# Using AI to Determine Crystal Structure



Elizabeth Baggett Mentor: Dr. William Ratcliff Boston College, 2026

#### Collaborators

William Ratcliff (NIST Center for Neutron Research)

Edward Freidman (Wheaton High School, NIST Center for Neutron Research)

Paul Kienzle (NIST Center for Neutron Research)

Nebil Ayape Katcho (Institute Laue-Langevin)

#### Motivation



1. Unknown. (n.d.). *"two-faced" solar cells generate a lot more power*. "Two-faced" solar cells generate a lot more power. https://greatfactsnow.blogspot.com/2019/12/two-faced-solar-cells-generate-lot-more.html 2. *Experimental morpheus CPU is "mind-bogglingly terrible" to crack*. Network World. (2021, June 4). https://www.networkworld.com/article/969940/experimental-morpheus-cpu-is-mind-bogglingly-terrible-to-crack.html 3. Weerasinghe, Hasitha. Electrical characterization of metal-to-insulator transition in iron silicide thin films on sillicone substrates

#### Translational Symmetry



Image from Burlew, R. (2016, October 10). *Uncapped honey fermenting in the Comb*. Honey Bee Suite. https://www.honeybeesuite.com/uncapped-honey-fermenting-in-the-comb/

#### Translation Symmetry in Crystals



Image from Libretexts. (2021, August 27). Chapter 12.2: Arrangement Of Atoms in Crystals. Chemistry LibreTexts. https://chem.libretexts.org/Courses/Howard\_University/General\_Chemistry:\_An\_Atoms\_First\_Approach/Unit\_5:\_States\_of\_Matter/Chapter\_12:\_Solids/Chapter\_12.02:\_Arrangement\_of\_Atoms\_in\_Crystals

# 14 Bravais lattices



## Internal Symmetries





#### Experimentally Determining Crystal Structure



1, 3 Glenzer, S. H., & Redmer, R. (2009, December 1). *X-ray thomson scattering in high energy density plasmas*. Reviews of Modern Physics. https://journals.aps.org/rmp/abstract/10.1103/RevModPhys.81.1625

2 Wikimedia Foundation. (2024, July 15). Bragq's law. Wikipedia. https://en.wikipedia.org/wiki/Bragg%27s law

## Powder Diffraction Pattern







## Neural Network





1. Peshek, S. (2019, April 30). *How do synapses work?*. Texas A&M Today. https://today.tamu.edu/2018/01/05/how-do-synapses-work/ 2. Victor Zhou. (n.d.). *Neural Networks from scratch*. https://victorzhou.com/series/neural-networks-from-scratch/

#### Random Split



#### One Epoch (Training Cycle)



# Changes the influence of nodes

Benchmark for generalization



## Supervised Method

1. Selina. (2024, June 2). *Pufferfish facts*. Facts.net. <u>https://facts.net/pufferfish-facts/</u>

2. THOUGHTCO. (n.d.). https://www.thoughtco.com/thmb/soY69iSmFeIFV4S4yGWcr-vCkcw=/398x271/filters:fill(auto,1)/venn2-56a4b8b03df78cf77283f15f.JPG



## Supervised Method

1. Whole catfish, fresh. Goldfish Seafood Market. (n.d.-b). https://goldfishseafoodmarket.com/products/whole-catfish-fresh 2. Sharpe, S. (2024, June 20). Learn everything you need to know about Betta Fish. The Spruce Pets. https://www.thesprucepets.com/siamese-fighting-fish-bettas-1378308

### Model

- Convolution neural network
- ResNet architecture
  - Haotong Liang





## Previous Work

Satvik Lolla used Inorganic Crystal Structure Database data to simulate X-ray diffraction patterns

|                 | Space Group | Bravais Lattice |
|-----------------|-------------|-----------------|
| Semi-supervised | 78          | 85              |
| Supervised      | 74          | 88              |

### Data Cleaning

- •ICSD contains duplicates
- Neutron diffraction patterns
  - Lower resolution

#### Remove Duplicates

# 181,362 123,039



### Adding More Data

Adding data from Cambridge Structural Database (~ 1 million)





### Resolution



25



#### Results on Excluded Data





#### Data Imbalance



#### Balance Existing Data

Only use 4,607 patterns for each Bravais lattice





#### Data Augmentation

- Adjust unit cell parameters
- Maintain Bravais lattice
- •50,000 patterns per Bravais lattice
- •200,000 patterns per Bravais lattice



# 50,000 Patterns per Bravais lattice





# 200,000 Patterns per Bravais lattice





#### Comparison



#### Future Steps

- More augmented data
- New data generation
- Publish results 😳
- Include impurity phases
- Work with real data

#### Acknowledgements

1

<u>Mentor</u> William Ratcliff

<u>SURF Directors</u> Julie Borchers Leland Harriger Susana Marujo Teixeira

#### <u>Academic Program Manager</u> Cara O'Malley

1. Center for high resolution neutron scattering. NIST. (2023, June 8). <u>https://www.nist.gov/ncnr/chrns</u> 2. Utakeit. education made easy. UTakelt. (n.d.). https://utakeit.tacc.utexas.edu/



#### References

Lolla, S., Liang, H., Kusne, A. G., Takeuchi, I., & Ratcliff, W. (2022). A semi-supervised deep-learning approach for automatic crystal structure classification. *Journal of Applied Crystallography*, *55*(4), 882–889. https://doi.org/10.1107/s1600576722006069

Radaelli, P. G. (2016). Symmetry in crystallography: Understanding the international tables. Oxford University Press.

S. Albawi, T. A. Mohammed and S. Al-Zawi, "Understanding of a convolutional neural network," 2017 International Conference on Engineering and Technology (ICET), Antalya, Turkey, 2017, pp. 1-6, doi: 10.1109/ICEngTechnol.2017.8308186. keywords: {Convolution;Neurons;Convolutional neural networks;Feature extraction;Image edge detection;machine learning;artificial neural networks;deep learning;convolutional neural networks;computer vision;Image recognition},

Sands, D. (2020). Introduction to crystallography. Dover Publications, Inc.

Sivia, D. S. (2011). *Elementary scattering theory for X-ray and neutron users*. Oxford University Press.

Young, R. A. (1995). *The rietveld method*. International Union of Crystallograhy.

# Extra Slides

#### Convolutional Neural Network



Image



Convolved Feature

#### **Convolutional Neural Network**

Input image



#### Convolution Kernel

$$\begin{bmatrix} -1 & -1 & -1 \\ -1 & 8 & -1 \\ -1 & -1 & -1 \end{bmatrix}$$

#### Feature map



#### Deuterium Substitution

- CSD contains organic compounds
  - More C-H bonds
- Hydrogen scattering cross section: 82.03
- Deuterium scattering cross section: 7.64



## Original vs Deuterated



#### Deuterium Substitution



Deuterium

## Deuterium Substitution



Deuterium
Hydrogen

#### Model Information

- Using 3 GPU, takes a little under 5 hours to train ICSD + CSD
  - Epochs: 30
  - Batch size: 50
  - Learning rate: 0.0005
  - 580 seconds per epoch
    - 8.83 minutes

#### Resolution

•BT-1 resolution •U: 3.47 •V: -2.78 •W: 1.66  $\frac{C_0^{1/2}}{H_K \pi^{1/2}} \exp(-\frac{C_0(2\theta_i - 2\theta_k)^2}{H_K^2})$  $\frac{H^2}{H_K \pi^{1/2}} = Utan^2\theta + Vtan\theta + W$ 

# Test Loss

Removing Duplicates

Test Loss Over Epochs



Duplicates



Adding data from Cambridge Structural Database (~ 1 million)



**Test Loss Over Epochs** 

## Improve Resolution



**Test Loss Over Epochs** 

56

**Test Loss Over Epochs** 

# Balance Existing Data



57

**Test Loss Over Epochs** 

#### 50k Data Augmentation



**Test Loss Over Epochs** 

#### 1.6 1.4 1.2 1 Test Loss 8'0 0.6 0.4 0.2 0 20 30 50 70 80 0 10 40 60 Epoch

#### 200k Data Augmentation

#### **Test Loss Over Epochs**

## Deuterium Substitution



Deuterium

# Confusion Matrix

|          | Cubic (F) -      | 740         | 2           | 3           | 5               | 0                | 0                | 0                  | 1                  | 0                  | 0                  | 2                  | 11               | 0                | 0               |  |
|----------|------------------|-------------|-------------|-------------|-----------------|------------------|------------------|--------------------|--------------------|--------------------|--------------------|--------------------|------------------|------------------|-----------------|--|
|          | Cubic (I) -      | 3           | 235         | 8           | 0               | 0                | 0                | 0                  | 0                  | 0                  | 0                  | 4                  | 3                | 3                | 0               |  |
|          | Cubic (P) –      | 5           | 5           | 394         | 0               | 0                | 0                | 0                  | 1                  | 0                  | 2                  | 0                  | 1                | 3                | 2               |  |
| He       | exagonal (P) –   | 1           | 0           | 8           | 883             | 0                | 4                | 1                  | 1                  | 0                  | 27                 | 27                 | 9                | 12               | з               |  |
| M        | lonoclinic (C) – | 0           | 1           | 0           | 2               | 4375             | 345              | 34                 | 42                 | 13                 | 50                 | 14                 | 20               | 1                | 1044            |  |
| М        | lonoclinic (P) – | 0           | 0           | 0           | 7               | 112              | 15994            | 14                 | 11                 | 5                  | 1317               | 9                  | 9                | 26               | 1460            |  |
| le Ortho | orhombic (C) –   | 0           | 0           | 1           | 7               | 137              | 50               | 265                | 7                  | 11                 | 28                 | 18                 | 21               | 11               | 18              |  |
| I Ortho  | orhombic (F) –   | 0           | 0           | 0           | 2               | 81               | 50               | 4                  | 103                | 4                  | 13                 | 0                  | 9                | 1                | 35              |  |
| Orth     | orhombic (I) –   | 0           | 0           | 1           | 3               | 34               | 15               | 9                  | 0                  | 115                | 5                  | 10                 | 14               | 2                | 6               |  |
| Ortho    | orhombic (P) –   | 1           | 0           | 3           | 13              | 28               | 1589             | 12                 | 6                  | 4                  | 6154               | 11                 | 6                | 75               | 181             |  |
| Rhom     | ibohedral (P) -  | 1           | 2           | 3           | 52              | 25               | 23               | 9                  | 3                  | 8                  | 20                 | 970                | 30               | 7                | 13              |  |
| Те       | ētragonal (I) –  | 4           | 4           | 1           | 10              | 23               | 33               | 11                 | 8                  | 8                  | 19                 | 28                 | 766              | 20               | 7               |  |
| Te       | etragonal (P) –  | 2           | 0           | 11          | 14              | 6                | 55               | 4                  | 1                  | 1                  | 98                 | 8                  | 20               | 807              | 12              |  |
|          | Triclinic (P) -  | 2           | 0           | 2           | 5               | 340              | 1783             | 2                  | 4                  | 1                  | 160                | З                  | 0                | 6                | 10722           |  |
|          |                  | Cubic (F) - | Cubic (I) - | Cubic (P) - | Hexagonal (P) - | Monoclinic (C) - | Monoclinic (P) - | Drthorhombic (C) - | Orthorhombic (F) - | Orthorhombic (I) - | Orthorhombic (P) - | Rhombohedral (P) - | Tetragonal (I) – | Tetragonal (P) - | Triclinic (P) - |  |

- 14000

- 12000

- 10000

- 8000

- 6000

- 4000

- 2000

- 0

#### ICSD + CSD

80% accuracy

#### 50,000 Data Augmentation

66% accuracy

|        | Cubic (F) -        | 1510        | 2           | 9           | 7               | 0                | 1                | 0                  | 0                  | 0                  | 1                  | 2                  | 4                | 2                | 2               |
|--------|--------------------|-------------|-------------|-------------|-----------------|------------------|------------------|--------------------|--------------------|--------------------|--------------------|--------------------|------------------|------------------|-----------------|
|        | Cubic (I) -        | 1           | 471         | 6           | 1               | 1                | 1                | 1                  | 0                  | 0                  | 0                  | 1                  | 4                | 1                | 0               |
|        | Cubic (P) -        | 7           | 8           | 826         | 3               | 0                | 0                | 0                  | 0                  | 0                  | 0                  | 4                  | 1                | 6                | 1               |
|        | Hexagonal (P) -    | 6           | 2           | 9           | 1720            | 1                | 24               | 9                  | 9                  | 9                  | 29                 | 51                 | 15               | 25               | 7               |
|        | Monoclinic (C) -   | 1           | 2           | 1           | 25              | 7229             | 1189             | 336                | 706                | 285                | 139                | 62                 | 65               | 27               | 1665            |
|        | Monoclinic (P) -   | 2           | 4           | 17          | 74              | 559              | 29702            | 231                | 406                | 144                | 3514               | 82                 | 123              | 187              | 3212            |
| abel   | Orthorhombic (C) - | 2           | 1           | 0           | 17              | 148              | 96               | 575                | 86                 | 78                 | 51                 | 15                 | 44               | 26               | 45              |
| True L | Orthorhombic (F) - | 2           | 1           | 0           | 1               | 85               | 84               | 15                 | 298                | 18                 | 14                 | 5                  | 25               | 5                | 35              |
|        | Orthorhombic (I) - | 1           | 1           | 0           | 8               | 27               | 18               | 28                 | 22                 | 280                | 11                 | 9                  | 25               | 7                | 11              |
|        | Orthorhombic (P) - | 2           | 3           | 20          | 116             | 112              | 6390             | 155                | 227                | 76                 | 8107               | 59                 | 68               | 317              | 366             |
|        | Rhombohedral (P) - | 15          | 13          | 10          | 171             | 34               | 50               | 60                 | 65                 | 67                 | 44                 | 1652               | 132              | 53               | 16              |
|        | Tetragonal (I) -   | 22          | 10          | 6           | 25              | 18               | 52               | 38                 | 68                 | 57                 | 22                 | 50                 | 1424             | 71               | 9               |
|        | Tetragonal (P) -   | 3           | 4           | 21          | 53              | 7                | 150              | 48                 | 48                 | 14                 | 174                | 21                 | 86               | 1444             | 25              |
|        | Triclinic (P) -    | 0           | 0           | 12          | 27              | 1939             | 8315             | 55                 | 377                | 78                 | 536                | 34                 | 45               | 44               | 14515           |
|        |                    | Cubic (F) - | Cubic (I) - | Cubic (P) - | Hexagonal (P) - | Monoclinic (C) - | Monoclinic (P) - | Orthorhombic (C) - | Orthorhombic (F) - | Orthorhombic (I) - | Orthorhombic (P) - | Rhombohedral (P) - | Tetragonal (I) - | Tetragonal (P) - | Triclinic (P) - |
|        |                    |             |             |             |                 |                  | Pr               | redicte            | d Lab              | el                 |                    |                    |                  |                  |                 |

- 25000

- 20000

- 15000

- 10000

- 5000

- 0

63

## 200,000 Data Augmentation

65% accuracy

|        | Cubic (F) -        | 1514        | 10          | 11          | 2               | 0                | 0                | 0                  | 0                    | 1                  | 0                  | 1                  | 1                | 0                | 0               |    |   |       |
|--------|--------------------|-------------|-------------|-------------|-----------------|------------------|------------------|--------------------|----------------------|--------------------|--------------------|--------------------|------------------|------------------|-----------------|----|---|-------|
|        | Cubic (I) -        | 1           | 485         | 0           | 0               | 0                | 0                | 0                  | 0                    | 0                  | 1                  | 0                  | 0                | 1                | 0               |    | - | 17500 |
|        | Cubic (P) -        | 6           | 3           | 846         | 0               | 0                | 0                | 0                  | 0                    | 0                  | 0                  | 1                  | 0                | 0                | 0               |    |   |       |
|        | Hexagonal (P) -    | 10          | 11          | 18          | 1533            | 5                | 9                | 17                 | 3                    | 5                  | 44                 | 110                | 61               | 83               | 7               |    | - | 15000 |
|        | Monoclinic (C) -   | 3           | 5           | 2           | 23              | 7766             | 513              | 83                 | 86                   | 58                 | 208                | 45                 | 97               | 49               | 2794            |    |   |       |
|        | Monoclinic (P) -   | 2           | 1           | 18          | 45              | 1106             | 19936            | 84                 | 85                   | 34                 | 6268               | 88                 | 138              | 279              | 10173           |    | - | 12500 |
| abel   | Orthorhombic (C) - | 1           | 4           | 1           | 16              | 322              | 65               | 380                | 18                   | 31                 | 97                 | 37                 | 83               | 57               | 72              |    |   |       |
| True L | Orthorhombic (F) - | 4           | 1           | 1           | 3               | 210              | 57               | 12                 | 65                   | 7                  | 63                 | 9                  | 46               | 12               | 98              |    | - | 10000 |
|        | Orthorhombic (I) - | 3           | 1           | 1           | 2               | 95               | 18               | 35                 | 13                   | 136                | 20                 | 23                 | 65               | 11               | 25              |    |   |       |
|        | Orthorhombic (P) - | 3           | 6           | 23          | 85              | 268              | 3156             | 86                 | 66                   | 24                 | 10451              | 63                 | 127              | 486              | 1174            |    | - | 7500  |
|        | Rhombohedral (P) - | 33          | 24          | 19          | 164             | 90               | 40               | 38                 | 23                   | 28                 | 83                 | 1503               | 237              | 73               | 27              |    |   |       |
|        | Tetragonal (I) -   | 44          | 13          | 4           | 13              | 50               | 35               | 26                 | 13                   | 14                 | 43                 | 67                 | 1440             | 86               | 24              |    | - | 5000  |
|        | Tetragonal (P) -   | 2           | 12          | 39          | 33              | 14               | 48               | 15                 | 6                    | 0                  | 185                | 32                 | 107              | 1554             | 51              |    |   |       |
|        | Triclinic (P) -    | 2           | 1           | 9           | 19              | 1311             | 2764             | 22                 | 63                   | 22                 | 743                | 20                 | 18               | 41               | 20942           |    | - | 2500  |
|        |                    | Cubic (F) - | Cubic (I) - | Cubic (P) - | Hexagonal (P) - | Monoclinic (C) - | Monoclinic (P) - | orthorhombic (C) - | P Orthorhombic (F) - | Drthorhombic (I) - | Orthorhombic (P) - | Rhombohedral (P) - | Tetragonal (I) - | Tetragonal (P) - | Triclinic (P) - | 64 |   | 0     |
|        |                    |             |             |             |                 |                  | FI               | cuicte             | a Labe               |                    |                    |                    |                  |                  |                 |    |   |       |

- 20000