Development of Lipid-Based Scaffolds with Extracellular Matrix Proteins for Tissue Repair

Veronica Ivanovskaya, Minh Phan

Johns Hopkins University Materials Science and Engineering 08.13.2024

Tissue Engineering

Scaffolds

Chan, B.P. and Leong, K.W., 2008. Scaffolding in tissue engineering: general approaches and tissue-specific considerations. *Eur. Spine J.* 17, 467-479

Cellular Microenvironment and Healing

Extracellular Matrix (ECM)

- 1. Basement Membrane
 - a. Adhesive layer
 - b. Migration and Adsorption
- 2. Interstitial Matrix
 - a. Structural basis and support

CENTER FOR NEUTRON RESEARCH

b. Mechanical Properties

Elastin, Fibronectin, Collagen, Laminin

https://www.myopainseminars.com/resources/blog/the-extracellular-matrix-you-dont-say/

Pre-Scaffold and Approach

Influence of ECM Proteins on Bio membranes

ECM proteins speed up wound healing, migration, and growth

ECM proteins have different roles in mechanical properties and membrane structure

What are the effects of each protein?

Materials and Methods

CENTER FOR NEUTRON RESEARCH

Buffer: 0.05 M Tris-HCl at 7.2 pH

Lipid Films:

- 1. (14:0) DMPC + (14:0) DMPS [4:1]
- 2. (14:0) DMPC + (14:0) DMPS + Cholesterol [4:1, 25 wt.%]

Proteins:

- Elastin
- Fibronectin
- Collagen
- Fibronectin + Elastin
- Fibronectin + Collagen
- Fibronectin + Elastin + Collagen

Techniques: Langmuir Isotherm and X-ray Reflectometry

Langmuir Isotherm

 Investigation of two-dimensional structure and interfacial elasticity of compression

Shows adsorptions and changes in mechanical properties

 $\pi = \gamma_{\circ} - \gamma_{s}$

 $\gamma = 0$

 $\gamma_s < 0$

 $C_s^{-1} = [(-\frac{1}{A_{\pi}})*(\frac{dA}{d\pi})]^{-1}$

X-Ray Reflectometry

 \odot Investigation of the third dimension through layers

 Shows the incorporation of protein onto film and structure development

CENTER FOR NEUTRON RESEARCH

Stage 1: Bare Membrane

CENTER FOR NEUTRON RESEARCH

Fitted Model of Elastin Trial Bare Film

Stage 1: Bare Membrane

Stage 2: Adsorption

Adsorption Magnitude and Speed varies from protein to protein

CENTER FOR NEUTRON RESEARCH

Stage 2: Adsorption

Stage 3: Compression

Interfacial Elastic Modulus of Area Compressability

Most significant change in Modulus Very strong after 30.8

Stage 3: Compression

Collagen

Conclusions

Conclusions

Elastin:

- 1. Poor interaction, minor adsorption
- 2. Softens membrane (elastic property in ECM)

Fibronectin:

- 1. Strong interaction, uniform distribution, forms greater structure
- 2. At physiological pressure, strengthens membrane

Collagen:

- 1. Moderate adsorption, distributes uniformly
- 2. Strengthens the membrane significantly (strength in ECM)

Future Work

What is left to do?

Binary and Tertiary Systems

Future plans and applications?

- \odot Find best composition of lipids and proteins
- \odot Replace lipid monolayers -> Liposomes
- What cell interactions are there, can we manipulate cells?

 \circ Biophysical Society Conference 2025

Acknowledgements

Special Thanks to:

Julie Borchers

Leland Harriger

Susana Marujo Teixeira

Cara O'Malley

Minh Phan

Sushil Satija

Donna Kalteyer

Juscelino Leao

Joe Dura

Questions?

Veronica Ivanovskaya 08.02.2024

Supplementary Information

- Time constraints XRR and Langmuir machines being broken
- Loss of data from interference with machines
- Difficulties with exact measurements and repeatability
 - Milli water change mid way
 - Scales being inaccurate
 - Lipid sensitivity to humidity and age of samples
 - Difficulty solubilizing protein in working solution

