
Formal Verification of Cryptographic Software at AWS -
Current Practices and Future Trends

Rod Chapman, Adam Petcher, Torben Hansen, Yan Peng,

Tancrède Lepoint, Cameron Bytheway, Panos Kampanakis
Amazon Web Services

Corresponding author: Rod Chapman (rodchap@amazon.com)

April 2024

Introduction
It appears that the winds-of-change are blowing for formal verification of
cryptographic software and, furthermore, those winds are blowing in the same
direction. We perceive progress on several fronts:

• Researchers in the mathematics of cryptography now publish formal
specifications and proofs of security properties as a matter of course in their
papers using language like EasyCrypt[10].

• Formal (yet executable) specification languages for cryptographic
algorithms, such as Cryptol[11], are finally achieving acceptance and wider
use within industry and government.

• There has been substantial progress in automated synthesis and verification
of cryptographic software, including the work of Fiat Crypto[12], the Jasmin
language and toolset[13], Hax[14], our own efforts, and many others.

• Governments are other standard-setting bodies are recognizing the
importance of memory- and type-safe programming for critical
applications.

• “Evidence-based” or “Principles-based” assurance[8] is gaining ground,
following many years of use in the safety-critical domain.

• IETF have recently stood up a new “Usable Formal Methods Research
Group”[15] to explore how formal notations and methods can improve
IETF’s work in the future.

In light of these trends, the time is right to open discussion on how formal
verification can influence the future development, verification and certification of
cryptographic software.

Formal Verification of Cryptographic Software today at AWS
At AWS, we use Automated Reasoning (AR) to support the verification of a number
of cryptographic services and libraries. This section presents a brief tour of each,
showing a snapshot of how AR is used today:

AWS-LC
AWS LibCrypto (AWS-LC)[1] is an open-source cryptographic library, based on a
fork of BoringSSL, with specific features and performance improvements

mailto:rodchap@amazon.com

developed to support AWS needs, particularly on x86_64 and AArch_64 (e.g. AWS
Graviton) processors. It is certified as a FIPS 140-3, level 1 cryptographic module.
The library is written in a combination of C and assembly language. For the most
commonly used and recommended algorithms, parameter sets and key lengths, we
aim for verification of full functional correctness with respect to a formal
specification using the following technologies:

• For establishing mathematical properties of the elliptic curves, we use the
Coq proof assistant, working on the Cryptol specification.

• Proofs for C and x86_64 assembly language that was inherited from
BoringSSL are developed using Galois’ SAW toolchain, using specifications
expressed in Cryptol.

• Verification of AArch_64 assembly language is performed using an in-house
symbolic simulation tool, verification condition generator, and proof
engines including multiple SMT solvers and Lean4. Again, we use Cryptol as
the top-level specification in these cases.

For low-level elliptic curve and RSA functions, we use a new library called “s2n-
bignum”[2] that is hand-written in assembly language for both x86_64 and
AArch_64, and verified using the HOL-Light proof assistant. s2n-bignum is also
designed to offer cryptographic-constant-time, and provides performance that
matches or exceeds all other contemporary implementations for the micro-
architectures that dominate AWS workloads. The library is permissively licensed,
freely available, and the repository contains all the sources, HOL scripts, and
continuous integration scripts to reproduce the proofs from scratch.

s2n-tls
s2n-tls is a clean-slate implementation of the TLS protocol stack. Its development
and proof were carried out hand-in-hand, using Cryptol and SAW[3] for functional
correctness, CBMC[18] for memory- and type-safety proofs, and SideTrail[19] for
verification of constant-time properties. s2n-tls can use AWS-LC for its
cryptographic primitives.

s2n-quic
Similarly, s2n-quic is a new implementation of the QUIC protocol, built atop s2n-
tls and AWS-LC. It is written in Rust and deploys a hybrid verification style, where
the Kani[4] verification tool is used to verify memory-safety, type-safety, and key
correctness properties that lie beyond Rust’s “borrow checker”, combined with
extensive dynamic verification using KATs, constrained fuzzing[5] and so on. We
also use an automated traceability analysis tool called Duvet[17] to trace code to
test cases and requirements to make sure that requirements from the QUIC
specification are not overlooked.

Verified sampling for cryptographic computing
AWS Clean Rooms is a platform to collaboratively analyze datasets between
multiple entities. To protect the contribution of any individual's data in aggregated

insights with differential privacy, it uses the SampCert sampler[12], a proven
correct discrete Gaussian sampler implementation developed in Lean by AWS.

Options and ideas for the future
We anticipate and encourage further deployment of AR in cryptography. In
particular, we see AR providing additional trust and assurance for our customers
and regulators, plus the potential to improve the latency of FIPS evaluation (or any
other evaluation scheme for that matter.). This section proposes a number of
forward-looking ideas. In no particular order:

Verified memory- and type-safe programming
In line with guidance from US Government[6] and other national bodies, we
anticipate a gradual shift to the use of programming approaches that facilitate
sound formal verification of basic correctness properties such as memory-safety
and type-safety. This style of development is well-established in the regulated
safety-critical systems community (e.g. aerospace, nuclear, and rail), and some
early experiments with cryptographic code has shown its feasibility for reference
implementations[7].

Open and Evidence-Based Assurance
Again, this is a common practice in the safety-critical systems community. We can
see a future where a submission for evaluation will include all design and
verification artefacts including code, tests cases, proofs and the necessary tools to
allow a recipient to reproduce the entire assurance case. A submission could take
the form of a virtual machine image or a “Docker” file that contains all the
artefacts and can be delivered electronically. We also anticipate that source code
and proofs would be unchanged for multiple target platforms, allowing
certification of a single module on multiple platforms to be achieved much faster
than at present. This seems compatible with recent guidance from UK NCSC on
“Principles-based Assurance”[8]. We hope that (re-)certification would be
noticeably faster using this model, but only if regulators and test labs are willing
to accept and give credit for AR-generated evidence. This brings us to...

Soundness cases for tools
In presenting such evidence, some sceptical person will always say “Ah... but why
should I trust your proof tool?” Good point. We should advocate and encourage
tool vendors to produce and make available their own assurance case. This requires
a commercial and competitive market to emerge for verification tools, compilers
and so on. Some verification tools and compilers have reached this level of
maturity in the safety-critical sector.

Lightweight formal methods and hybrid verification
There still exists a perception that “formal methods” is an all-or-nothing activity,
painful, and limited to a few specialist practitioners. We disagree. There is room for
lighter styles of verification that can offer practical benefit without sacrificing
soundness. Lightweight methods also tend to be faster, so can fit within a
constructive “verify first” development style. Based on risk, there is also room for a

“hybrid” verification style that combines formal (static) verification of key
correctness properties such as type-safety with dynamic verification (e.g. testing)
for functional correctness using KATs, a reference Oracle (e.g. an executable
specification in Cryptol), fuzzing and so on.

Equivalence proof and automatic optimization
Proof of equivalence of two (simple) programs is a well-established field in formal
verification. Its utility in cryptographic software extends to proving that a (simple,
easy-to-prove) reference implementation of a particular algorithm is functionally
equivalent to a faster, more optimized version. Furthermore, we have encouraging
results with the use of automatic optimization of assembly language[9], combined
with “before and after” proofs of functional correctness. This removes some of the
reliance on humans to hand-optimize the most time-critical functions. We can also
foresee utility in proving the equivalence of a single module for multiple targets

Wider definition of “cryptographic module” to include novel applications
We are actively involved in many novel applications of cryptography, such as
cryptographic computing, zero-knowledge proofs, fully homomorphic encryption,
and differential privacy. Will the scope of FIPS certification expand in the future to
cover these applications and their implementation in software?

Conclusion and Open questions
We hope this position paper inspires debate at the workshop and subsequent
action. Open questions include:

• How will we (as a community) build trust with formal verification
approaches and tool vendors?

• How will the results of automated reasoning tools be presented to
customers, labs and regulators?

• How will the assumptions that underpin formal verification be presented
and challenged?

• What incentive is there for test labs to accept and evaluate formal evidence?
• What are the training needs for NIST, the test labs and developers?
• Could the community run a “trial evaluation” of one or more formally

verified cryptographic algorithms, giving the developers freedom to present
and defend whatever formal evidence they choose? For example, there are
at least 3 implementations of MLKEM that claim formal verification of
various correctness properties.

References
[1] AWS-LC repository: https://github.com/aws/aws-lc
[2] s2n-bignum repository: https://github.com/awslabs/s2n-bignum
[3] Chudnov, A; Collins, N; Cook, B; Dodds, J; Huffman, B; MacCárthaigh, C; Magill,
S; Mertens, E; Mullen, E; Tasiran, S; Tomb, A; Westbrook, E. “Continuous formal
verification of amazon s2n” In: Chockler, H and Weissenbacher, G, (eds.)
Proceedings of International Conference on Computer Aided Verification CAV
2018. (pp. pp. 430-446). Springer. DOI: 10.1007/978-3-319-96142-2_26.

https://github.com/aws/aws-lc
https://github.com/awslabs/s2n-bignum
https://doi.org/10.1007/978-3-319-96142-2_26

[4] The Kani Rust Verifier. https://model-checking.github.io/kani/
[5] Bolero - a fuzz and property testing front-end for Rust.
https://github.com/camshaft/bolero
[6] Back to the Building Blocks: A Path Toward Secure and Measurable Software.
US White House. February 2024. https://www.whitehouse.gov/wp-
content/uploads/2024/02/Final-ONCD-Technical-Report.pdf
[7] AWS LibMLKEM repository. https://github.com/awslabs/LibMLKEM/
[8] Principles-Based Assurance site.
https://www.ncsc.gov.uk/information/principles-based-assurance
[9] SLOTHY: Assembly optimization via constraint solving.
https://github.com/slothy-optimizer/slothy
[10] The EasyCrypt language and toolset. https://formosa-
crypto.org/projects/easycrypt
[11] Cryptol - The Language of Cryptography. https://cryptol.net/
[12] SampCert: verified implementation of discrete Gaussian sampler
https://github.com/leanprover/SampCert
[13] Fiat-Crypto: Synthesizing Correct-by-Construction Code for Cryptographic
Primitives. https://github.com/mit-plv/fiat-crypto
[14] Jasmin language and toolset. https://formosa-crypto.org/projects/jasmin
[15] Hax - A Rust Verification Tool. https://hacspec.org/
[16] IETF Usable Formal Methods Research Group.
https://datatracker.ietf.org/rg/ufmrg/about/
[17] Duvet repository: https://github.com/awslabs/duvet
[18] CBMC - The C Bounded Model Checker. https://github.com/diffblue/cbmc
[19] Athanasiou K, Cook B, Emmi M, MacCarthaigh C, Schwartz-Narbonne D,
Tasiran S. SideTrail: verifying time-balancing of cryptosystems. In: Piskac R,
Rümmer P, eds. Verified Software. Theories, Tools, and Experiments. Cham,
Switzerland: Springer International Publishing; 2018:215-228
https://doi.org/10.1007/978-3-030-03592-1_12.

https://model-checking.github.io/kani/
https://github.com/camshaft/bolero
https://www.whitehouse.gov/wp-content/uploads/2024/02/Final-ONCD-Technical-Report.pdf
https://www.whitehouse.gov/wp-content/uploads/2024/02/Final-ONCD-Technical-Report.pdf
https://github.com/awslabs/LibMLKEM/
https://www.ncsc.gov.uk/information/principles-based-assurance
https://github.com/slothy-optimizer/slothy
https://formosa-crypto.org/projects/easycrypt
https://formosa-crypto.org/projects/easycrypt
https://cryptol.net/
https://github.com/leanprover/SampCert
https://github.com/mit-plv/fiat-crypto
https://formosa-crypto.org/projects/jasmin
https://hacspec.org/
https://datatracker.ietf.org/rg/ufmrg/about/
https://github.com/awslabs/duvet
https://github.com/diffblue/cbmc

