STOCHASTIC ENUMERATION WITH
IMPORTANCE SAMPLING

Alathea Jensen
December 11, 2017



Tree Size Problems

- Many problems in math, physics, and computer science boil
down to the same underlying question: how big is this tree?
- Some different flavors of this question:
- How many leaves are on this tree?

- How many nodes are in this tree?
- (G1ven a cost function, what’s the total cost of this tree?

- Example

- 3 leaves @

- 6 nodes

- $10 cost @ @
(53) (3) (82



Tree Size Problems

- Counting problems

- Any set whose elements can be constructed by a series of decisions can be
modeled by a decision tree

- E.g. graph colorings, spanning trees, set partitions, etc.

- Algorithms

- A decision tree can model all possible ways that an algorithm might
proceed

- Statistics such as runtime and memory usage can be modeled by cost
functions on the tree
- Databases

- Most large databases are organized as trees in order to optimize searching
and updating

- E.g. personal computer files (~300,000), Amazon listings (~500 million),
Facebook accounts (~2 billion), indexed pages on Google (~100 trillion)
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Tree Size Estimation

- Calculating tree size is #P-complete in general
- Goal: efficient estimation of tree size
- Two main types of estimation algorithms

- Markov Chain Monte Carlo (MCMC)
- Easier to bound variance of samples
- Takes longer to get each sample

- Sequential Importance Sampling (SIS)

- Harder to bound variance of samples
- Get samples very quickly



Motivation

- If the number of children per node is uniform across each
level...

- Then the number of leaves is the product of the number of
children along any path from root to leaf

- Example
«2.3.2.1 =12 leaves 2 children
3 children
2 children

1 child



Motivation

- If the number of children per
node 1s not uniform across each

level...

- Products will be different along
different paths

- Example
- Blue node path:2-3-1-3 =18
- Yellow node path:2-2-2-1=28
- But the number of leaves is still 12




Knuth’s Algorithm

- Donald E. Knuth, 1975

- Construct a path by starting with
the root and choosing a random
child (uniform distribution) of the
previous node to continue the path

- The estimate associated with each
path is the product of the number of
children seen along the path

- Example

- The blue node path gives an estimate
of2-3:-1-3=18

- The probablllty of constructlng blue

node path i s— - 1l-==—=
3 18

- The yellow node path gives as estimate
of2-2-2-1=8

- The probability of constructing the

1 1 1
yellow node pathis > -~~~ -1 _E




-
Knuth’s Algorithm

- Call the set of all possible paths P

- For each possible path, p € P, the associated estimate, est(p), is the

reciprocal of the probability prob(p) of choosing that path
1

prob(p)
- Each possible path contributes exactly 1 to the expected value sum

Elest(p)] = ) est(p) - prob(p) = ) 1= 1P|
pPEP pPEP
- Hence the expected value of the estimate is the number of possible
paths, which is the same as the number of leaves

- Therefore the average value of many estimates will converge to the
correct answer

est(p) =



Sequential Importance Sampling

» The reason Knuth’s algorithm works is because the estimate for
each path is the reciprocal of the probability of that path

- New idea
- Use a different probability distribution to choose the paths
- Define the estimate produced to be the reciprocal of the probability used
- Then we still have
Elest(p)] = ) est(p) - prob() = ) 1= P
DPEP DEP
- To get a different probability distribution...
- Assign an importance value to each node using an importance function

- Choose each node with probability proportional to its relative importance
amongst its siblings



Sequential Importance Sampling Example

- Labeled numbers are the
Importance values of the nodes

- Blue path probabilities

. 3 3
- Firstnode — = =
345 8

- Second node * 1
44242 2
- Third node 1
- Fourth node t _1
1+14+1 3
- Complete probabilityz : % : § =

- Blue path estimate is 16

- Better than the previous blue
path estimate, 18




Sequential Importance Sampling Example

- Labeled numbers are the
Importance values of the nodes
- Yellow path probabilities

. 5 5
« First node — = =
3+5 8

- Second node 22
5+4 9
- Third node L2
1+1 2
- Fourth node 1
5 4 1 20

- Complete probability = - = - - =

8 9 2 144

- Yellow path estimate is % = 7.2

- Worse than the previous yellow
path estimate, 8




Sequential Importance Sampling Variance

- Sequential importance sampling has the potential to make the
variance better, but also the potential to make it worse

- The optimal importance function is the number of leaves
beneath a node, which gives zero variance

- The closer the importance function comes to approximating the
number of leaves, the better the variance

- Call the optimal importance function r, and the actual importance function
r

- Assume both r and r, have been normalized so the sum of importance for

all sibling sets is 1
T.(n)
r(n)
relative variance will be less than the product of a; over all levels i of the
tree

- If we always have < q; for all nodes n at level i of the tree, then the



ldeas for Improving Variance

- Better importance functions
- Use all available information

- Conditioning the input
- Prune uniform regions of the tree (if any exist) and handle separately
- Structure the decision process so as to make the tree more uniform

- Improving the algorithm itself
- Visit more regions of the tree (stratified sampling)
- Use more paths (stochastic enumeration)



Stochastic Enumeration

- Reuven Rubinstein, 2013

- Given a fixed budget, B, instead of 1 node per level, we select
B nodes per level

- At each level, the new set of nodes Is chosen with uniform
probability from the children of the previous set of nodes

- This means some paths dead end while other paths split
- If there are fewer than B children, we take all the children

- At each level, instead of multiplying the estimate by the number
of children, we multiply by the average number of children over
all chosen nodes at that level



Stochastic Enumeration Example

-LetB =3
- Blue edges = available children
- Red nodes = chosen nodes

- Average number of children per
level?
- Level 1: % =2
. Level 2:32 =2
2 2
C1+442 7
- Level 3: =3
(3+1+1 _ 5
- Level 4; =3

-Estimateisz-é-z-5=19.4
2 3 3



Stochastic Enumeration Example

- Probability of selecting these

nodes?
1 1 1

c1-1-

1

(3) () (5) 3800

- Estimates and probabilities are
no longer reciprocal

- Sample space iIs now hyperpaths,
not paths, so it’s no longer in 1-1
correspondence with tree leaves

- Proving estimates are unbiased
now requires induction on tree
height




Stochastic Enumeration with Importance

- My project’s goal: introduce an importance function

- With sequential importance sampling, our estimates look like
1—[ total importance of available nodes on level i

_ importance of chosen node on level i
l

- This worked because it was the reciprocal of the probability
with which we chose the nodes

- With stochastic enumeration with an importance function, we

want our estimates to look similar
1—[ total importance of available nodes on level i

_ importance of chosen nodes on level i
l

- But the probabilities here are more complicated, so...



Stochastic Enumeration with Importance

- For level i of the tree
- Let A; be the set of available nodes to choose from
- Let C; c A; be the chosen set of nodes
- Let r be the importance function

- We want our estimates to look like
ZaEAi T(a)
i ZCECi T'(C)

- It turns out this will only be an unbiased estimate if we choose each C; from
A; with probability

ZCECi r(c) 1

Yeea, 7@ (||/le-|| - D

prob(C;) =

- To achieve this probability...
- Choose one element x from A; with probability proportional to its importance
- Choose the other elements with uniform probability from the remaining elements in 4;



Numerical Testing

- Applied stochastic enumeration with
Importance sampling to the problem of
counting linear extensions of posets

- A linear extension of a poset is a total
ordering of the poset that is consistent
with the partial order

- One procedure for getting a linear
extension is

- Select a maximal element, then delete it
from the poset

- Repeat until poset is empty

- We can make a decision tree
representing all possible ways to do this




Numerical Testing

- Tested three importance functions and compared them to the
uniform importance function
- Notation
- n is the number of elements in the poset

- sib(x) is the number of siblings of node x in the decision tree

- desc(x) is the number of descendants of node x in the poset, including x
itself

- level(x) is the level of node x in the decision tree
- Importance function 1: r(x) = sib(x)?
- Importance function 2: r(x) = sib(x)?3 - desc(x)

n-level(x)+1+desc(x)
n-level(x)+1—desc(x)

- Importance function 3: r(x) = sib(x)? -



Numerical Testing

- The first set of tests kept B fixed and let n run through the values
n = 10,15,20, ..., 85

- For each value of n, n? random posets of size n were generated

- For each pair of poset elements p; and p; with i > j, the relation p; > p;
was given a 20% chance to exist

- The poset was then transitively completed

- n? estimates were performed on each poset and relative variance
calculated

- Relative variance was averaged for each value of n
- Results are plotted on a log-log scale



Numerical Results (B = 1)

Comparison of Importance Functions with Budget = 1

— | | | | | o
! P— . 00901
O  Uniform importance function o o
103k ¢ Importance function 1 o & O 4
F C  Importance function 2 o Q o C
C A i
. i Importance function 3 o . e
‘g“Jo,, _ o}
o 102F e © il
c E ]
@ E © © ]
@ [ & O AP
© L A
—_ O FAN
o A D
3 10'F o o A E
3 ! :
) - O A =
S I A
g L Q O VAN
R an0 b
g 10°F 2 E
S r
5 e
>
g roe
® 10" O E
m - -
o L I ! I I ! I 1 ]
10 20 30 40 50 60 70 80 90

Number of vertices (n)



Numerical Results (B = 5)

Comparison of Importance Functions with Budget =5
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s
Numerical Results (B = 10)

Comparison of Importance Functions with Budget =10
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s
Numerical Results (B = 15)

Comparison of Importance Functions with Budget =15
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Numerical Results (B = 20)

Comparison of Importance Functions with Budget = 20
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Numerical Testing

- The second set of tests kept n fixed and let B run through the
values B = 1,2,3,...,100

- For each value of n, n? random posets of size n were generated

- For each pair of poset elements p; and p; with i > j, the relation p; > p;
was given a 20% chance to exist

- The poset was then transitively completed

- n? estimates were performed on each poset and relative variance
calculated

- Relative variance was averaged for each value of B
- Results are plotted on a semi-log scale



Numerical Results (n = 10)

Comparison of Importance Functions with Poset Size = 10
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Numerical Results (n = 20)

Comparison of Importance Functions with Poset Size = 20
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Numerical Results (n = 40)

Comparison of Importance Functions with Poset Size = 40

Fay
_U T T I T T T [ T ]
O Uniform importance function
= ¢ Importance function 1 1
¢ O Importance function 2
/v Importance function 3
2L O -
10° ¢ ]
. MRV ]
- - 4
g L 4
T L |
s | <>D B
s [0
> oo 0%, 1
]
MR
290! [ o o 3
= L L ]
s [ 5 %0 o ]
L Mo i
3 o On, o
o A
o I
e
7]
4 L
S
[y
c
& 10°
= i
c L
v L
2 L
_fu [
]
oc -
| | | | | | | |
0 10 20 30 40 50 60 70 80 90 100

Size of Budget B



References

- Reuven Rubinstein, Stochastic enumeration method for counting
NP-hard problems, Methodology and Computing in Applied
Probability (2013).

- Radislav Vaisman, Dirk P. Kroese, Stochastic Enumeration
Method for Counting Trees, Methodology and Computing in
Applied Probability (2015).

- Alathea Jensen, Stochastic Enumeration with Importance
Sampling.



