

Depth Dependence of Skyrmions in Thin Films

Lizabeth Quigley

What are Skyrmions?

- Topologically protected magnetic whirlpools
- Difficult to destroy or deform
- ❑ Easy to move with electric currents
- Thin films are best for electronics
 - □ Fit within existing devices
 - □ Mostly surface interface

Need to discover difference between the surfaces and middle of thin film skyrmions

I. Kézsmárki, Nature Materials (2015)

Skyrmion Differences

5

Polarized Neutron Reflectometry (PNR)

- Saturated magnetizationFit with Refl1D
 - Fit scattering length densities (SLDs), thicknesses, interfaces, and percentage iron
- Developed parameters to be used in later fits and models
- Final fit goes with what we know about skyrmions
- Gives depth profile

Skyrmion State Reflectometry

Object Oriented MicroMagnetic Framework (OOMMF)

Goals:

How different parameters affect the model Build model of thin film

Varying Exchange Energy

Anisotropy = 200e3 J/n Magnetization = 3.52 A How much the magneti the same direction

Тор

Exchange=0.00 J/m e-11

Exchange Energy vs Approximate Diameter

Varying Anisotropy

Exchange Energy = (Magnetization = 3.52 How much one magr a direction, not deper

Anisotropy= 100e3 J/m^3

Anisotropy vs. Approximate Diameter

Small Angle Neutron Scattering (SANS)

Grazing Incidence Small Angle Neutron Scattering (GISANS)

Simulated GISANS

Simulated GISANS

Simulated GISANS

Simulated GISANS

Future Work:

- Compare simulate GISANS data with actual data
- Make the two data sets equal
- Add neutron absorption by Gd to the code

Thanks to:

- □ NIST
- □ NCNR
- □ CHRNS
- Dr. Alex Grutter
- Dr. Dustin Gilbert
- Dr. Brian Maranville

