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Problem 
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• How to create a set of biometric samples for 
research? 

• How many subjects to include in a sample? 
• How are subjects chosen?  

 

• Performance prediction requires adequate 
population samples too. 

• Convenience sampling introduces strong bias.   
• Alternative sampling methods have cost and 

practicality implications for data collections. 
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Stratification Benefits 
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• Stratification - the process of dividing population into 
homogeneous, mutually exclusive subgroups.  

• Multi-stage stratified sampling design increases 
“trustworthiness” of match rate estimates 
• Lower costs and smaller performance prediction errors.    

• We address the following specific questions:  
1. How can a researcher use existing large datasets to generate 

stratified samples for the purpose of biometric performance 
prediction? 

2. What are practical benefits of stratification? 



© CITeR 

4 

• The process: 
 
 
 
 
 
 
• We investigate the Performance Prediction phase. 

• Sample size estimation approach for Rank 1 identification rate 
estimation.  
 

Deployed Biometric System Performance Prediction 

Face Images 

Sample 
Size  
Estimation 

Grouping Data 
by Covariate 

Pre-
processing 

Feature 
Extraction 

Matching / 
Decision 
Making 

Get 
Sample 

Our Approach 
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Stratified Sampling in 
Biometrics 
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• Stratified Sampling first partitions the population into L 
available groups (e.g. males, females).  
• Within each group, a sample is created by taking an independent simple 

random sample. 

• Goal: Participants within each group are as similar as possible. 
• Individual stratum variances are minimized. 

• What is the criteria for effective grouping? 
• There should be clear differences in match rates between strata.  

• May be algorithm dependent! 
• Strata based on eye color, facial hair or hair color do not exhibit this.  
• In face recognition, age group, ethnicity and gender could be used as 

strata. 
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Stratified and Simple Random 
Sampling: Difference 

• Simple Random Sampling takes a sample from 
a population in a way so that each sample has 
the same chance of being selected.  

 

• In stratified random sampling, the population 
is first separated into non-overlapping strata . 
A sample is created by simple random 
sampling from each stratum.  

• Sample size from each strata may differ.    
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Intuition:  
How tall are NBA players? 
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• # Players: 434; Mean height: 79.04in; Variance: 12.9 in2 

• How many players must be sampled to estimate the average 
height to within one inch?  

• Grouping the players by position reduces variance  
• 5.94 in.2 (guards), 2.32 in.2 (forwards), 1.85 in.2 (centers) 

• Simple random sampling: 47 observations. 
• Stratified sampling: 13 (optimally allocated) observations. 
• A stratified sample of 7 guards, 4 forwards, and 2 centers 

selected from any NBA season will yield an estimate of the 
mean height from that season, within an inch, 95% of the 
time.  
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Large Face Data Sets 
• In large data sets, the number of false matches tends to increase. 

• Imposter score correlations close to 0 within each cluster 
helps reduce the FMR.  

• We investigated imposter score correlations within the strata 
(e.g. African American females, Caucasian males).  
• Pinellas County Sherriff’s Office data set.  

• Most of the subjects are white males. 
• 2.5K each for male/female and black/white demographics.  

• Experiment: FaceVACS 8.6.0, 10,000x10,000 match scores. 
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Genuine/Imposter Score 
Distributions 

FaceVACS Similarity Score Distribution 
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Similarity Score 

FaceVACS Imposter Score Comparison 
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Imposter Score 

FaceVACS Genuine Score Comparison 

Genuine Score 

D
en
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• Score distributions change with  
demographic information. 
• Black female similarity scores exhibit 
a larger variance.  

•Added uncertainty will have a 
significant impact in matching.  
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Cohort Interactions 

  
• If the variation in similarity scores among 

black females is reduced,  
And  

• If no imposter score correlation existed,  
• Black females would become more 

identifiable. 

FMR 
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ROC curve for 4 cohort combinations  
Black/White ROC Curve Comparison  
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Male/Female ROC Curve Comparison  
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Impostor Score Correlation 
Imposter Scores of 2 Black Females 

Subject 1 

Su
bj

ec
t 2

 

• The correlation coefficient above is 0.595.  
• Similarity scores between different, unrelated 

subjects exhibit almost a linear relationship.  
• The matcher has difficulties differentiating 

between the black females.  
 

Imposter Scores of 2 White Females 

Su
bj

ec
t 2

 

Subject 1 

• The correlation coefficient here is -0.006 
(no relationship).  

• This is desirable because the matcher is 
having a much easier time  differentiating 
the individuals in these images.  
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Stratified Sampling, 
Correlation, Large Samples 

• Stratified sampling assigns a higher “weight” to cohorts that are seen 
to cause difficulties in facial recognition 
 
 
 
 
 

 
• Correlations among imposter scores of black females likely due to 

insufficient training with black female samples [Klare et al.]  
 
 

Higher Variance 

Lower Variance 

Lower Variance 
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Demographic Black Females Black Males White Females White Males Overall 

GAR 0.8048 0.87 0.8684 0.916 0.853 

Table: Genuine Accept Rates (GAR) at a fixed False Accept Rate of 0.01% 

Male Female 

94.4% 89.5% 

Black White Hispanic 

88.7% 94.4% 95.7% 

18-30 30-50 50-70 

91.7% 94.6% 94.4% 

Grouped by Ethnicity Grouped by Age Grouped by Gender 

• Large difference in GAR between black females and white males. 
• Face Recognition Performance: Role of Demographic Information 

[Klare et al.] 
• There seem to be extra interactions with gender and ethnicity that 

increase differences in match rates.  
• Dynamic face matcher selection.  

Match Results 
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Stratified Random Sampling: 

Sample Size Equations 
• B represents a chosen bound. 
• N (Nk) is overall sample (strata) size. 
• p (pk) is the GAR at FAR 0.01%. 
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Black Female Black Male White Female White male 

~30% ~25% ~25% ~20% 

Table: Allocation of the sample            
based on Stratification 

• Stratified sampling, using the 4 cohorts of 
interest, now allows for 230 fewer tests to 
estimate performance within 1%. 

• An added bonus:  
• The next collection may emphasize the 

sampling of black females, the most 
troublesome cohort.  

Results using our 4 Cohorts as Strata 

SRS Stratified 

Note: The error bound for the plot 
above ranges from 0.9% to 1%. 

Data Stratification 
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Results 
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Simple Random Sampling Stratified Random Sampling  
• Total Size: 3341 

• Allocation: 
  843 black females  
  834 black males 
  842 white females 
  822 white males 

• Estimated GAR of 85.3% at 
an FMR of 0.01% . 

 
• Total Size: 3109 

• Allocation: 
  933 black females  
  777 black males 
  777 white females 
  622 white males 

• Estimated GAR of 85.3% at 
an FMR of 0.01%.  
 

• Stratified random sampling achieved the same performance using 232 fewer 
subjects.  

• The total sample sizes below were obtained using an error bound of 1% 
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Data Extrapolation 
• The total sample sizes below were obtained using an error bound of 1%. 
• Differences when predicting a population of one billion. From previous studies, 

we are assuming a GAR of 85.3% at .01%  FMR 

5,016 

4,544 
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Difference: 472 

1,363 

1,136 

909 

SRS vs. Stratified Comparison Allocation for Stratified Sampling 
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Data Extrapolation 
• Now, we calculate the necessary sample size using an error bound of 0.01%. 
• How many samples from a population of 1 billion would we need to estimate 

the GAR at 0.01% FMR to within 0.0001? 
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Bound 

47,760,886 

43,430,444 

13,029,133 

10,857,611 

8,686,089 R
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Bound 

Difference: 4,330,442 

SRS vs. Stratified Comparison Allocation for Stratified Sampling 
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Sample Size Reduction 
 
• Stratified sampling requires 

around 10% fewer subjects to 
achieve the same performance 
estimate, regardless of the 
chosen error bound.  

• In general, the choice of error 
bound will not have an impact 
on the sample size reduction  
due to stratification.   
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The Effect of Errors in 
Stratification 

Black White 

83.3 % 89.02 % 

GAR at .01% FMR (no errors) 

Black White 

83.4 % 88.26 % 

Black White 

84.3 % 86.06 % 

GAR at .01% FMR (10% errors) 

Differences: 
Black White 

+0.1 % -0.76% 

Black White 

+1.0 % -2.96 % 

33% errors 

• In a simulation, 10% and 33% of African American population 
was reclassified as white and vice versa.  
Simulate the effects of an incorrect classification by an algorithm or 
experimenter. 

• Results (baseline is the leftmost table):  
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Summary 

• Applied a stratified sampling design to face recognition. 
Approach offers savings in performance prediction for large systems. 
Offers guidance for performance prediction from existing collections. 

• Unbiased performance predictions from a stratified sample. 
Given valid assumptions, performance predictions are accurate 
The reward comes from the ability to allocate the sample.  

• Investigated the effect of errors in demographic information.  
The strata seem robust to small strata misclassification.  

• Should be extended to other biometric modalities. 
The role of matching algorithms.  
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