MARYLAND

o Bl CYBERSECURITY CENTER

Build it, Break it, Fix it
A new security contest

Prof. Michael Hicks

co-conceived with Andrew Ruef and co-developed
with Jan Plane, Atif Memon, and David Levin

University of Maryland, College Park USA
Funding provided by @ National Science Foundation

WHERE DISCOVERIES BEGIN



Contests are cool

DEFCON CTF
Collegiate Cyber defense challenge (CCDC)

Pwn to Own

e Rewards those who can reverse engineer
vulnerabilities in real or custom systems

 But what about the opposite? l.e., reward those
who can build more secure systems

— Fallacy: if you know what/how to find the
vulnerabilities you can build systems without them



Must satisfy
basic correctness
and performance
requirements

Doing so may
wipe out many
bug reports in
one go: all
count as the
same bug

Build it, Break it, Fix it

Round 1:
Build-it team

Contestants build
software to
specification

72 hours

Round 3:
Build-it team

Fixes bugs found
by break-it teams

-

L

72 hours

Round 2: Bug reports are
Break-it team (failing)

Contestants report PSSR P

bugs in cases, including
submissions exploits

72 hours

Then: Judges tally final results



Scoring

e Build-it team
— Gains points for good performance
— Loses points for (unique) bugs found by breakers

e Break-it team

— Gains points for unique bugs found (scaled by how
many other teams found the same bug)

 Winners for both categories at end of round 3



Goals

 Encourage defense, not just offense

— Tie together security with reliability: Bugs are bad,
whether they are exploitable or not

— Elevate real concerns: performance and
maintainability
* Provide direct feedback
— A lack of security is penalized: “feel” the mistake!

 Empirically assess what actually works

— Correlate features of submission with score
 Programming language, framework, library, ...
e Developer experience, S/W process, ...
e Using static analysis, fuzz testing, etc. ...



Requirements: Making it work

e Scalability — hundreds of submissions
— Requires (mostly) automated testing, scoring

 Handle adversarial participants
— DOS the scoring system

— Report the same bug multiple times in slightly
different ways

— Collusion

 Get data from which we can draw interesting
conclusions



Platform

e Submissions run in a VM that we provide

— We unpack their submission in a defined directory
and then run tests etc. within the VM

e Several benefits

— VM is isolated from other software, limiting its
negative effects on ours and others’ software

— Run-time environment is clearly defined (in
advance), yet affords plenty of flexibility



Data

* Teams must use our git repository

— So we can see their process and intermediate
checkins

e Teams must answer (brief) popup surveys
during each phase

— What are you working on? What problems are you
dealing with? Who is doing what?

e And, of course, tests and final submissions
available



Challenge |

* How to automatically judge whether a bug
claim (submitted as a test) is valid?

— Use Bayesian network to judge the likelihood test
is valid based on outcome for all submissions

— Seed network with results of true tests

— Builder teams can, during the fix-it phase, argue
that any bugs that slip through are not bugs

e Human judges arbitrate



Challenge Il

e How to automatically judge whether two
submitted tests are morally the same?

— Incentive for builders: find bugs that are the same
in fix-it phase

— Incentive for breakers: only allowed 10 test cases
per submission (want to avoid duplicates)

— (Best effort) automation:

e |dea: test case minimization (e.g., delta debugging)
e |dea: “footprint” across all submissions



Challenge Il

e How to determine scores?
— More points for an exploit vs. a correctness bug

— Want to encourage coverage — don’t want to
crown winner only because no one looked at code
e Limit 10 bugs per submission
— Want to encourage finding deep/challenging bugs

e Bugs are worth more (to break-it teams) if fewer teams
find them



Challenge IV

e How to avoid collusion or behavior not in the
spirit of the competition?

— Disallow direct obfuscation (judges will check)

 Indirect uses (spaghetti code that looks human-written)
might hurt performance, or might actually be relevant

— Disallow cooperation among build-it teams
e Goal would be to obtain more than one prize position
e Run similarity detection tools on submissions



What are the right tasks?

e Must be interesting
e Must be able to complete in 72 hours
e Must have a reasonable attack surface

e Examples: parsers/interpreters/game engines
— Pilot: SDXF parser (arcane file format)

 |deas?



Let’s go write some secure code!

MARYLAND

" thi CYBERSECURITY CENTER




	Build it, Break it, Fix it�A new security contest
	Contests are cool
	Build it, Break it, Fix it
	Scoring
	Goals
	Requirements: Making it work
	Platform
	Data
	Challenge I
	Challenge II
	Challenge III
	Challenge IV
	What are the right tasks?
	Slide Number 14

