High Speed Direct Drive Motors Enabled by SiC Power Devices

High-Megawatt (HMW) Direct-Drive Motor Workshop September 4th, 2014

Paulo Guedes-Pinto

TECO
Westinghouse

High Speed v. Conventional Motor Comparison

2 MW 1,800 rpm v. 2 MW 22,500 rpm

TECO Westinghouse

High Speed Motor Technology Design Considerations

- Rotor dynamic performance
 - Mode separation and margin across entire speed range
 - Supercritical rotor complicates bearing design and reliability
- Thermal management
 - High power density requires liquid cooling in the stator
 - Eddy current losses require use of Litz wire or Roebel coils in the stator winding
 - Core losses require use of thin laminations (0.18 mm or less)
 - Unconventional air circulation schemes to overcome pressure drop at air gap
 - Oil film bearings are lossy. Magnetic bearings are preferred
 - Power quality (or lack thereof) affects rotor heating
 - High efficiency is critical
- Stress management
 - Rotor containment
 - Magnetic bearing rotating components

High Speed Motor Technology Design Considerations

- Torque pulsation
 - Large air gaps and good power quality reduce torque pulsation
- Motor insulation and coil design
 - Litz wire or Roebel coils to limit eddy current losses
 - Corona and grading tape use in medium voltage to reduce insulation stress and overheating
 - Lead design must consider skin effect
 - Thermal conductivity v. dielectric stress
 - End turn length
- Power quality
 - Drive and motor ideally designed in conjunction
 - Limitations on switching frequency in drives can produce low and high order harmonics
 - Magnet configuration in PM machines can affect power quality

Variable Frequency Drives for High Speed Application

- High frequency drives are usually de-rated versions of commercial low frequency drives
 - Low switching frequency is not conducive to good power quality
- Compliance to IEEE 519 does not guarantee good motor performance
 - Current THD 2% or better to reduce rotor heating and prevent catastrophic rotor failure
- Interleaving can support high fundamental frequency without increasing switching frequency
- Low voltage cell design offers opportunities to improve power quality and efficiency – Drive segmentation
 - Use of SiC MOSFET
 - High switching frequency (>10 kHz)

TWMC's VersaBridge

 Modular design can be used in low, medium and high voltage applications and wide range of power outputs

TWMC's VersaBridge

 Modular design can be used in low, medium and high voltage applications and wide range of power outputs

VersaBridge System Schematics

36-Pulse Rectifier with two 18-pulse Transformers

TECO Westinghouse

TWMC VersaBridge Multi-Level Topology

Unidirectional Power

- 750 kW/Slice
- Carrier Frequency
 - (2n+1) x Device SF
 - n = number of series cubes
 - Device SF = 0.3 to 6 kHz
 - 4.2 kHz to 6 kHz typical
 - 20 kHz or higher possible
- Input
 - 18 pulse transformers
 - 18 + 18 pulse system
- Induction Motor Control
 - V/Hz
 - Vector
- Independent Liquid Cooled
 - Electronics
 - Transformer

- Bidirectional Power
 - 500 kW/Slice
 - Carrier Frequency
 - (2n+1) x Device SF
 - n = number of series cubes
 - Device SF = 0.3 to 6 kHz
 - 4.2 kHz to 6 kHz typical
 - 20 kHz or higher possible
 - 6 kHz input
 - Input
 - 6 kHz typical carrier
 - Electronic phase shift
 - More slices \rightarrow lower grid THD
 - Induction Motor Control
 - V/Hz output only
 - Vector input & output
 - Independent Liquid Cooled
 - Electronics
 - Transformer

TWMC VersaBridge Multi-Level Topology

Existing

- Semiconductor Solution:
 - IGBTs + Diodes (Si based)
- Transformer Solution:
 - Iron core transformer
- Slice
 - Power converter + Transformer
- Liquid Cooling
- Distributed Control
- Series & Parallel Solutions

- Future Vision
 - Semiconductor Solution:
 - IGBT + SiC Diode
 - SiC Transistor +Diode
 - Transformer Solution
 - None motor winding and VSD matched
 - High frequency core
 - Slice
 - Power converter (+ Transformer)
 - Advanced Liquid Cooling
 - Enhanced Distributed Control
 - Series & Parallel Solutions

TWMC VersaBridge Transformerless Topology

No Transformer

High Frequency Isolation Transformer

