



# Particle orientation in soft materials from small-angle neutron scattering



Material properties depend on orientation/alignment



#### Material properties depend on orientation/alignment



Spider silk molecular structure



https://www.slideserve.com https://www.nsf.gov/

#### Material properties depend on orientation/alignment





Rebar in concrete



<u>https://www.slideserve.com</u> <u>http://www.freeimageslive.co.uk</u> <u>https://www.nsf.gov/</u>

#### Material properties depend on orientation/alignment





Muscle cells

https://www.slideserve.com https://www.nsf.gov/

http://www.freeimageslive.co.uk https://socratic.org/

#### Material properties depend on orientation/alignment





https://www.nsf.gov/

<u>http://www.freeimageslive.co.uk h</u> <u>https://www.arubabag.com</u>

#### Material properties depend on orientation/alignment



<u>http://www.freeimageslive.co.uk</u> <u>https://www.arubabag.com</u>

















## Small angle neutron scattering (SANS)



• Peak: mean orientation

Small angle neutron scattering (SANS)



Small angle neutron scattering (SANS)

- Peak: mean orientation
- Perpendicular: radius



Small angle neutron scattering (SANS)

- Peak: mean orientation
- Perpendicular: radius
- Parallel: length



## Small angle neutron scattering (SANS)

- Peak: mean orientation
- Perpendicular: radius
- Parallel: length



- Peak: mean orientation
- Perpendicular: radius
- Parallel: length





- Peak: mean orientation
- Perpendicular: radius
- Parallel: length



- Shape: particle morphology
- Position: particle dimensions



<u>Question</u>: Can we obtain orientation information from SANS?



















#### Comparing experimental and theoretical data



## Comparing experimental and theoretical data

Consider directions perpendicular and parallel to the mean orientation



## Comparing experimental and theoretical data

Consider directions perpendicular and parallel to the mean orientation

- Perpendicular -> radius
- Parallel -> length







- Experimental (red)
- Theoretical (black)



- Sector centered on X-axis
- Total sector angle of 15°



- Experimental (red)
- Theoretical (black)
- Best fitting (blue)

#### Figure:

- Sector centered on X-axis
- Total sector angle of 15°







#### Anisotropy factor 1 Experimental 8 Theoretical, width parameter = 6.6 0.8 Intensity (cm<sup>-1</sup>) 6 $\stackrel{(-)}{}^{0.6} Y^{(-)}_{V}$ 5 4 3 2 0.2 -150 -100 50 100 150 -50 0 $\phi_{ m p}$ (degrees) 0 **π/4 3**π/8 π/2 π/8 0 $heta_p$



## Conclusion





- Orientation distribution can be obtained from small angle neutron scattering
- Can control orientation to design materials



jrooks@udel.edu

## Supplementary slides





#### Obtaining data



#### Anisotropy factor – q range

