [5, 6].

4 Uncovered security requirements for the system T ′

The proposed methodology may identify security requirements that should be in place for the novel system
T ′, if we want to show it to be as secure as the system T . In the process of comparing certified system
T to a novel one T ′, we may find that the components of system T employ certain security mechanisms,
for which there should be corresponding mechanisms in T ′ in order for the comparison to go through and
the necessary containment of the sets of weaknesses to hold. For example, if the communication channels
used by these systems are different, then we may need to ensure that the channel used by the system T ′

has at least as good security properties as the channel used by the system T . Similar requirements may
be discovered if the data storage for certain sensitive values is different. In longer sequences of systems, it
may happen that those requirements are only applicable to the intermediate systems and do not matter for
system T ′. However, it is also possible that the discovered requirements propagate further in this sequence,
all the way towards the system T ′ whose security we want to claim.

5 Performed analyses

The papers [5, 6] present the two analyses that we have performed using the introduced methodology. In
the first one [5], we compared two authentication systems, where the user’s browser establishes a secure
connection with a relying party’s (RP) server, and the user is authenticated during this process by signing
a challenge generated by the RP. In this analysis, the secure system T was based on secure hardware: the
private key was contained in, and the signing was performed by a smartcard that communicated with the
user’s browser through a card reader. The smartcard was activated by the user entering the PIN either
through the device executing the browser, or through a PINpad on the card reader.

The system T ′ in our first analysis was based on threshold cryptography [2]: the two shares of the private
key were stored in user’s smartphone, and in a central server. The former was activated by the entry of a
PIN, and the latter by the former. The smartphone was considered to be a device that does not provide
strong security guarantees by its own. The signing protocol contained mechanisms to detect the compromise
of the phone.

Our analysis showed that the threshold cryptography based mechanism may be at least as secure as the
smartcard based mechanism, if certain subcomponents of T ′ compare favorably with components of T . We
found that the security of the communication channel between the phone and the server must be as secure
as the channel between the smartcard reader and user’s device running the browser. We also found that the
server must protect the keyshare and the integrity of the signing process at least as well as the smartcard
protects the signing key and the process. Perhaps the most interesting finding was, that the leakage of the
PIN during its entry to the smartphone had to be at least as unlikely as when entering it to the system
with a smartcard. In case the PIN is entered through computer’s keyboard in system T , this comparison is
plausible. But it will be harder to argue, if a card reader with PINpad is employed.

In our second analysis [6], we compared two voting systems that allow to cast votes remotely, focusing
on the vote casting phase. The first system T is postal voting system, where the voter fills in the ballot and
seals it into the inner envelope. The inner envelope is then placed into the outer one. Next, the voter writes
their name and identification code on the outer envelope and sends it to the foreign mission through the
postal service. Such systems are in use in many countries of the world.
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The system T ′ in the second analysis is an internet voting system [3]. The voter uses a dedicated voting
application to cast the vote. The voter is first required to authenticate themselves through the application.
Next, the voter makes the choice, which is first encrypted under the system’s public key and then digitally
signed with the voter’s signing device.The voting application then generates and displays a QR code that
the voter can use to verify the vote using the verification app running on a smartphone.

Our analysis showed that the considered internet voting system indeed has stronger security guarantees
than the postal voting system. Additionally, the analysis identified that in the internet voting system critical
attacks that are targeting the main security properties (vote secrecy, vote integrity, ballot box integrity) are
distributed between many system components and may require learning different information from different
parties in order to execute. In the postal voting system, on the other hand, there are less participating
parties and some critical attacks can be executed by corrupting only one of those parties.
Acknowledgements. This work has been supported by Estonian Research Council, grant no. PRG1780.
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Abstract. In this paper, we advocate the position that the security
certification of one system should make the certification of other similar
systems easier, if one can present the evidence that the second system is
at least as secure as the first system. We present a development of this
idea, stating the components of such comparative evidence. We stretch
the idea of propagating the certification to less similar systems, if one
can present a sequence of systems from the certified one to the novel one,
where each system is evidenced to be at least as secure as the previous
one. We apply our methodology to authentication systems, where we
show that a system based on threshold cryptography is at least as secure
as widely used smartcard-based systems.

1 Introduction

Our critical systems are built on top of, and their security assurances depend
on smaller subsystems, whose security is of utmost importance, and where the
society has chosen security certification as the methodology to ensure that these
subsystems satisfy the required properties. These small systems and devices in-
clude smartcards, hardware security modules, trusted execution environments,
but also certain communication devices, operating systems and application soft-
ware. A lot of trust is placed on the outcomes of certification, hence this process
is expensive [9] and conservative [20]. When a certified system has been updated,
then the new version has to pass the certification again. A system making use
of novel security technologies may have hard time passing certification at all,
because these technologies may not map cleanly to the categories specified in
certification procedures.

In Common Criteria (CC) certification [8], we speak of Targets of Evaluation
(ToE); this is the well-delimited system that is expected to pass certification.
A Security Target (ST) document is compiled for certifying a particular ToE;
it gives the boundaries of ToE, and lists the security requirements that ToE is
expected to fulfill. These requirements are taken from standardised lists, enu-
merated in CC specifications. A security target may comply with, i.e contain one
or more Protection Profiles (PP), which are themselves lists of security require-
ments. The security requirements are either Security Functional Requirements
(SFR), referring to the security technologies that the ToE may use in a certain



manner in order to obtain certain security properties, or Security Assurance Re-
quirements (SAR), which refer to the good practices used during the design,
development, and operation of the ToE. In this paper, we use CC-related terms,
but our proposed methodology should be applicable to other certification frame-
works, too.

When a ToE evolves, then it may still fulfill the same SFRs listed in the ST
of the old ToE, but it may fulfill them in novel manner. When a ToE makes use
of novel technologies, it may be difficult to map the technical protections it offers
to the fulfilment of SFRs in the ST. In both cases, it may be helpful to not match
the new ToE directly against SFRs, but to compare the new ToE to the old one
and make sure that the new one is at least as secure. This is the position we
advocate in this paper: comparing two ToE-s — one with existing certification
against a ST, and the other that we desire to get certified against a similar ST
— can simplify the certification process, while preserving the assurances of the
existing certification. The comparison establishes, that for any attack against the
novel system, there exists an attack against the certified system that is no more
difficult to perform, and with the same or worse consequences. We argue that
such arguments should be accepted by certification bodies. Even if they are not
directly accepted, the outcomes of the comparison should guide the vendor in
changing the evidence documentation that supports the claims of ToE satisfying
the ST.

Our proposal is similar to game-based security proofs of cryptographic prim-
itives [1]. In cryptography, security definitions define an interactive attack game
that is played between the adversary and the environment; the latter provides
an interface to the adversary through which the primitive may be invoked in
well-defined ways. The primitive is deemed secure if no adversary’s probability
of winning the game exceeds a certain value. A typical security proof presents a
different game where the same adversary obviously has only a low probability of
winning, and then argues that in the original game, the adversary’s win is not
much more likely.

In these security proofs, it is common to introduce intermediate games, such
that any two neighbouring games differ only slightly from each other, simplifying
the argument that the adversary’s winning probability in i-th game is at most
negligibly larger than in the (i+ 1)-st game. Here the zeroth game comes from
the security definition, and the final game is the one where the adversary’s
win is obviously unlikely. We advocate that we can do something similar for
certification: the zeroth ToE is the novel one that we want to certify, the final
ToE has already been certified, and we may introduce “intermediate” ToE-s that
are easier to compare against the previous and next ones.

Related work. The certification of evolving systems, the simplification of updat-
ing the evidence, and the reuse of evaluation results have been the topic of a
statement from the CC Recognition Arrangement Management Committee [16].
Methods for using CC together with agile product development [18,19], and for
continued certification of cyber security products [5] have been proposed. But we
are aware of only a few attempts to show the security of one system by compar-



ing it to another one, where the latter one has already been deemed secure [3].
The other example is Trusted Computer System Evaluation Criteria (TCSEC),
where the system evaluation process included the Rating Maintenance Phase
(RAMP). The goal of RAMP was to provide an instrument to extend evaluation
of a certified system to a new version of that system by analysing changes that
were introduced [10].

In the rest of this paper, we describe our proposal for comparing two systems
in more detail. We will then give an example of comparing two systems, where
one of them is based on well-established hardware security technologies, while
the other one makes use of threshold cryptography. In order to compare them
against each other, we come up with a couple of intermediate systems, and argue
that each of them is at least as secure as the next one.

2 Proposed methodology

Suppose we have a ToE T ′, for which we want to provide evidence that it matches
a security target. We also have another system T , which we have already shown
to match the same or a similar security target. We have the detailed specifica-
tions of both T and T ′, such that we can make a list of all potential weaknesses
that an adversary may exploit in T or in T ′. We may already have used these
lists to create the security target [7]. For describing the processes of T and T ′,
BPMN [11] may be a good choice, perhaps annotated further [14,17] to show the
protection mechanisms in use. We create lists of weaknesses with high granular-
ity, considering each data storage, movement, or processing step as something
that the adversary may obtain information from, or tamper with the inputs and
outputs of. The high granularity also means that an adversary may exploit one
weakness either fully, or not exploit it at all, but there are no partial exploita-
tions. Let W be the set of all weaknesses of T , and W ′ the set of all weaknesses
of T ′. Also, let W [resp. W ′] be the set of subsets of W [resp. W ′]. When an ad-
versary performs an attack against T or T ′, then the set of weaknesses it exploits
is an element of W or W ′.

The security target specifies the operational environment of the ToE, includ-
ing the threats, organisational policies, and security assumptions. Hence not any
set of weaknesses is considered exploitable against the system T . Rather, the
security target specifies the set of considered sets of weaknesses WC ⊆ W that
contains only such sets of weaknesses that an adversary may attempt to exploit
according to the security target. Here the attempts by the adversary do not
correspond to his success; rather, the ToE is meant to employ measures that
make the adversary unsuccessful. It is natural to assume that WC is downwards
closed: if w1,w2 ∈ W, w1 ⊆ w2, and w2 ∈ WC, then also w1 ∈ WC.

The security target for T ′ similarly specifies W ′
C ⊆ W ′. As T ′ has not been

certified yet, our methodology may bring adjustments to the precise definition
of W ′

C; hopefully not reducing it by too much.
To each set of weaknesses of T or T ′ we can attach two (abstract) quantities:

the difficulty (for the adversary) of exploiting this set of weaknesses, and the



seriousness of the effects of successful exploitation by the adversary. We do not
define the structure of these quantities, but we require that there is a (partial)
order on them. Hence we get two preorders on W∪W ′: for two sets of weaknesses
w1 and w2 we write w1 ≺D w2, if exploiting all weaknesses in w1 is no more
difficult for the adversary than exploiting all weaknesses in w2. We also write
w1 ≺S w2 if the effects of exploitingw1 are no worse than the effects of exploiting
w2. A natural corollary of these definitions is, that if w1 ⊆ w2, then also w1 ≺D

w2 and w1 ≺S w2.
It is possible that for some w1 ̸= w2 we have both w1 ≺D w2 and w2 ≺D w1

(denote this w1 ∼D w2), hence ≺D is not an order, but only a preorder. The
same applies to ≺S. It may be difficult to describe all refinements that ≺D and
≺S have with respect to the subset inclusion. However, an imprecise description
does not invalidate the outcomes of our proposed analysis.

We want to show that for each w′ ∈ W ′
C, there exists some w ∈ WC, such

that w ≺D w′ and w′ ≺S w. We thus have to present a function f : W ′
C → WC,

such that f(w′) ≺D w′ and w′ ≺S f(w′) for all w′ ∈ W ′
C. We have found it

easier to present not a function f , but a relation F ⊆ W ′ ×W, requiring that
each w′ ∈ W ′

C is related to at least one element of WC.
Each element of W ′ [resp. W] is a subset of W ′ [resp. W ]; hence it has

the natural representation as a characteristic vector of type W ′ → {0, 1} [resp.
W → {0, 1}]. The entire relation F is thus represented as a boolean function
ϕ : ((W ′ ∪̇W ) → {0, 1}) → {0, 1}, which in turn is conveniently represented as
a boolean formula. The variables of this formula are exactly the weaknesses of
T and T ′.

We say that two systems T and T ′ are similar if there is enough relationships
≺D and ≺S between the corresponding attack sets. If the systems T and T ′ are
sufficiently dissimilar, then the construction of ϕ may fail, because of the lack of
relationships ≺D and ≺S between attack sets w ∈ W and w′ ∈ W ′. Such lack of
(obvious) relationships may inform us of the security mechanisms that we need
to use in T ′ in order to follow our methodology — the security mechanisms used
by T ′ have to be strong enough to justify the addition of ≺D- or ≺S-relationships
between attack sets against T and T ′. These mechanisms may also be necessary
for T ′ to match the security target. If intermediate systems have been introduced,
then the requirements to use stronger security mechanisms may propagate from
T through these systems all the way back to the system T ′.

3 Example

In this section, we show how to use the proposed methodology to compare two
authentication systems, where the user’s browser establishes a secure connection
with a relying party’s (RP) server, and the user is authenticated during this
process. In both systems, the RP server, knowing the public key of the user,
generates a challenge, which has to be signed with the corresponding private
key. The systems differ in how the private key is stored, and how the signature
is generated.



An authentication system has to provide processes for the full lifecycle of a
user’s keypair: how it is generated, how a certificate is issued for it, how the RP
finds the public key, how the challenges are signed, how the key is revoked. A full
comparison of the two systems has to consider all of them. For concreteness, in
this paper we will only focus on the authentication process itself, which includes
the signing, and also some details of the storage of the private key.

The first system T has a smartcard as its centerpiece, containing the user’s
private key, and issuing signatures with it when activated. There exist protection
profiles for such devices [13,12], and a number of cards or chips on the card have
been certified to satisfy them. A typical use of a smartcard is as part of the
Client Certificate Authentication (CCA) in the Transport Layer Security (TLS)
protocol [15].

The second system T ′ uses threshold cryptography [4], sharing the private
key between the user’s phone and a central server. It can be used to authenticate
the client end in an established TLS session. When attempting to directly certify
such a system, it may be difficult to argue that the user has sufficient control
over the private key — neither the phone nor the remote server alone provides
such control.

3.1 Authentication with a smartcard

When a relying party wants to make sure it is talking to a device of a user with
a given public key, it will create a challenge bit-string and ask the device to sign
it. If the corresponding private key is stored in a smartcard, used with a card
reader, then the challenge goes from the client application to the card reader,
then together with the PIN (entered by the user on the PINpad if the card reader
has one, and on the keyboard otherwise) to the smartcard, which checks the PIN
and creates the signature, which then moves back the same way. If there have
been too many wrong entries of the PIN, then the card locks up. The whole
process is displayed as a BPMN diagram in Figure 1, split into relatively atomic
pieces.

The card stores the private key, and the PIN. The user also knows the PIN.
Inside the card, the PIN entered by the user is compared against the PIN that
the card is storing. The environment of the card is protected, meaning that the
PIN and the private key (or any details about it) cannot be read out, and the
logic that it executes cannot be thwarted. The card reader is also protected, in
that the PIN entered on its pad will only be sent to the card and not anywhere
else.

This process, and the protection offered by it is considered a good example
of two-factor authentication, showing that the user knows the PIN (knowledge
factor), and the user has the card (possession factor). It is considered a good
example even if the PIN entry is less isolated from the outside world, i.e. when
the user enters the PIN on the computer.

Weaknesses of a system with a smartcard. In this process, the following
weaknesses can be identified. These are the elements of the set W — the pos-
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sible locations where an adversary could mount an attack. As the system T is
considered secure, none of these locations, or their combinations are actually an
exploitable weakness, i.e. WC = W.
Possible attacks against the relying party

(RP1) Affect the computation of the challenge
(RP2) Learn the challenge
(RP3) Modify the challenge while it is sent to the browser
(RP4) Change the outcome of the signature check
(RP5) Accept the log-in, even if the signature does not check

Possible attacks against the browser

(B1) Learn the challenge
(B2) Modify the challenge while it is sent to the card reader
(B3) Modify the signature while it is sent to the relying party

Possible attacks against the user

(U1) Learn the PIN from the user
(U2) Change the PIN

Possible attacks against the smartcard reader

(SCR1) Learn the PIN that the user entered
(SCR2) Change the challenge that is sent to the smartcard
(SCR3) Change the PIN that is sent to the smartcard
(SCR4) Change the signature while it is sent to the browser

Possible attacks against the smartcard

(SC1) Learn the PIN
(SC2) Interfere with the PIN comparison procedure
(SC3) Make the decision of the PIN check take the other path
(SC4) Make the decision about counts of incorrect PINs take the other path
(SC5) Learn the private key
(SC6) Change the private key
(SC7) Change the challenge that enters the computation of the signature
(SC8) Learn the signature
(SC9) Change the signature sent back to the smartcard reader

3.2 Authentication with SplitKey

In systems relying on threshold cryptography, where the private key is stored in
a secret-shared manner, several storage devices with the shares of the key have to
be present in order to make use of that private key. If all the storage devices offer
strong properties of unclonability, tamper-resistance and similar, then we can
have even stronger security properties for the authentication process, compared
to using just a single device.



However, we typically want to use threshold cryptography in order to reduce
the requirements on the devices storing, and on the procedures for accessing indi-
vidual shares of the private key. If we still want to argue that our authentication
procedure has strong security properties similar to logging in with a smartcard,
then we have to involve the properties of several devices in our arguments.

In particular, the SplitKey technology [2] for signature creation shares the
private key among two devices, such that one of the devices – the phone – does
not offer a strong protection for its key share. Hence, in an authentication system
based on SplitKey, when arguing about the possession of a private key, we have
to involve the second device in our arguments. This involvement may touch
the physical properties of that device, as well as technical and organisational
properties controlling the access to it.

The authentication procedure is depicted in Figure 2, in similar detail to
the previous figure. Let us recall that in SplitKey, an RSA private key has been
shared between the user’s phone and the server, and the keyshare on the phone is
encrypted with a low-entropy key (derived from the PIN that the user enters). If
the adversary has obtained just the encrypted keyshare, then it cannot recognize,
which PIN is the correct one. However, the server can recognize if it has received
a signature share from the phone that has been created with a wrong keyshare.

When the phone has received the challenge, it asks the user to input the
PIN. In order to help the user understand the context, in which the signing of
the challenge is about to occur, the phone shows the user a short control code,
derived from the challenge. The same control code is shown to the user by the
relying party’s website. The user is supposed to enter the PIN only if the control
codes match.

Weaknesses of a SplitKey-based system. Considering the steps in Fig. 2,
we can list the following possible weaknesses.

Attacks against the relying party:

(RP1) Affect the computation of the challenge
(RP2) Learn the challenge
(RP3) Affect the computation of the control code
(RP4) Learn the control code
(RP5) Modify the challenge while it is sent to the phone
(RP6) Change the outcome of the signature check
(RP7) Accept the log-in, even if the signature does not check

Attacks against the browser

(B1) Learn the control code
(B2) Change the control code, when it is shown to the user

Attacks affecting the user

(U1) Learn the PIN from the user
(U2) Change the PIN
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(U3) Cause the user to incorrectly compare the control codes

Attacks against the phone

(P1) Affect the computation of the control code
(P2) Change the control code on the phone screen, where it is shown to the user
(P3) Learn the PIN that the user enters
(P4) Learn the encrypted first keyshare (encrypted with PIN)
(P5) Learn the plain first keyshare
(P6) Change the encrypted first keyshare, before it has been decrypted with the

PIN
(P7) Change the plain first keyshare
(P8) Change the challenge that enters the computation of the first signature

share
(P9) Learn the first signature share
(P10) Change the first signature share
(P11) Interfere with the establishment of the secure channel with the SplitKey

server, thereby obtaining the capability to read and/or change messages
sent over it

(P12) Change the challenge sent to the SplitKey server
(P13) Change the first signature share sent to the SplitKey server
(P14) Change the signature sent to the relying party

Attacks against the Splitkey server

(SS1) Interfere with the establishment of the secure channel with the phone,
thereby obtaining the capability to read and/or change messages sent
over it

(SS2) Interfere with the establishment of the secure channel with the phone,
thereby confusing the server on the identity of the phone

(SS3) Learn the second keyshare
(SS4) Change the second keyshare
(SS5) Change the challenge that goes into the second signature share creation

process
(SS6) Learn the second signature share
(SS7) Interfere with the signature combination process
(SS8) Learn the signature
(SS9) Change the client’s public key, against which the signature is checked
(SS10) Interfere with the signature checking procedure
(SS11) Make the decision of the signature check go otherwise
(SS12) Change the signature sent back to the phone
(SS13) Make the decision about counts of unsuccessful signature creations take

the other path

Among the attacks against the SplitKey system, we can identify the following
relationships for ≺D and ≺S. If the adversary learns both the PIN and the
encrypted first keyshare, then he also has the plain first keyshare: {P5} ≺X

{P3,P4} and {P5} ≺X {U1,P4}, where X may be both D and S. Changing



a value has no greater effect than changing everything that is computed from
this value. In particular, {SS4} ≺S {SS7} ≺S {SS10} ≺S {SS11,SS12} and
{P6} ≺S {P7} ≺S {P12} ≺S {SS7}. The same relationships generally continue
to hold when we add the same additional attacks to both sides of ≺X.

We are using threshold cryptography, where the adversary learning just a
single share of a secret should not yet affect the seriousness of attacks that he
can perform. In particular, we would like to state that {P5} ∪ w ≺S w for a
significant class of attack sets w that do not contain attacks against the second
keyshare. We state this for all w that do not contain SS3 or SS6. Instead of the
set {P5}, we can also consider other sets that imply the knowledge of the first
keyshare or signature share: {P3,P4} and {P9}.

3.3 First intermediate system

The systems T and T ′ are too different for the direct application of the compar-
ison methodology we gave in Sec. 2. As we see below, we can cross this gap by
proposing a couple of intermediate systems.

We change the system T ′ into the system T1, where instead of computing
the first signature share on the phone, we move all the computations into the
Splitkey server. We let the Splitkey server store the user’s private key share
encrypted with the user’s PIN and we send the PIN together with the challenge
from the phone to the SplitKey server. The authentication process in the first
intermediate system is depicted in Figure 3.

Weaknesses of the first intermediate system. Obviously the possible at-
tacks against the relying party, browser, and user are the same as in the SplitKey-
based system, as there have been no changes to this part of the system. Attacks
against the phone and the server have changed; quite often, the change is simply
in the target device.

Attacks against the phone

(P1) Affect the computation of the control code
(P2) Change the control code on the phone screen, where it is shown to the user
(P3) Learn the PIN that the user enters
(P4) Interfere with the establishment of the secure channel with the SplitKey

server, thereby obtaining the capability to read and/or change messages
sent over it

(P5) Change the challenge sent to the SplitKey server
(P6) Change the signature sent to the relying party
(P7) (new) Change the PIN sent to the SplitKey server

Attacks against the SplitKey server

(SS1) Interfere with the establishment of the secure channel with the phone,
thereby obtaining the capability to read and/or change messages sent
over it
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(SS2) Interfere with the establishment of the secure channel with the phone,
thereby confusing the server on the identity of the phone

(SS3) Learn the second keyshare
(SS4) Change the second keyshare
(SS5) Change the challenge that goes into the second signature share creation

process
(SS6) Learn the second signature share
(SS7) Interfere with the signature combination process
(SS8) Learn the signature
(SS9) Change the client’s public key, against which the signature is checked
(SS10) Interfere with the signature checking procedure
(SS11) Make the decision of signature check go otherwise
(SS12) Change the signature sent back to the phone
(SS13) Make the decision about counts of unsuccessful signature creations take

the other path
(SS14) (moved) Learn the PIN received from the phone
(SS15) (moved) Learn the encrypted first keyshare (encrypted with PIN)
(SS16) (moved) Learn the plain first keyshare
(SS17) (moved) Change the encrypted first keyshare, before it has been de-

crypted with the PIN
(SS18) (moved) Change the plain first keyshare
(SS19) (moved) Change the challenge that enters the computation of the first

signature share
(SS20) (moved) Learn the first signature share
(SS21) (moved) Change the first signature share

For the system T1, we can again identify certain relationships for ≺D and ≺S.
All the relationships from T ′ are present, except that some of them have changed
their numbers (and also moved their target from the phone to the server). We
also assume that the different values the server computes during the signature
creation process are equally difficult for an adversary to learn or change; thus
{SS16} ≺D {SS3}, {SS6} ∼D {SS20} ∼D {SS8} and {SS5} ∼D {SS19}.

We also have relationships between the weaknesses of T ′ and T1. We may
assume that if w is a set of weaknesses for both of them (i.e. the names are
the same), then T ′.w ∼S T1.w. If the targets of the weaknesses in w are also
the same, then also T ′.w ∼D T1.w. For example: {T ′.P4} ∼S {T1.SS15}, but
{T ′.P4} ̸∼D {T1.SS15}.

Comparison between T ′ and T1. We can now write down the formula ϕ that
matches each set of attacks against T ′ with a set of attacks against T1. Denote
T ′.K ≡ (T ′.P3 ∧ T ′.P4) ∨ T ′.P5 and T1.K ≡ (T1.SS14 ∧ T1.SS15) ∨ T1.SS16, i.e.
“K” denotes the adversary’s ability to learn the first keyshare. The formula ϕ is
the conjunction of the following statements:

– T ′.RPi ⇔ T1.RPi for i ∈ {1, . . . , 7}
– T ′.Bi ⇔ T1.Bi for i ∈ {1, 2}



– T ′.Ui ⇔ T1.Ui for i ∈ {1, 2, 3}
– T ′.Pi ⇔ T1.Pi for i ∈ {1, 2, 3}
– T ′.Pi ⇔ T1.P(i− 7) for i ∈ {11, 12}
– T ′.P14 ⇔ T1.P6
– T ′.SSi ⇔ T1.SSi for i ∈ {1, . . . , 13}
– (T ′.K and T ′.SS3) ⇔ (T1.K and T1.SS3)
– (T ′.K and T ′.SS6) ⇔ (T1.K and T1.SS6)
– (T ′.P9 and T ′.SS3) ⇔ (T1.SS20 and T1.SS3)
– (T ′.P9 and T ′.SS6) ⇔ (T1.SS20 and T1.SS6)

Sets of attacks against the relying party, browser and user have not changed,
therefore the sets from the SplitKey system are equivalent to the corresponding
sets in the first intermediate system. Also, certain attacks against the phone and
the SplitKey server are the same in both systems as these are not connected to
the changes we introduced in the first intermediate system.

Attacks involving the adversary learning one or both shares of the key and the
signature are the most interesting ones. As the discussion of ≺S above shows, we
can disregard attacks where the adversary learns only one of the shares, as they
are no more powerful than learning no shares at all. The last four equivalences
above state that if an attack set w against T ′ allows the adversary to learn a first
share (of the private key, or the signature) and a second share, then we match
it with an attack set w′ against T1 where the adversary also learns the same
first share and the same second share. The seriousness of these attacks is the
same — T ′.w ∼S T1.w

′, because the adversary obtains the same knowledge and
interferes with the same operations. The difficulty is also the same, although the
phone should be easier to attack than the Splitkey server — the set w contains
either T ′.SS3 or T ′.SS6, hence w′ contains either T1.SS3 or T1.SS6, but these
are at least as difficult to perform as T1.SS16 or T1.SS20.

3.4 Second intermediate system

We change the system T1 into the system T2, where instead of computing a
combined signature from two signature shares, the Splitkey server generates a
single signature using a single private key. The private key is not encrypted
with the user’s PIN. Instead, the server verifies the correctness of the user’s
PIN received together with the challenge, by comparing the PIN received from
the phone with one stored on the server side. The authentication process in the
second intermediate system is depicted in Figure 4.

Weaknesses of the second intermediate system. Attacks against the re-
lying party, browser, user, and phone are the same as for the first intermediate
system.

Attacks against the Splitkey server

(SS1) Interfere with the establishment of the secure channel with the phone,
thereby obtaining the capability to read and/or change messages sent
over it
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(SS2) Interfere with the establishment of the secure channel with the phone,
thereby confusing the server on the identity of the phone

(SS3) Learn the PIN received from the phone
(SS4) Interfere with the PIN verification process
(SS5) Make the decision of PIN check take the other path
(SS6) Make the decision about counts of incorrect PINs take the other path
(SS7) Learn private key
(SS8) Change private key
(SS9) Change the challenge that goes into the signature creation process
(SS10) Learn the signature
(SS11) Change the signature sent back to the phone

The second intermediate system is simpler than the first one because thresh-
old cryptography is no longer used. We again have relationships between weak-
nesses of T1 and T2: we assume that learning the private key from the Splitkey
server of T2 is not harder than learning the second keyshare from the Splitkey
server of T1. We hence have {T2.SS7} ≺D {T1.SS3}. We also have {T1.SS3} ≺S

{T2.SS7}: learning the whole private key definitely has at least as serious conse-
quences as learning only one keyshare.

Comparison between T1 and T2. We can now write down the formula ϕ that
matches each set of attacks against T1 with a set of attacks against T2. It is the
conjunction of the following statements:

– T1.RPi ⇔ T2.RPi for i ∈ {1, . . . , 7}
– T1.Bi ⇔ T2.Bi for i ∈ {1, 2}
– T1.Ui ⇔ T2.Ui for i ∈ {1, 2, 3}
– T1.Pi ⇔ T2.Pi for i ∈ {1, . . . , 7}
– T1.SSi⇔ T2.SSj for (i, j) ∈ {(1, 1), (2, 2), (14, 3), (10, 4), (11, 5), (13, 6), (8, 10), (12, 11)}
– (((T1.SS14 and T1.SS15) or T1.SS16 or T1.SS20) and (T1.SS3 or T1.SS6)) ⇔

T2.SS7
– (T1.SS4 or T1.SS17 or T1.SS18) ⇔ T2.SS8
– (T1.SS5 or T1.SS19 or T1.SS7) ⇔ T2.SS9

Sets of attacks against the relying party, browser, user and phone have not
changed as we have not introduced changes to these parts of the system. Addi-
tionally, certain attacks against the SplitKey server are the same in both systems
as these are not related to the changes we introduced in T2. In T2, we have a
single private key that is stored on the SplitKey server. It means that we can
match a combination of attacks that retrieve keyshares from T1 against a single
attack in T2, where the adversary extracts the private key from the SplitKey
server. Similarly, attacks changing challenges, keyshares, or signature shares, or
interfering with the combination of signatures in T1 are no worse than the attack
changing the challenge, key, or signature in T2.

In T1, the PIN is used to decrypt the first keyshare at the server, and only a
single PIN can make the following signature check succeed. Hence it makes sense



to state that the attacks T1.SS10 on interfering with the signature check, and
T1.SS11 on subsequently changing the control flow, are the same as the attacks
T2.SS4 and T2.SS5 that interfere with the comparison of PINs and subsequent
branching.

3.5 Comparing the second intermediate system and the smartcard
system

The attacks against the smartcard system T have been described in Sec. 3.1.
There is still a significant difference between T2 and T , due to the use of different
hardware components, but as we see below, we can overcome this by introducing
and justifying ≺D-relationships among the attacks against T2 and T .

Comparison between T2 and T . The formula ϕ is the conjunction of the
following statements:

– T2.RPi ⇔ T .RPi for i ∈ {1, 2}
– T2.RPi ⇔ T .RP(i− 2) for i ∈ {5, 6, 7}
– T2.Ui ⇔ T .Ui for i ∈ {1, 2}
– T2.Pi ⇔ T .SCRj for (i, j) ∈ {(3, 1), (5, 2), (7, 3), (6, 4)}
– T2.SSi ⇔ T .SC(i− 2) for i ∈ {3, . . . , 11}
– T2.P4 or T2.SS1 ⇔ T .SCR1 and T .SCR2 and T .SCR3 and T .SC9

Most of the attacks against the relying party and user are the same in both
systems. One difference comes from the fact that smartcard system does not have
Control Codes, thus, the attacks against them in T2 are vacuously successful in T .
We matched a set of attacks against the phone in T2 against similar attacks tar-
geting smartcard reader in the smartcard system. We have not matched T2.RP3,
T2.RP4, T2.B1, T2.B2, T2.P1, and T2.P2 with anything in T as all of these at-
tacks are related to the Control Codes and the smartcard system does not have
this protection mechanism employed.

The set of attacks against the SplitKey server in T2 is almost identical to
the set of attacks against the smartcard in the smartcard system, except at-
tacks related to the communication channel. However, the SplitKey server and
smartcard have different hardware, hence we need to introduce the relationships
{T.SCi} ≺D {T2.SS(i + 2)} for the analysis to go through. Also, the attacks
related to the communication channel in T2 are matched with the set of attacks
where the adversary learns and changes the values sent over that channel (e.g.
PIN, challenge), and this again requires extra ≺D-relationships. These require-
ments on ≺D are discussed below.

3.6 Propagation of the security requirements

We described which attacks are equivalent to each other in the neighbouring
systems. Now, we analyse these to identify security requirements that should be



in place in the SplitKey system for the above listed attacks to be equivalent to
each other.

The communication channel between the phone and SplitKey server must of-
fer the same level of protection as smartcard system offers against SCR1, SCR2,
SCR3, SC9 attacks. This requirement arises when we move from the second inter-
mediate system to the smartcard system, as attacks against the communication
channel are removed at this point. However, we identified that attacks against
the communication channel are equivalent to the attacks against the smartcard
system that involve learning and modifying information sent to the smartcard.
The requirement of protecting the communication channel propagates through
T2 and T1 back to T ′.

We introduced the relationship {T.SC5} ≺D {T2.SS7}, requiring that the
Splitkey server protects the private key at least as strongly as the smartcard.
The same requirement holds for T1, except that there is no private key in T1. We
can verify that it will be sufficient to strongly protect only the second keyshare:
{T2.SS7} ≺D {T1.SS3}. The same requirement propagates to T ′.

It should be as hard to interfere with the signature verification process in the
SplitKey server as it is to interfere with the PIN verification in the smartcard.
There are attacks targeting the PIN verification process in the smartcard sys-
tem and in T2. However, T1 and T ′ have attacks against signature verification.
Signature verification in the SplitKey system serves to verify whether the user
correctly decrypted their part of the private key to create their signature share,
meaning that the user entered the correct PIN code. In the smartcard system,
the PIN is verified straightforwardly by comparing the code stored in the card
with the one received from the user.

It should be as hard to interfere with the signature creation/combination
process in the SplitKey server as it is in the smartcard system. In the smartcard
system and in T2, the adversary can modify the challenge that enters the com-
putation of the signature. In T1 and T ′, the adversary can modify challenges for
two signature shares — on the phone side and on the server side. If the SplitKey
server receives an incorrect signature share from the phone and decides not to
discard it but use it further, it means that it can successfully execute attacks
against the signature verification process, that were covered in the previous re-
quirement. Therefore, in this requirement, we focus on the server side attacks,
where the adversary can not only change the challenge for the second signature
share but also interfere with the signature combination process.

It should be as hard to change the server’s private key share that is used to
create the signature in the Splitkey server as it is in the smartcard system. In the
smartcard system and T2, adversary can attempt to change the single private
key that will be used to create signature. In T1 and T ′, the adversary may target
two shares of the private key. With the modified user’s share of the private
key, adversary will create a signature share that will not pass the verification
procedure. If the server decides to use incorrect signature share, it means that
one can execute attacks against signature verification that were covered before.
Therefore, this requirement again focuses on the modifications on the server side.



It should be as hard to capture the PIN entered by the user from the phone as
it is to capture the PIN from the smartcard reader. Starting from the smartcard
system, where the PIN is sent to the smartcard through the smartcard reader
this requirement propagates all the way back to the SplitKey system, where
the user enters the PIN in the phone. It may be difficult to argue that this
requirement is satisfied, if a smartcard reader with PINpad is used in T . It will
be easier to argue for it, if computer’s keyboard is used in T .

4 Conclusion

We have presented the case that comparison-based arguments can be useful for
providing the evidence that a system satisfies certain security properties, and, in
particular, that a ToE satisfies a Security Target. It remains to be determined,
how scalable the proposed methodology is – how much effort this methodology
will require in different practical applications for evolving and novel ToEs, and
what kind of tool support will be useful. The proposed methodology also needs
evaluation by certification laboratories.

In our example, we have compared authentication systems. We hope that it
is possible to similarly show that a threshold cryptography based system may be
a qualified electronic signature creation device (QSCD) [6], by again comparing
it to systems making use of smartcards.
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ABSTRACT
This paper formalises the claim that security properties of Internet voting are
stronger than those of paper-based postal voting. For that, we make use of
a sequence-of-games approach common in the cryptographic research. We build
BPMN models of both of the systems, presenting explicit reductions and inter-
mediate games. Our comparison is based on the example of Estonian IVXV i-voting
system and postal voting available for the expatriates.

1. Introduction

Voting is a well-established method of collective decision-making, with its roots being
tracked back as far as ancient Greece Boegehold (1963). Even though the general prob-
lem setting of voting is simple, its implementation has turned out to be challenging. In
case of political elections, the power to take impactful decisions is distributed. Hence,
fairness of the whole process has to be ensured in order to guarantee that this power
is vested in the representatives truly preferred by the society. The problem is, fairness
is a notion having many dimensions.

On one hand, we want the elections to satisfy generality and uniformity require-
ments (every eligible voter can cast one vote, and only one). In order to guarantee
these properties, we have to make sure that no votes are unduly discarded, but at the
same time there should be no extra votes entering the tally. On the technical imple-
mentation level, such guarantees are provided by a number of security measures. In the
polling stations, voter identities are verified, and several physical and organisational
security mechanisms are put in place to prevent ballot box stuffing.

At the same time, we also want to guarantee voter’s freedom in his/her decision. In
physical polling stations, this property is typically achieved via secret voting, imple-
mented by putting polling booths in place.

However, on-site polling station voting also has its drawbacks. It requires all the
voters to come to a single geographical point in a short period of time. In the era of
globalized world with highly mobile people, this is less and less of an option. Recent UN
Migration report states that in 2020 there were 281 million migrants internationally,
constituting 3.6 per cent of the world’s population. This number has been growing
steadily during the last decades World Migration Report 2022 (n.d.). Also, during
the COVID-19 pandemic, large-scale gatherings of people were discouraged, implying
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significant challenges for election organisers Cotti, Engelhardt, Foster, Nesson, and
Niekamp (2021); Landman and Splendore (2020).

Thus, other voting methods allowing to cast votes remotely are required. Currently,
there are two major alternatives – postal and Internet voting Krimmer, Duenas-Cid,
and Krivonosova (2021). Even though some form of remote voting apparently took
place already in the Roman Empire, systematic postal voting can be tracked back to
late 19th century USA, New Zealand and Australia Abeels (2021).

Internet voting, also referred to as i-voting, is of course much more recent. However,
in the last twenty years, several countries including Australia Brightwell, Cucurull,
Galindo, and Guasch (2015); Conway and Teague (2022), Canada Goodman, Spycher-
Krivonosova, Essex, and Brunet (2023), Estonia Ehin, Solvak, Willemson, and Vinkel
(2022a), France Blanchard, Gallais, Leblond, Sidhoum-Rahal, and Walter (2022); De-
bant and Hirschi (2023), Norway Gebhardt Stenerud and Bull (2012); Gjøsteen (2012),
Russia Gaudry and Golovnev (2020); Vakarjuk, Snetkov, and Willemson (2022) and
Switzerland Haines, Pereira, and Teague (2022) have had elections with possibility to
cast votes via Internet.

Both of these approaches have their own merits and shortcomings. Postal voting
is easily accessible to anyone with basic literacy skills and access to a postal service.
Internet voting, on the other hand, allows for better vote secrecy protection for the
vote in transit, and enables stronger identity verification.

This paper aims at formalising the latter intuition and formally comparing the
security properties of postal and Internet voting. Our first contribution is constructing
detailed models using Business Process Modeling Notation (BPMN) of the vote casting
phase for the i-voting and postal paper voting based on the case of Estonia. Estonia
is the country with the longest continuous practice of i-voting for political elections,
and this practice is very well documented, allowing for a fine-grained analysis.

Our main contribution is in constructing the reductions from the i-voting process to
the postal voting through the sequence of intermediate systems, following the approach
of game-based security proofs. Our reduction aims to show that the security properties
of the i-voting system are stronger compared to those of the postal voting.

2. Related work

There is an extensive body of research on the security of remote electronic voting (see
e.g. Bannet, Price, Rudys, Singer, and Wallach (2004); Moynihan (2004a, 2004b);
Teague (2021); Vegas and Barrat (2016)), but also postal voting Abeels and Pereira
(2021); Benaloh (2021); Luechinger, Rosinger, and Stutzer (2007). As Estonia is still
the prime example of a country using Internet voting for political elections, its case
has received extra treatment in the literature Heiberg, Laud, and Willemson (2011);
Müller (2022); Pereira (2022); Springall et al. (2014); Sutopo, Haines, and Roenne
(2024).

There are also a number of attempts to propose a methodology for the comparative
analysis of voting systems. Krimmer and Volkamer Krimmer and Volkamer (2005)
introduced a catalogue of criteria which could be used as a framework to compare dif-
ferent remote voting systems from legal, technology and security point of view. They
applied this catalogue to compare postal and e-voting procedures used to elect chair-
man the chairman of the German Informatics Society in 2004. Willemson Willemson
(2018) provided analysis and comparison of different security aspects of paper-based
voting and e-voting. Musial-Karg Musial-Karg (2016) studied polling station, postal
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and electronic voting focusing usability and their affect on democracy though omitting
the security aspect. Li et al. developed a taxonomy to analyze the security require-
ments set for remote voting schemes Li, Kankanala, and Zou (2014). Neumann et al.
constructed an evaluation framework for Internet voting schemes that enables to in-
corporate the expertise of system analysts and election officials Neumann, Noll, and
Volkamer (2017). Juvonen composed a very thorough framework for comparing secu-
rity levels of different voting schemes based on various dimensions of requirements Ju-
vonen (2019). Krips et al. attempted to compare security levels of voting systems in
terms of sets of trust assumptions Krips, Snetkov, Vakarjuk, and Willemson (2023).

As the number of requirement dimensions is very high for voting, all of the above
approaches typically end up concluding that the security levels of specific voting sys-
tems are incomparable. Our aim is to develop a methodology allowing to establish a
strict relationship between two modes of voting. Of course, this methodology can not
be expected to be universal as the multi-dimensionality problem is inherent to voting
as a general problem setting. However, we will show that for the voting modes of our
choice (Internet and postal), such a formal comparison can be completed.

3. Methodology

For the comparison of voting systems we adapt the methodology from Laud et al. Laud
and Vakarjuk (2022), which can be divided into following steps:
(1) construct models of the systems that need to be compared;
(2) identify the main data elements, processes and decision points that can be tar-

geted by the adversary;
(3) construct lists of the system weaknesses by analysing the identified data elements,

processes and decision points in the system;
(4) identify the relations between the listed weaknesses;
(5) compare the sets of weaknesses for both systems.
First, we construct the models of the systems we want to compare. In this work,

we are using Business Process Model and Notation (BPMN) to create detailed models
of the analysed voting systems. The BPMN diagrams allow modeling the steps of the
voting process in details, depicting visually the sequence of activities performed by
the protocol participants. Additionally, BPMN diagrams model the information flows
that are needed to complete the process, while making it explicit which data elements
are used for which processes. Based on the constructed models, we identify all the
information components (data elements), processes and decision points that can be
targeted by the adversary.

We denote i-voting system as Si-voting and postal-voting system as Spostal-voting. Next,
we create a list of weaknesses of the system Wi-voting for the i-voting and Wpostal-voting

for the postal voting by analysing each identified data element in the storage, trans-
mission and processing steps. Additionally, we analyse during which processes and
computations the adversary may get access to or tamper with the data elements.
We also analyse all the decision points from the process model, and identify how the
adversary can interfere with the decision making process. The adversary may either
exploit the identified weaknesses fully or not exploit them at all. The weaknesses are
grouped in the sets based on which party’s process or data element is targeted. Table 1
presents our classification for the types of attacks adversary may perform targeting
system weaknesses. It also illustrates how the identified attacks are related to the main
security requirements for the voting systems.
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Table 1. Attack classification

Attack type Explanation Targeted property

Read, learn Reading/learning a data element that
is not supposed to be learned

Vote secrecy, authenticity

Modify Modifying a data element or interfer-
ing with the computations involving
that data element, resulting in modi-
fications of the data

Vote integrity, ballot box in-
tegrity

Delete, delay Prevent a data element from being de-
livered to the destination

Ballot box integrity

Create, forge, replace Introduce new adversary-provided
data elements into the system

Ballot box integrity, authentic-
ity

Next, we analyse the weakness sets and identify relations between them. There are
two types of relations that we consider:

• ≺S compares seriousness of a successful attack. For the weakness sets w1 and
w2, we write w1 ≺S w2 to denote that the effects of exploiting all the weaknesses
in w1 are no worse than the effects of exploiting w2.

• ≺D compares difficulty of performing attack. For the weakness sets w1 and w2,
we write w1 ≺D w2 to denote that exploiting all the weaknesses in w1 is no
more difficult than exploiting all weaknesses in w2.

To find the relations between the weaknesses, we start by identifying what is the result
of exploiting the weakness. The next step is to find another weakness or combination
of weaknesses exploitation of which leads to the same results.

Our final goal is to compare sets of weaknesses for both systems Si-voting and
Spostal-voting to show that for each weakness w′ ∈ Wpostal-voting, there exists some
w ∈ Wi-voting, such that w ≺S w′ and w ≺D w′. However, we are only able to
identify relations ≺D and ≺S if the systems are similar enough in the processes and
usage of data elements. If the systems are not sufficiently similar, we need to introduce
intermediate systems, like it is done in the game-based security proofs for the cryp-
tographic systems Shoup (2004). As is the case with its cryptographic counterpart,
intermediate systems are not necessarily realistic or deployable in the real-life. The
goal of introducing them is to arrive from one system to another through changes
small enough to allow for immediate analysis. We also can identify security require-
ments and mechanisms that should be in place for the systems Si-voting and Spostal-voting

to be comparable.

4. Comparison

In this work, we focus on comparing vote casting phase of i-voting to the postal voting.
Our comparison is based on the Estonian voting process as Estonia is a country with
an established i-voting system in operation since 2005. We refer to Ehin et al. for some
historic background and a general overview of the system Ehin, Solvak, Willemson,
and Vinkel (2022b).

4.1. I-voting

In the Estonian i-voting system (code-named IVXV), the voter (V) uses a dedicated
voting application (VA) to cast the vote. The voter is first required to authenticate
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him/herself through the application. Then the voter makes the choice, which is first
encrypted under the system’s public key and then digitally signed with the voter’s
signing device (SD). IVXV currently supports signing with a smartcard-based eID,
but in our model we decided to make digital signature creation more general, requiring
the voter to have a knowledge factor (that can be a PIN code) and a possession factor
(that can be a smartcard with the signing key). The voting application then generates
and displays a QR code that the voter can use to verify the vote using the verification
application (VRA) Heiberg and Willemson (2014).

The votes are sent to the vote collector (VC) server that is responsible for stor-
ing them in the Vote database (Vote DB) before the vote casting phase ends. Vote
collector interacts with the Online Certificate Status Protocol (OCSP) service to get
information about the voter’s public key validity, and registration service (RS) to
obtain timestamps on the received votes. Registration service stores generated times-
tamps in the Timestamp database (Timestamp DB). Estonian i-voting system allows
voters to recast their vote as an anti-coercion measure, but in the current comparison
we omitted this functionality as it is challenging to model the relation between attack
sets if the adversary may get access to different data elements in different vote casting
processes performed by the same voter. The general diagram of the i-voting processes
is presented in Appendix A, Figure A1.

4.1.1. Weaknesses of the i-voting system

We now list sets of weaknesses that the adversary, corrupting the main participants,
may exploit. We consider different levels of corruption while listing the weaknesses,
including full corruption and being able to modify some data elements in the system.
We note that some of the listed weaknesses may be impossible to exploit within a
meaningful timeframe. Interfering with some process refers to the adversary changing
the values that are involved in the process (both inputs and outputs) – encryption
key, verification key, PIN code, etc. To take another path refers to the weakness in
verification procedures, where the adversary makes the verification process accept
even if it should not, and vice versa.

The following weaknesses (forming the set Wi-voting) were identified using our
methodology.

4.1.1.1. Possible attacks against the voter.

(V1) Learn the voter’s choice;
(V2) Modify the voter’s choice;
(V3) Stop the voter from casting their choice;
(V4) Learn the knowledge factor from the voter;
(V5) Modify the knowledge factor that is sent to the signing device;
(V6) Interrupt the voter during vote verification process.

4.1.1.2. Possible attacks against the signing device.

(SD1) Learn the knowledge factor;
(SD2) Get access to possession factor;
(SD3) Interfere with the knowledge factor verification procedure;
(SD4) Make the decision of the knowledge factor verification to take another path;
(SD5) Learn the private key;

5



(SD6) Modify the private key;
(SD7) Learn the challenge;
(SD8) Modify the challenge that enters the computation of the signature;
(SD9) Learn the signature;
(SD10) Modify the signature sent back to the smartcard reader.

4.1.1.3. Possible attacks against the voting application.

(VA1) Learn the voter’s identity;
(VA2) Interfere with the ballot generation;
(VA3) Modify blank ballot that is displayed to the voter;
(VA4) Learn the voter’s choice;
(VA5) Interfere with the processing of the voter’s choice;
(VA6) Interfere with the encryption process (e.g. modify encryption randomness, en-

cryption key, plaintext);
(VA7) Learn the encryption randomness;
(VA8) Learn the ciphertext (encrypted ballot);
(VA9) Learn the signature;
(VA10) Modify the signature received from the signing device;
(VA11) Modify the vote that is sent to the VC;
(VA12) Interfere with the OCSP response verification process;
(VA13) Make the decision of the OCSP response verification to take another path;
(VA14) Interfere with the RS’s signature verification process;
(VA15) Make the decision of the RS’s signature verification to take another path;
(VA16) Interfere with process of recomputing hash;
(VA17) Interfere with the hash correctness verification process;
(VA18) Make the decision of the hash correctness verification to take another path;
(VA19) Interfere with the VC’s signature verification process;
(VA20) Make the decision of the VC’s signature verification to take another path;
(VA21) Interfere with the QR code generation process;
(VA22) Display a modified QR code;
(VA23) Learn the QR code;
(VA24) Interfere with the establishment of secure channel with VC, obtaining the

capability to read/modify/drop messages sent over the channel;
(VA25) Do not to send the vote to VC.

4.1.1.4. Possible attacks against the vote collector.

(VC1) Learn the voter’s identity from the received vote;
(VC2) Interfere with the voter eligibility verification process;
(VC3) Make the decision of the voter eligibility verification to take another path;
(VC4) Interfere with the vote format verification process;
(VC5) Make the decision of the vote format verification to take another path;
(VC6) Interfere with the signature verification process;
(VC7) Make the decision of the signature verification to take another path;
(VC8) Interfere with the OCSP response verification process;
(VC9) Make the decision of the OCSP response verification to take another path;
(VC10) Delete the OCSP response;
(VC11) Interfere with the qualified signature combining process;
(VC12) Interfere with the vote ID generation;
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(VC13) Learn the VC’s private key;
(VC14) Modify the VC’s private key;
(VC15) Interfere with the challenge generation;
(VC16) Modify the registration request that is sent to the RS;
(VC17) Decide not to send the registration request to the RS;
(VC18) Interfere with the establishment of secure channel with the RS, obtaining the

capability to read/modify/drop messages sent over the channel;
(VC19) Modify the timestamp received from the RS;
(VC20) Delete the timestamp;
(VC21) Modify a record in the in Vote DB;
(VC22) Delete a record from the Vote DB;
(VC23) Add a forged record to the Vote DB;
(VC24) Decide not to notify the VA that the vote is received;
(VC25) Modify the confirmation information sent to the VA;
(VC26) Interfere with the process of finding the correct vote in the Vote DB;
(VC27) Modify the vote that is sent to the VA.

4.1.1.5. Possible attacks against the registration service.

(RS1) Modify the registration request received from the VC;
(RS2) Interfere with the VC’s signature verification process;
(RS3) Make the decision of the VC’s signature verification to take another path;
(RS4) Interfere with the vote registration process;
(RS5) Learn the RS’s private key;
(RS6) Modify the RS’s private key;
(RS7) Modify the challenge that enters signature computation;
(RS8) Interfere with the timestamp combination process;
(RS9) Modify a timestamp that is stored in the Timestamp DB;
(RS10) Modify a timestamp that is sent to the VC;
(RS11) Add a forged timestamp to the Timestamp DB;
(RS12) Delete a timestamp from the Timestamp DB.

4.1.1.6. Possible attacks against the verification application.

(VRA1) Interfere with the QR code scanning process;
(VRA2) Query a modified vote ID from the VC;
(VRA3) Interfere with the establishment of a secure channel with the VC, obtaining

the capability to read/modify/drop messages sent over the channel;
(VRA4) Interfere with the vote format verification process;
(VRA5) Make the decision of the vote format verification to take another path;
(VRA6) Interfere with the signature verification process;
(VRA7) Make the decision of the signature verification to take another path;
(VRA8) Interfere with the OCSP response verification process;
(VRA9) Make the decision of the OCSP response verification to take another path;
(VRA10) Interfere with the VC’s signature verification process;
(VRA11) Make the decision of the VC’s signature verification to take another path;
(VRA12) Interfere with the RS’s signature verification process;
(VRA13) Make the decision of the RS’s signature verification to take another path;
(VRA14) Modify the vote received from the VC;
(VRA15) Interfere with the restoration of the plaintext;
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(VRA16) Display a wrong plaintext to the voter;
(VRA17) Learn the voter’s choice.

4.1.2. Relations between the attacks

Some of the identified attacks are tightly connected to each other. For example, an
attack may not be serious on its own, but, when combined with other attacks, results in
exploitation of a critical weakness. Another example of a relation between the attacks
is that several different attacks, when successful, are leading to the same results.
Therefore, we need to analyse which attacks are related to each other, easing the
comparison of the intermediate systems.

First, we notice that changing a data element has no greater effect than changing
the other data elements that are computed from this value. For example, interfering
with the encryption process leads to a modified encrypted ballot. Therefore, exploiting
the weakness ”interfere with encryption process” (VA6) is at least as serious (≺S) as
exploiting the weakness ”modify vote” (VA11), because the vote contains the encrypted
ballot. We denote this relation as VA6 ≺S VA11. Similarly, we identify the following
relations:

• The attacks V2,VA5 result in a modified voter’s choice and can be related by
V2 ≺S VA5.

• The attacks VA21,VA22,VRA1 result in a modified QR code and can be related
by VA21 ≺S VA22 ≺S VRA1.

• The attacks SD6, SD8,SD10,VC6,VC7 result in a modified (voter’s) signature
(that may not pass verification) and can be related by (SD6 or SD8) ≺S SD10 ≺S

VC6 ≺S VC7.
• The attacks VC14,VC15,RS2,RS3 result in a modified VC’s signature (that may
not pass verification) and can be related by (VC14 or VC15) ≺S RS2 ≺S RS3.

• The attacks RS6,RS7,RS8,VRA12,VRA13 result in a modified RS’s signature
(that may not pass verification) and can be related by (RS6 or RS7) ≺S RS8 ≺S

VRA12 ≺S VRA13.
• The attacks V5, SD3,SD4 result in a modified knowledge factor (that may not
pass the verification process) and can be related by V5 ≺S SD3 ≺S SD4

• The attacks V3,VA25,VC22 result in not having the voter’s choice included in
the ballot box and can be related by V3 ≺S VA25 ≺S VC22.

However, modifying an encrypted ballot or a signature does not always result in
a new valid ciphertext (that could be decrypted to a meaningful ballot) or a valid
signature (that passes the verification process). The adversary may try to exploit
those weaknesses not only to change the voter’s choice, but also to invalidate the vote.
If the signature verification on the modified encrypted ballot does not pass, the vote
will not be counted in the final tally.

Now, let us look at different types of relations, where several attacks can be combined
into a more serious one.

• The encrypted ballot can be decrypted using the encryption randomness and the
public key. The resulting relation is (VA23 or VA7) and VA8 ≺S VA4.

• If the adversary is able to obtain a digital signature and the encrypted ballot
(that are used to construct the vote), they are able to learn the voter’s identity.
The resulting relation is (VA9 and VA8) ≺S VA1.

• Learning the voter’s knowledge factor and obtaining access to the possession
factor results in having access to the private (signing) key. The resulting relation
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is (V4 or SD1) and SD2 ≺S SD5.

4.2. Postal voting

If the voter wishes to cast their vote from abroad, they may do so by means of postal
voting. In this case, the voter is required to submit a written application to the foreign
mission (FM) expressing their wish to cast a vote Riigikogu Election Act (14.12.2020).
If the application gets approved, the voter is sent a ballot, a candidate list and two
envelopes (inner envelope and outer envelope). The voter fills in the ballot and seals
it into the inner envelope. The inner envelope is then placed into the outer one. Next,
the voter writes their name and identification code on the outer envelope and sends
it to the foreign mission through the postal service (PS). The foreign mission sends
the received votes to the State Electoral Office (EO), who later forwards those to the
designated vote counting committees. A detailed postal voting diagram is presented
in Appendix A, Figure A2.

4.2.1. Weaknesses of the postal voting system

The following weaknesses (forming the set Wpostal-voting) have been identified using our
methodology.

4.2.1.1. Possible attacks against the voter.

(V1) Learn the voter’s choice;
(V2) Modify the voter’s choice;
(V3) Stop the voter from casting their choice;
(V4) Create a signature (voter identification data) on behalf of voter;
(V5) Remove a signature (voter identification data) from the outer envelope;
(V6) Modify a signature (voter identification data) on the outer envelope;
(V7) Modify a blank ballot;
(V8) Modify the voter’s choice on the filled ballot;
(V9) Modify an envelope.
(V10) Modify the candidate list.

4.2.1.2. Possible attacks against the postal service.

(PS1) Modify
(a) a blank ballot,
(b) a candidate list,
(c) an envelope
before it is delivered to the voter;

(PS2) Delay delivery of a package with the documents for voting;
(PS3) Open a package and modify

(a) an envelope,
(b) a filled ballot
before it is delivered to the FM;

(PS4) Learn the voter’s choice;
(PS5) Delay delivery of a package to the FM;
(PS6) Open a package and modify

(a) an envelope,
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(b) a filled ballot
before it is delivered to the EO;

(PS7) Delay delivery of a package to the EO;

4.2.1.3. Possible attacks against the foreign mission.

(FM1) Learn the voter’s identity from the received vote;
(FM2) Interfere with the voter eligibility verification process;
(FM3) Make the decision of the voter eligibility verification to take another path;
(FM4) Open envelopes and reveal the vote;
(FM5) Learn the voter’s choice;
(FM6) Modify the voter’s choice;
(FM7) Remove (destroy) a physical envelope;
(FM8) Modify a physical envelope (or voter data on it);
(FM9) Create and store a forged physical envelope;
(FM10) Interfere with the process marking that the vote is received;
(FM11) Do not send a vote to the EO.

4.2.1.4. Possible attacks against the state electoral office.

(EO1) Modify received envelopes;
(EO2) Modify a filled ballot;
(EO3) Learn the voter’s choice;
(EO4) Remove the ballot of a specific voter;
(EO5) Delay forwarding ballots to the vote counting committees.

Similarly to how we identified relationships between the attacks for the i-voting
system, we identify the following attack relationships among the attacks against the
postal voting system:

• The attacks V3,FM7,FM11,EO4 result in the voter’s choice not being recordered
in the system. The resulting relation is V3 ≺S FM7 ≺S FM11 ≺S EO4.

It is not possible to directly compare the i-voting system to the postal voting system
as the processes are too different from each other, and we cannot construct enough
≺S and ≺D relationships between the weakness sets. Therefore, we describe three
intermediate systems. We start from i-voting and introduce small changes to the system
until we receive one that is closer to the postal voting. For each of the introduced
intermediate systems we provide a comparison with the previous system, constructing
relationships for ≺S and ≺D and identifying differences between the systems.

4.3. The first intermediate system

We change the i-voting system by removing the usage of digital signatures and re-
placing them with handwritten ones. To enable the voter to provide a handwritten
signature, we introduce the following modification – once the vote is encrypted, the
ciphertext is printed out on paper by the voter. The voter is then required to provide
a handwritten signature, scan the signed ciphertext and upload the scanned document
with the help of the voting application to the vote collector server.

There are two more places in the system where the digital signatures are gener-
ated – on the vote collector side and on the registration service side. Those are also
replaced with handwritten signatures. The vote collector is required to sign a printed
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registration request that is then scanned and sent to the registration service. The reg-
istration service signs the printed response (containing a timestamp) that is scanned
and sent back to the vote collector. Since there is no clear verification procedure for
the handwritten signatures, we replace it with a verifying party visually checking that
the signature is in place. The corresponding diagram is presented in Appendix A,
Figure A3.

4.3.1. Weaknesses of the first intermediate system

Below, we describe the modifications to the weakness sets that are introduced due to
the changes in the system. There are no modifications to the set of possible attacks
against the registration service. Additionally, we remove the attack set related to
the signing device, as this component is removed from the model.

We remove the knowledge factor-related attacks from the set of possible attacks
against the voter, since those are not applicable anymore. We add the following
attacks:

(V′1) Interfere with the encrypted ballot printing process;
(V′2) Modify the signature on the printed encrypted ballot;
(V′3) Remove the signature from the encrypted ballot;
(V′4) Create a handwritten signature on behalf of the voter;
(V′5) Interfere with the vote scanning procedure.

We remove the attacks related to digital signatures from the set of possible attacks
against the voting application as those are not applicable. We add the following
attacks:

(VA′1) Make the decision on RS’s signature presence to take another path;
(VA′2) Make the decision on VC’s signature presence to take another path;

We remove the attacks related to digital signatures from the set of possible attacks
against the vote collector as those are not applicable. We add the following attacks:

(VC′1) Make the decision on signature presence to take another path;
(VC′2) Modify the vote received from the VA;
(VC′3) Interfere with the vote hash printing procedure;
(VC′4) Modify the signature on the printed vote hash;
(VC′5) Remove the signature from the vote hash;
(VC′6) Create a handwritten signature on behalf of the vote collector;
(VC′7) Interfere with the signed vote hash scanning procedure.

We remove the attacks related to digital signatures from the set of possible attacks
against the registration service as those are not applicable. We add the following
attacks:

(RS′1) Make the decision on VC’s signature presence to take another path;
(RS′2) Interfere with the request printing procedure;
(RS′3) Modify the signature on the printed request;
(RS′4) Remove the signature from the request;
(RS′5) Create a handwritten signature on behalf of the RS;
(RS′6) Interfere with the signed request scanning procedure.

We remove the attacks related to digital signatures from the set of possible at-
tacks against the verification application as those are not applicable. We add
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the following attacks:

(VRA′1) Make the decision on the voter’s signature presence to take another path;
(VRA′2) Make the decision on the RS’s signature presence to take another path;
(VRA′3) Make the decision on the VC’s signature presence to take another path;

Similarly to the analysis that we performed on the attacks for the i-voting system,
we identify the following relations between the attacks on the first intermediate system.

• The attacks VA6,V′1,V′5 result in a modified ciphertext and can be related by
VA6 ≺S V′1 ≺S V′5.

• The attacks V′2,V′5,VC′2 result in a modified voter’s signature and can be re-
lated by V′2 ≺S V′5 ≺S VC′2.

4.3.2. Comparison between i-voting and the first intermediate system

We have two sufficiently similar systems – the i-voting system S and the first inter-
mediate system S′. We now show that for each weakness for S there exists weakness
in S′ that is no more difficult to exploit and that has the same or worse consequences.
We do it by constructing relations in a similar way as we constructed relations for the
weaknesses within one system. Some of the weakness sets remain the same in both
systems. We concentrate on the removed weaknesses that do not carry from S to S′.
For those we either find a relation with some other weaknesses in S′ or we argue that
removing this weakness does not make the system S′ more difficult to attack.

When constructing relations between the weaknesses in S and S′, we use the rela-
tions that have been already identified in Section 4.1.2. If there are several weaknesses
w1,w2,w3 that lead to the same result in S, we take one of them w1 and map to the
corresponding weakness w′ of S′ in the relations below. However, it means that the
weaknesses w2,w3 are also mapped to w′.
(1) S.SD5 ⇔ S′.V′4
(2) S.SD10, S.VA10 ⇔ S′.V′2
(3) S.V5 ⇔ S′.V′3
(4) S.VC13 ⇔ S′.VC′6
(5) (S.VC14 or S.VC15) ⇔ S′.VC′4
(6) S.RS5 ⇔ S′.RS′5
(7) (S.RS6 or S.RS7) ⇔ S′.RS′3
(8) (S.VA14 or S.VA15) ⇔ S′.VA′1
(9) (S.VA19 or S.VA20) ⇔ S′.VA′2

(10) (S.VRA6 or S.VRA7) ⇔ S′.VRA′1
(11) (S.VRA12 or S.VRA13) ⇔ S′.VRA′2
(12) (S.VRA10 or S.VRA11) ⇔ S′.VRA′3
The relations (1) and (2) are constructed from the observation that the attacks

(S.SD5, S.SD10) that were targeting the signing device in S are targeting the voter
in S′ (S′.V′4, S′.V′2). When changing from digital signatures to the handwritten sig-
natures, we have made it simpler to perform certain attacks. If the i-voting system is
instantiated with a (UF-CMA) secure digital signature scheme, the adversary cannot
create valid signature forgeries in feasible time. However, forging the handwritten sig-
natures is an easier process – the attacker just needs to have an access to a handwritten
signature example created by the voter, and can then clone it.

The relations (1), (4) and (6) are connected to forging signatures. Attacks tar-
geting the private keys (S.SD5, S.VC13, S.RS5) in S are transformed into the at-
tacks where the adversary creates a handwritten signature on behalf of that party
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(S′.V′4, S′.VC′6, S′.RS′5) in S′. Those attacks are equivalent since the adversary who
has an access to the party’s private key can create valid digital signatures on behalf
of that party.

Modifying the private key or the challenge that enters the computation of the dig-
ital signature (S.VC14, S.VC15, S.RS6, S.RS7) leads to the modified digital signature.
Relations (5) and (7) present the fact that those attacks from S are equivalent to the
adversary directly modifying a handwritten signature in S′ (S′.VC′4, S′.RS′3).

The relation (3) is connected to the attack targeting the knowledge factor sent to the
signing device S.V5. This attack is transformed into an attack that aims to remove the
voter’s signature from the encrypted ballot S′.V′3. We consider these attacks equivalent
as an incorrect knowledge factor will not pass the verification process inside the signing
device and the signature will not be created, which is equivalent to not having a
handwritten signature on the ballot.

The relations (8), (9), (10), (11) and (12) express the observation that
the attacks that were targeting the signature verification procedure in S
(S.VA14, S.VA15, S.VA19, S.VA20, S.VRA6, S.VRA7, S.VRA10, S.VRA11, S.VRA12,
S.VRA13) are transformed into equivalent attacks against the handwritten sig-
nature, where the verifier just checks whether the signature is present or not
(S′.VA′1, S′.VA′2, S′.VRA′1, S′.VRA′3, S′.VRA′2). Therefore, if the adversary attempts
to forge a handwritten signature, it will be harder to catch him with the new verifica-
tion procedure.

The attacks targeting OCSP response and its verification in S (S.VA12, S.VA13,
S.VC8, S.VC9, S.VC10, S.VRA8, S.VRA9) are not applicable in S′, since there is no
service for the handwritten signatures that provides information about the signature
validity. Removed attacks related to the OCSP service are not targeting the main
security requirements of the voting system, such as vote secrecy and vote/ballot box
integrity. Therefore the system S does not have any critical weaknesses that are not
present in the system S′.

4.4. The second intermediate system

We change the first intermediate system S′ by removing the usage of ballot encryption
and verification processes. Encryption is replaced by using two envelopes, as it is done
in the postal voting systems. There is an inner envelope that does not contain any
identification data, and the outer envelope with the voter’s handwritten signature.
Since the system does not use encryption now, we also remove the verification mech-
anism as it was built around the ballot being encrypted. The vote is now delivered in
physical form using postal services. Additionally, instead of the encrypted ballot, Vote
DB contains a record with vote ID, Timestamp and scanned VC’s signature on the outer
envelope. Since we want to preserve the property that the voter gets some assurance
about their vote being delivered, we do not remove the confirmation message that is
sent to the voting application once the vote is recorded. The resulting system diagram
is presented in Appendix A, Figure A4.

4.4.1. Weaknesses of the second intermediate system

We remove the attacks related to the modification of encrypted ballot from the set of
possible attacks against the voter and add the following attacks:

(V′′1) Interfere with the blank ballot printing;
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(V′′2) Modify the voter’s choice on the filled ballot;
(V′′3) Modify the signature on the outer envelope;
(V′′4) Remove the signature from the outer envelope;
(V′′5) Create a signature on the outer envelope on behalf of the voter;
(V′′6) Modify an envelope.

We remove the attacks related to learning the voter’s choice, encryption and verifica-
tion mechanisms from the set of possible attacks against the voting application.

We add the following attacks to the set of possible attacks against the vote
collector:

(VC′′1) Open envelopes and reveal the vote;
(VC′′2) Learn the voter’s choice;
(VC′′3) Modify the voter’s choice;
(VC′′4) Remove (destroy) an envelope;
(VC′′5) Modify an envelope (or any information contained on it);
(VC′′6) Modify vote ID that is stored in the Vote DB; ´
(VC′′7) Create and store a forged envelope with the filled ballot;
(VC′′8) Modify VC’s signature on the outer envelope;
(VC′′9) Remove VC’s signature from the outer envelope;
(VC′′10) Interfere with the signed outer envelope scanning process;

Additionally, we remove the attacks related to the encrypted ballot and interaction
with the verification application.

There are no modifications in the set of possible attacks against the registra-
tion service. Additionally, we remove attack sets related to the verification applica-
tion, as this component is removed from the model.

We can identify the following additional relations between the attacks on the second
intermediate system:

• The attacks VA2,V′′2 result in modified blank ballot and can be combined into
a relation VA2 ≺S V′′2.

4.4.2. Comparison between the first and the second intermediate systems

Let us denote the second intermediate system as S′′, then there are the following
relations between attack sets in S′ and S′′:
(1) S′.VA4 ⇔ S′′.VC′′2
(2) S′.VA5 ⇔ S′′.VC′′3
(3) S′.V′i ⇔ S′′.V′′(i+ 1) for i ∈ {2, 3, 4}
(4) S′.VC′2 ⇔ S′′.VC′′3
(5) S′.VC′4 ⇔ S′′.VC′′8
(6) S′.VC′5 ⇔ S′′.VC′′9
The relations (1) and (2) express the observation that attacks against the vot-

ing application S′.VA4, S′.VA5 from S′ are now targeting the vote collector in S′′:
S′′.VC′′2, S′′.VC′′3. The primary difference between S′ and S′′ is in replacing encryp-
tion with using two envelopes for vote transmission and storage. Therefore, it becomes
easier for the adversary against the system S′′ to perform the attacks targeting the
filled ballot. When in S′ an encrypted ballot was modified by the adversary, it was
not guaranteed that the modified ciphertext decrypts to a valid vote. In the system
S′′, however, the adversary may modify the voter’s choice directly by opening the en-
velopes and performing the modifications that will result in a valid vote with much
higher probability. Therefore, in the system S′′, attacks targeting the voter’s choice
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are much stronger.
The relation (3) is valid since the voter in the system S′′ signs the outer envelope,

not the encrypted ballot. Attacks targeting the voter’s signature on the encrypted
ballot (S′.V′2, S′.V′3, S′.V′4) in the system S′′ are equivalent to the attacks targeting
the voter’s signature on the outer envelope (S′′.V′′3, S′′.V′′4, S′′.V′′5) in the system S′′.

The relation (4) corresponds to the fact that there is no more encryption functional-
ity in S′′ and the attack S.VC′2 targeting the vote received from the VA is transformed
into a more powerful attack S′′.VC′′3 directly targeting the voter’s choice in S′′.

Additionally, since the verification functionality is removed from the system S′′,
the voter has no chance to notice if there were any attacks targeting their vote, mak-
ing all those attacks successful. All the attacks related to the verification application
and its functionality are not applicable in S′′. With those attacks we remove the
voter’s chance to detect malicious behaviour of the system and notice if their vote was
changed. Among the removed attacks from S′ that are not mapped to any attacks in
S′′ there are no attacks that directly threaten vote secrecy, vote/ballot box integrity,
or vote authenticity. Removed unmapped attacks only target verification process of
the system.

The mechanism of signing the vote hash by the VC in S′ is replaced by requiring the
vote collector to sign the outer envelope. Therefore, the relations (5) and (6) express the
observation that the attacks targeting VC signature on the vote hash (S′.VC′4, S′.VC′5)
in the system S′ are transformed into attacks targeting VC signature on the outer
envelope in S′′ (S′′.VC′′8, S′′.VC′′9). All the remaining attacks related to the hashing
mechanism and its verification are no longer applicable. By removing this mechanism,
we also remove the voter’s confidence that their vote is indeed registered by the vote
collector, since in the system S′′ the adversary may sign an arbitrary envelope, add
signature on behalf of the voter and present the scanned version as a confirmation of
the vote being recorded.

4.5. The third intermediate system

To construct the third intermediate system, we change the model S′′ by requiring the
EO to prepare and print out blank ballots and candidate lists, and deliver them to the
voter together with the inner and outer envelopes. Additionally, we replace the RS by
requiring the vote collector to mark in the Voter Listthat the vote has been received.
The corresponding system diagram is presented in Appendix A, Figure A5. This model
is already close to the postal voting model, the only missing part is a separate postal
service party that is responsible for delivering the blank ballots and filled ballots.

4.5.1. Weaknesses of the third intermediate system

We remove the attacks related to the ballot printing from the set of the possible
attacks against the voter and add:

(V′′′1) Modify a blank ballot;
(V′′′2) Modify the candidate list.

We introduce a new set of possible attacks against the State Electoral Office
that is similar to the removed set of the possible attacks against the voting
application.

(EO1) Interfere with the printing process;
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(EO2) Modify envelopes;
(EO3) Interfere with the ballot printing process;
(EO4) Delay delivery of the voting material to the voter.

We remove the attacks related to storing digital information about the vote in the
Vote DB from the set of possible attacks against the vote collector. Additionally,
we remove the attacks related to timestamping and notifying the voter of receiving
their vote. We add the following attack:

(VC′′′1) Interfere with the process of marking that the vote has been received.

We can identify the following additional relations between the attacks on the third
intermediate system:

• The attacks V3,VC′′4,VC′′′1,EO4 result in the voter’s choice not registered in
the system and can be combined in the relation V3 ≺S VC′′4 ≺S VC′′′1 ≺S EO4.

4.5.2. Comparison between the second and the third intermediate systems

Let us denote the third intermediate system as S′′′, then there are the following rela-
tions between the attack set in S′′ and S′′′:
(1) S′′.V′′1 ⇔ S′′′.EO1
(2) S′′.VC16 or S′′.VC19 ⇔ S′′′.VC′′′1
(3) S′′.VC17 or S′′.VC20 ⇔ S′′′.VC′′′1
(4) S′′.VC21 or S′′.VC22 or S′′.VC23 ⇔ S′′′.VC′′′1
Since the blank ballot is now generated and printed out by the EO, the attack

related to the ballot printing process on the voter’s side in system S′′ is equivalent
to the attack related to the ballot printing process on the EO’s side in S′′′. This is
represented by the relation (1).

The main difference between the systems S′′ and S′′′ is in the removed vote regis-
tration process that consists of the signing performed by the VC and the RS. Addition-
ally, there is no longer Vote DB in S′′′ that stores information about the received and
recorded votes. It is replaced with maintaining a Voter Listthat contains information
about whether the vote has been received.

The relations (2) and (3) express the observation that the attacks related to the
vote registration (S′′.VC16, S′′.VC19, S′′.VC17, S′′.VC20) in S′′ are equivalent to the
attack against the process of marking that the vote has been received S′′′.VC′′′1. Those
attacks are considered to be equivalent since the registration of the vote in the system
S′′′ consists of marking that the vote has been received in the Voter List.

The attacks related to the modifications in the Vote DB (S′′.VC21, S′′.VC22,
S′′.VC23) in S′′ are transformed into the attack related to the modifications on the
Voter List S′′′.VC′′′1. This observation is expressed as the relation (4).

An additional difference comes from removing all the verification steps that are
related to the vote registration. Therefore, the voter in S′′′ has no confirmation of
whether their vote was received and recorded by the VC. As a result, all the attacks
in S′′′ related to deleting the vote are more successful, since those cannot be detected
by the verification mechanisms.

Attacks related to the signatures of the VC and the RS (and their verification) are no
longer applicable in S′′′. Since none of the removed attacks were directly related to the
vote secrecy or ballot box integrity, the system S′′ does not have critical weaknesses
that are not present in system S′′′.
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4.5.3. Comparison between the third intermediate system and postal voting

The third intermediate system is almost the same as the postal voting system Ŝ.
Therefore, the attack sets of system S′′′ and Ŝ are almost the same. The difference is
that the postal voting system has an additional party introduced – a postal service PS
that is responsible for delivering all the voting materials between the parties. The at-
tack sets for this party are analogous to the attacks connected with establishing secure
communication channel between the parties in the i-voting system and intermediate
systems which rely on data being transferred over the Internet. Executing attacks in Ŝ
against physical documents, while those are transferred between the parties, became
easier for the adversary. The reason is that the modifications are harder to notice,
and learning the voter’s choice requires just opening the envelope. Deleting the data
elements from the system is also easier since it could remain unnoticed or be done
just by mistake (e.g. having an incorrect delivery address). Additionally, the attacks
targeting the PS are related to the main security requirements of the voting systems
as vote secrecy, vote and ballot box integrity.

5. Conclusions

Our reduction from the i-voting system S to the postal voting system Ŝ identified the
following major differences.

• When going from S to S′, we see that certain digital signature related attacks
are no longer applicable. At the same time, the system S′ does not have any
mechanism to verify whether any of the signatures given during the protocol are
given by the voters, and not altered or forged by the adversary.

• When going from S′ to S′′ we see that the attacks related to the verification of
the vote are no longer applicable. However, by removing the verification mech-
anism we also remove the ability of the voter to detect vote modification and
dropping. Additionally, the system S′′ does not rely on encryption. Thereby, the
attacks related to learning and modifying the voter’s choice have become easier
to execute.

• When going from S′′ to S′′′ we remove the attacks related to the registration
service. Therefore, the voter in S′′′ has no confirmation that their vote was
successfully received and registered by the system. All the attacks related to
dropping the vote in transit or at rest cannot be detected by the voter in the
system S′′′, making the adversary successful in executing them.

• When going from S′′′ to Ŝ, we add attacks targeting the postal service. All the
added attacks are strong since those are directly related to breaking the vote
secrecy and vote or ballot box integrity. These attacks do not require additional
parties to be corrupt or additional information to be learnt from the other par-
ticipants of the protocol.

In conclusion, our reduction shows that the Estonian i-voting system indeed has
stronger security guarantees than the postal voting system. The reduction shows that
in the i-voting system critical attacks that are targeting the main security properties
(vote secrecy, vote integrity, ballot box integrity) are distributed between many system
components and may require learning different information from different parties in
order to execute. In the postal voting system, however, there are less participating
parties and all of them are targets to the critical attacks.
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