

An HL7 v2 Platform for

Standards Development and Testing

S. Martinez1 and R. Snelick1
1National Institute of Standards and Technology (NIST), Gaithersburg, MD, USA

Abstract – Development of healthcare data exchange

standards has long been problematic, plagued with

ambiguous and inconsistent requirement specifications.

This situation leads to potential misinterpretation by

implementers, thus limiting the effectiveness of the

standard and creating artificial and unnecessary

barriers to interoperability. Likewise, the ability to test

implementations effectively for conformance to the

standards is hindered. The current approach of

standards development and test plan creation relies on

word processing tools, meaning implementers must read

and interpret the information in these documents and

then translate it into machine-processable requirements

and test assertions. This approach is error prone—a

better methodology is needed. We present a set of

productivity tools in an integrated platform that allow

users to define standards and test plans that result in

machine-processable artifacts. A testing infrastructure

and framework subsequently uses these artifacts to

create conformance testing tools automatically. We

present and demonstrate the utility of a platform for

developing standards, writing test plans, and creating

testing tools. This end-to-end methodology is illustrated

by describing a case study for the HL7 v2.6 Vital

Records Death Reporting Implementation Guide.

Keywords: Healthcare Data Exchange Standards;

Healthcare Information Systems; Interoperability;

Standards Development; Testing.

1 Introduction

 For 30 years, HL7 Version 2 (v2) has been the

predominant standard used for the exchange of healthcare

administrative and clinical data. Healthcare information

systems use the HL7 v2 protocol to develop standardized

interfaces to connect to and exchange data with other

systems. HL7 covers a broad spectrum of domains

including Patient Administration, Laboratory Orders and

Results, and Public Health Reporting. The base HL7 v2

standard [1] is a framework that contains many message

events, and for each event it provides an initial template

(starting point) that is intended to be constrained for a

specific use case. The application of constraints to a

message event is referred to as profiling [2,3]. For

example, the ADT (Admit, Discharge, Transfer) A04

(Register a Patient) message event is a generic template

for communicating information about a patient. The base

message template is composed of mostly optional data

elements. For a given use case, e.g., Vital Records Death

Reporting (VRDR) [4], the message template is

“profiled”. That is, elements can be constrained to be

required, content can be bound to a set of pre-

coordinated codes, and so on. The base message event

(e.g., ADT A04) that has been constrained for a

particular use (e.g., VRDR) is referred to as a

conformance profile. An implementation guide is a

collection of conformance profiles organized for a

particular workflow (e.g., report, revise, or cancel a death

report). In this example, three conformance profiles exist

each with different message events, one for report, revise,

and cancel. To date, HL7 v2 implementation guides have

been created using word processing programs, which has

resulted in ambiguous and inconsistent specification of

requirements. This practice has hindered consistent

interpretation among implementers, which has created an

unnecessary barrier to interoperability.

We present an end-to-end methodology and platform for

developing standards (implementation guides), writing

test plans, and creating testing tools in the HL7 v2

technology space [3,5]. The platform includes three key

foundational components:

 A tool to create implementation guides and

conformance profiles

 A tool to create test plans, test cases, and

associated test data

 A testing infrastructure and test framework to

build testing tools

A key to the approach is that the “normal” process of

creating implementation guides, test plans, and testing

tools is “reversed”. Instead of creating requirements

using a natural language and subsequently interpreting

the requirements to create test plans and test assertions,

the requirements are captured with tools that internalize

the requirements as computable artifacts.

Figure 1 illustrates the methodology. Domain experts

develop use cases, determine the message events that

correspond to the interactions in the use cases, and then

proceed to define the requirements. Using the NIST

Fig. 1. NIST HL7 v2 Standards Development and Testing Platform

methodology, they accomplish these tasks by entering

this information into the Implementation Guide

Authoring and Management Tool (IGAMT). During this

process, the domain experts constrain the message events

according to the requirements needed by the use case.

Section 2 will elaborate more on this process and on the

details of how the requirements are constrained. The

output of IGAMT is a set of artifacts that are represented

in Word, HTML, and XML formats. The complete

implementation guide, including the narrative and

messaging requirements, can be exported in Word or

HTML. Such formats are suitable for ballot at standards

development organizations such as HL7 or IHE

(Integrating the Healthcare Enterprises). Each

conformance profile can be exported as XML. The XML

format contains all of the messaging requirements in a

machine processable representation, which is the most

important aspect of IGAMT since the XML conformance

profiles have many uses including message validation,

test case and message generation, and source code

generation.

The XML conformance profile and/or the internal

IGAMT model are imported by the Test Case Authoring

and Management Tool (TCAMT). TCAMT is used to

create targeted test cases for interactions (profiles)

defined in the implementation guide. The output is an

additional set of constraints in an XML format. The

entirety of the output generated from IGAMT and

TCAMT is called a “resource bundle”.

The NIST platform includes a testing infrastructure of

common utilities used for testing, such as a message

validation engine, along with a testing framework that

provides various testing tool components, such as a

communication framework and a profile viewer. Testing

Tool instances are then created using the testing

infrastructure and framework components as well as the

resource bundle output generated from IGAMT and

TCAMT.

The NIST platform in essence allows end users to create

conformance testing tools by means of a set of

productivity tools. This streamlined approach can greatly

reduce today’s problems with conformance test tools for

standards. These problems include: there are too few of

these tools, they are expensive to build, they are not

dynamic for local refinements, and their time to market is

protracted. Additionally, the platform provides value

through enforcing consistent and rigorous rules for

requirements specifications.

The remainder of this paper explains the NIST platform

in more detail in the context of a real-world case study.

The layout of the VRDR implementation guide is

presented, and we describe how IGAMT is used to

capture the messaging requirements. Next, an explanation

of how a set of targeted test cases are created in TCAMT

is provided. Finally, the resulting VRDR test tool is

presented. The goal is to inform the reader about the ease

with which HL7 v2 implementation guides, test cases,

and testing tools can be created using the NIST platform

compared to the current laborious methods used today.

2 IGAMT

 IGAMT is a tool used to create HL7 v2.x

implementation guides that contain one or more

conformance profiles. The tool provides capabilities to

create both narrative text (akin to a word processing

program) and messaging requirements in a structured

environment. Our focus in this paper is on the messaging

requirements.

IGAMT contains a model of all the message events for

every version of the HL7 v2 standard. Users begin by

selecting the version of the HL7 v2 standard and the

message events they want to include and refine in their

implementation guide. For example, the message events

ADT^A04, ADT^A08, and ADT^A11 are used to create

14 conformance profiles in the VRDR implementation

guide. Each message event is profiled (constrained) to

satisfy the requirements of the use case.

Rules for building an abstract message definition are

specified in the HL7 message framework, which is

hierarchical in nature and consists of building blocks

generically called elements [1]. These elements are

segment groups, segments, fields, components, and sub-

components. The requirements for a message are defined

by the message definition and the constraints placed on

each data element. The constraint mechanisms are

defined by the HL7 conformance constructs, which

include usage, cardinality, value set, length, and data

type. Additionally, explicit conformance statements are

used to specify other requirements that can’t be

addressed by the conformance constructs. The process of

placing additional constraints on a message definition is

called profiling. The resulting constrained message

definition is called a conformance profile (also referred

to as a message profile). An example of a constraint is

changing optional usage for a data element in the original

base standard message definition to required usage in the

conformance profile.

IGAMT provides, in a table format user interface, the

mechanisms to constrain each data element at each level

in the structure definition. The rows of the table list the

data elements according to the structure being

constrained (segments, fields, and data types). The

columns list the conformance constructs that can be

constrained for a data element, including the binding to a

value set.

One key philosophy of IGAMT is the capability of

creating reusable building blocks. These lower level

building blocks can be used to efficiently create higher

level constructs. The building blocks include data type

flavors, segment flavors, and profile components. A base

data type can be constrained for a particular use; the

resulting data type is called a data flavor (or data type

specialization). A given base data type may have multiple

data type flavors. These flavors can be saved in libraries

and reused as needed. A similar process applies to

creating segment flavors.

A profile component represents a subset of requirements

that can be combined with other profiling building

blocks. One such example is the definition of a profile for

submitting immunizations. The CDC creates a national

level profile. However, individual states may have

additional local requirements that can be documented in a

profile component. Only the delta between the national

and local requirements is documented in the profile

component. Combining the national level profile and the

state profile component yields a complete

(implementable) profile definition for that particular

state. This design provides a powerful and effective

approach to leveraging an existing profile.

A utility for creating and managing value sets is also

provided. Specific value sets can be created and bound to

data elements. Value set libraries can also be developed

for reuse.

3 VRDR Use Cases

 The Vital Records Death Reporting (VRDR)

Implementation Guide (IG) [4] was developed to support

the transmission of death-related information from the

health care provider’s electronic health records (EHR) to

the jurisdictional vital records offices (JVRO) and to the

National Statistical Agency (NSA) [6]. Five use

cases/workflows are identified to describe the

transmission of data: Provider Supplied Death

Information (PSDI), Jurisdiction Death Information

(JDI), Void Certificate Reporting (RVCA), Coded Cause

of Death (CCODA), and Coded Race/Ethnicity (CREIA)

[4]. The use cases require three message events:

ADT^A04, ADT^A08 and ADT^A11. A given use case

has more than one interaction; in total, 14 interactions are

needed.

Fig. 2. Vital Records Death Reporting Interactions

Fig. 3. VRDR Profiles and Design

Figure 2 shows the 14 interactions supporting the VRDR

use cases. The type of information being exchanged

determines how each interaction (message) is

constrained. For the PSDI use case, the ADT^A04 is

constrained for reporting about a person’s death, the

ADT^A08 message is constrained for updates to the

report, and the ADT^A11 message is constrained to

cancel the report.

Each interaction is assigned a unique profile identifier;

e.g., “PSDIA04_V1.0” is a profile identifier for the

“Send Patient Death Information” interaction (ADT^A04

interaction in Figure 2). The same three message events

(ADT^A04) are employed across various use cases,

however, the context in which they are used is different;

therefore, the set of constraints applied are different, each

resulting in a unique conformance profile (for the same

base ADT^A04 event). The content is defined by the set

of initiating and responding systems.

Figure 3 shows the conformance profile-building

approach for the VRDR profiles and the group of profiles

that share the same trigger event. The A04 message event

is loaded and constrained to create the common A04

profile. From there, the PSDIA04_V1.0 profile is

created. The PSDIA04_V1.0 profile is used in building

all of the profiles associated with the A04 event, and the

corresponding message-level constraints are added to

each profile. Constraints at the message level include

segment and group usage, cardinality, and any additional

requirement in the form of conformance statements.

The approach used in the development of the A04

profiles is followed in the creation of the A08 and A11

profiles. The base message events are loaded and

constrained to develop the PSDIA11_V1.0 and

PSDIA08_V1.0 profiles. These profiles are then

leveraged to create the remaining profiles sharing the

same message event using the IGAMT cloning

capability.

Profiling at the value set, segment, field, and data type

(component) levels is followed, and it can be achieved in

any order, thus taking advantage of the IGAMT

capability that allows for the creation of reusable

building blocks. The value set library can be created

using the IGAMT built-in mechanism for loading value

sets from HL7 tables and the CDC PHINVADS (Public

Health Information Network Vocabulary Access and

Distribution System) value sets [7].

VRDR data type flavors are built from the HL7 v2.6 data

type library. They are defined using the constraints

specified in the IG, such as length, usage, and value set

binding and any constrains in the form of conformance

statements. Occasionally, depending on how the data

type is going to be used, the IG defines more than one

data type specialization for a base data type. In the case

of the “HD (Hierarchic Designator Assigning Authority)”

data type, an additional flavor called HD_AA is defined.

This flavor is used when an OID (Object Identifier) is

assigned to designate an assigning authority.

The VRDR segment flavor are created from the HL7

v2.6 segment library using the length, data type,

cardinality, usage, value set binding, and conformance

statement constraints defined in the IG. In some

instances, it is necessary to create additional segment

flavors to indicate constraint deltas among the profiles.

For example, the constraints in the PV1 segment are

applied to every profile, therefore only one PV1 flavor is

created. In the case of the PID segment, the constraints

are different in each use case; therefore, a segment flavor

is created for each use case, and that flavor can be reused

in the respective profiles.

As shown, a key feature in IGAMT is the capability to

create precise object definitions and to use (and reuse)

the objects as building blocks to create higher level

objects, such as segment and conformance profiles.

4 TCAMT

 TCAMT is a tool used to create HL7 v2.x test plans

that contain one or more (typically many) test cases. A

test case can consist of one or more test steps. A test step

can be an HL7 v2.x interaction or a manual step such as

visually inspecting the contents of the system under test’s

(SUT’s) display screen. Each test case and test step can

consist of a test description, pre- and post-conditions,

objectives, evaluation criteria, and additional notes and

comments. Test steps for an HL7 v2.x interaction contain

an HL7 v2 message (that is, specific data) that is in

alignment to an XML conformance profile created from

IGAMT.

TCAMT allows domain experts to create test cases that

target certain scenarios and capabilities. Using these test

cases provides context, which expands the scope of

testing beyond just the constraints in the conformance

profile. Without context, a validation tool cannot test a

message exhaustively to all requirements specified in the

implementation guide. For example, elements with

“required, but may be empty (RE)” usage or elements

with “conditional usage (C)” cannot be assessed without

targeted tests. A message that is validated against the

requirements of a conformance profile without any

provided context is called “context-free testing”. A

message that is validated against the requirements of a

conformance profile and with a provided context is called

“context-based testing” [3]. The test cases provide

context, and TCAMT is a tool that allows users to create

the test cases.

A key feature in TCAMT is its use of the conformance

profiles created in IGAMT as a foundation. The message

definition and requirements are available to the TCAMT

user based on information that was entered into IGAMT.

Then, the TCAMT user provides the data associated with

each message element of interest. TCAMT also allows

the user to enter additional assertion indicators based on

what they want to test. For example, for an element with

a usage of “RE”, the user might provide data that are

expected to be entered into the sending system for the

element, and the user also might select an assertion

indicator. There are several assertion indicators that

could be selected, for example, “presence”. In this case,

if the user provides test data and the indicator of

“presence”, an additional assertion (constraint) is

generated by TCAMT and is provided to the validation.

For elements with “RE” usage, the element must be

supported by the SUT, but in a given message instance

the element may not be populated. For this construct, the

tester wants to ensure that the implementation has, in

fact, included support for the element.

In a context-free environment, the absence of data in a

message is not a conformance violation for elements with

“RE” usage. However, in the example test case described

above, data were provided, and an assertion for the

presence of the data was selected. Now, when a message

created for this test case is validated, the additional

assertion triggers the check for the presence of data for

this element. This method is one way to determine

support for the element.

Via TCAMT, the user can create an unlimited number of

test cases and test a broad spectrum of requirements.

Other assertion indicators can be used to test for specific

content or for the non-presence of an element.

Additionally, test data can be provided to trigger

conditional elements. In other instances, support for

certain observations may need to be ascertained. In such

cases, test data for specific observations (e.g., cause of

death, date/time pronounced dead, etc.) are provided,

requiring the message instance to contain an OBX

segment for that observation. TCAMT provides the

mechanisms to conveniently and consistently create test

cases. Output from TCAMT provides the additional

constraints that are interpreted by the validation engine.

5 VRDR Test Plan

 The VRDR test plan consists of a set of scenarios and

test cases that emulate real-world events and workflow.

The scenarios are designed to target specific

requirements that are not easily testable in a context-free

environment. The goal of the VRDR test plan is to

provide a set of test cases that collectively tests the

spectrum of requirements defined in the VRDR

implementation guide. Therefore, for each interaction in

support of a use case, test scenarios and test cases are

needed.

Figure 4 shows an excerpt of the test plan. A scenario for

the Provider Supplied Death Information (PSDI) is

indicated that contains three test cases and associated test

steps. Test steps have a 1-to-1 relationship to an HL7 v2

message (interaction), and each message is bound to the

requirements in its corresponding conformance profile.

Fig. 4. VRDR Test Plan Excerpt

For each test case, a real-world story is given along with

specific test data that coincide with the test story. The test

data provide a known data set that can be used to create

additional assertions (beyond those provided in the

conformance profile). This approach is the principle

behind context-based testing. Each test step interaction

contains a message that is associated with its

corresponding conformance profile. TCAMT provides a

productivity mechanism to create the test messages using

the underlying structure provided in the conformance

profile. Once the test message (and therefore test data)

has been created, additional assertions can be specified

that align with the testing goals.

Table 1 shows two important examples of how this

process works. TCAMT facilitates specific assertions by

allowing the test plan designer to assign assessment

indicators to the data elements. The combination of the

provided test data and assessment indicator generates the

assertions. The PDA-2.9 example shows a case where the

Death Location Description element is constrained with

“RE” usage, which indicates that the element must be

supported but data may not always be available. To test

support for this element, the test case provides test data

(“Mercy Hospital”) and the assessment indicator is set to

“Presence”. These settings will generate an assertion that

makes the presence of the PDA-2.9 element required.

The OBX-3.1 example shows a case where an

observation (an OBX segment) is expected in which the

observation is “Cause of Death”. Here, the value “69453-

9” is provided, which is a LOINC (Logical Observation

Identifiers Names and Codes) code that indicates a

“Cause of Death”. By explicitly requiring the “Cause of

Death” observation be included in the message, the

testing is ensuring that the SUT can support this

observation. In this example, only one element in this

segment is shown, but typical testing scenarios will have

a coordinated set of assertions for the set of elements in

the OBX segment. For example, OBX-3.3 would assert

that the content of this element is “LN” to confirm that

the code “69453-9” is in fact drawn from the LOINC

code system.

Creating test cases that target specific capabilities, such

as “sending the Cause of Death observation” is an

important aspect of testing and a key incentive for

conducting context-based testing. Without this level of

specificity, assessment of systems is limited. Only a few

examples have been provided here to give the reader a

sense of the sorts of items that can be tested. However,

this approach expands the test space significantly. Other

aspects that can be tested include cardinality, length,

value set constraints, conditional elements, specific

content, workflow, and functional requirements.

Table 1. Context-based Assertion Examples

6 Infrastructure and Framework

 NIST has built an HL7 v2.x testing infrastructure and

framework to aid in the process of creating conformance

testing tools. The testing infrastructure provides a set of

services utilized by the test tool framework to build

specific instances of tools. A test tool can be specific for

a particular domain, or it can be general-purpose. The

general-purpose tool is a NIST-hosted web application

where a user can upload conformance profiles and test

plans to create a test tool. The conformance test tool

essentially is generated as a by-product “for free” once

the validation artifacts have been created. This liberates

the domain experts from the tool building process.

Alternatively, the framework can be leveraged,

customized, and installed locally. Using the framework,

developers can choose to create domain specific or

general-purpose web application conformance test tools,

access the validation via web services, or incorporate

validation via JAR (Java Archive) files or source code.

Regardless of the use, the NIST platform can

significantly improve the quality of implementation

guides, assist in the creation and maintenance of test

plans, expedite the stand-up of a validation tool, and,

overall, reduce the cost and time of the entire process.

7 VRDR Test Tool

 A VRDR conformance testing tool is built using the

testing infrastructure and framework, the IGAMT-

produced conformance profiles, and the TCAMT-

produced test plan. The test tool is a web-based

application (see [8] to access) that supports both context-

free and context-based validation. In addition to

performing message validation, the tool provides a

browse-able view of the requirements for each

conformance profile. In the context-based mode, the test

story, test data, and an example message are provided for

each test step.

In the context-free mode, the user simply selects the

conformance profile to validate against and imports the

message. The validation is performed automatically and a

report is given. In the context-based mode, the user

selects the test step and imports the message to validate.

The test tool sets the validation to the conformance

profile linked to the test step, performs the validation,

and provides a report. In both modes, a tree structure of

the message is shown on the left panel of the validation

screen and can be used to inspect the content of

individual data elements.

8 Summary

 We presented an end-to-end methodology and platform

for developing standards, writing test plans, and creating

testing tools in the HL7 v2 technology space. The

platform includes three key foundational components: (1)

a tool to create implementation guides and conformance

profiles; (2) a tool to create test plans, test cases, and

associated test data; and (3) a testing infrastructure and

test framework to build testing tools. We demonstrated

the approach by creating a test tool for the HL7 v2.6

Vital Records Death Reporting use case. Requirements

were captured in IGAMT and exported as conformance

profiles. TCAMT was used to create a set of test cases

based on the conformance profiles. A conformance test

tool was created by combining the validation artifacts

with the testing infrastructure and framework.

9 References

[1] Health Level 7 (HL7) Standard Version 2.6,

ANSI/HL7, October 2007, http://www.hl7.org.

[2] Principles for Profiling Healthcare Data

Communication Standards. R. Snelick, F. Oemig. 2013

Software Engineering Research and Practice (SERP13),

WORLDCOMP’13 July 22-25, 2013, Las Vegas, NV.

[3] Healthcare Interoperability Standards Compliance

Handbook. F. Oemig, R. Snelick. Springer International

Publishing Switzerland, ISBN 978-3-319-44837-4,

December 2016.

[4] HL7 Version 2.6 Implementation Guide: Vital

Records Death Reporting, Release 1. Draft Standard for

Trail Use. August 2016. http://www.hl7.org.

[5] NIST Resources and Tools in Support of HL7 v2

Standards. http://hl7v2tools.nist.gov/

[6] CDC National Vital Statistics System:

http://www.cdc.gov/nchs/nvss/evital_standards_intiative

s.htm

[7] CDC Public Health Information Network

Vocabulary Access and Distribution System (PHIN

VADS); https://phinvads.cdc.gov/.

[8] NIST Vital Records Death Reporting (VRDR)

Conformance Testing Tool; http://hl7v2-vr-r2-

testing.nist.gov

http://www.hl7.org/

