
Autonomous Assembly for One-of-a-kind Production 

DLR.de  •  Chart 1 

Korbinian Nottensteiner 
 

Robotic Assembly – Recent Advancements and Opportunities for Challenging R&D 
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Institute of Robotics and Mechatronics (RM) 
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• German Aerospace Center (DLR) 

~ 2000 employees, 35 institutes, 20 locations 

 

Main research areas:  

Aeronautics, Space, Energy, Transport 

Security, Digitalization (since 2018)  

 

• Institute of Robotics and Mechatronics 

~ 200 employees in Oberpfaffenhofen (OP) 

 

 

 



News on METERON SUPVIS Justin Experiment 
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Trends and challenges 

• Customization of products 

• Sustainable and efficient production 

• Reshoring 

• Demographic change 

 

 

Age Structure Germany 2015 Example - Individualized sneakers: 

adidas SPEEDFACTORY AM4 London 

Vision – mobile and humanoid production assistant 

DLR TORO - Comanoid 

Project goals 

• Showcase the usage of intelligent robots in digitally-driven production 

• Adaptable production lines through mobile and connected production robots 

• Safe, highly efficient and intuitive collaboration between human and machine 
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Factory of the Future 



Robotic Systems of RM in Factory of the Future 
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Development of lightweight robot arms at RM  

DLR.de  •  Chart 8 

LBR I 

1995 

LBR II 

2000 

LBR III 

2003 

SARA 

2018 

Justin 

2008 

KUKA LBR iiwa FRANKA EMIKA Panda 

MIRO 

2008 

LBR 4/4+ 



SARA – Safe Autonomous Robotic Assistant 
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• 400 deg/s axis speed  

• 12kg nominal payload 

• 297 -1024 mm workspace  

• 22.6kg total weight 

• A7 endless 

 

• Force-teaching in contact 

• Integrated toolchanger for  

autonomous reconfiguration 

• Integrated sensormount 

 



Reconfigurable Workcell 
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• Robot with 

impedance control, 

adequate speed, 

payload and 

workspace for 

assembly and 

object manipulation 

• Exchange and 

share of tools, 

fixtures and 

sensors 

between cells 

• Object fixing without 

extra built fixtures 

• Adaptable to tasks 

with less human 

efforts 

Window assembly at AUTOMATICA 2018. 



Robotic Systems of RM in Factory of the Future 
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• Razer  

• Rafcon 
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Ensure Safety and Improve Performance 
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Robotic Airbag System 

 

• Fenceless robot 

applications 

• No loss of tool 

functionality 

• Plug & produce 

• Reduction of cycle-

time and  improvement 

of productivity 

• Interaction and status 

information 



Robotic Systems of RM in Factory of the Future 
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AIMM – Autonomous Industrial Mobile Manipulator 
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Fenced robots 

Safe and mobile robots 

Safe, stationary robots 

- Flexible  

- Robust 

- Autonomous 

- Intuitive 

 

Hand stereo camera 

HRI tablet 

Pan tilt unit with 

stereo camera 

system and pattern 

projector 

ToF cameras 

and RGB-LEDs  

Laserscanner 

A. Dömel, S. Kriegel, M. Brucker and M. Suppa, "Autonomous pick and place operations in industrial production," 2015 12th International Conference on 

Ubiquitous Robots and Ambient Intelligence (URAI), Goyang, 2015, pp. 356-356. 
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Robotic Systems of RM in Factory of the Future 
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Autonomous Assembly 
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Various parts  

Combinatorial variation 

 

Length, configuration  

 Continuous variation 

 

Modularity  

reuse in different    

application scenarios 

 

Use Case: Assembly of Aluminium Structures 
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Item Industrietechnik GmbH FMS Montagetechnik GmbH 

Maschinenbau Kitz GmbH 
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Workflow for one-of-a-kind production 
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Workflow for one-of-a-kind production 

K. Nottensteiner et al., "A Complete Automated Chain for Flexible Assembly using Recognition, Planning and Sensor-

Based Execution," Proceedings of ISR 2016: 47st International Symposium on Robotics, Munich, Germany, 2016, pp. 1-8. 
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Assembly Sequence Planning 
• Find a feasible execution sequence for the 

robot 

• Hybrid planning approach 

• Combination of a graph-search in a logic layer 

combined with a digital twin for simulation 

• More details on the poster… 

I. Rodriguez et. al: „Iterative Rule Generation for Assembly Sequence 

Planning“ CASE - Robotic Assembly Workshop, 2018 
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Assembly Grasp Planning 

Considered constraints: 

• Subassembly 

• Joining action 

U. Thomas, T. Stouraitis and M. A. Roa, "Flexible assembly through 

integrated assembly sequence planning and grasp planning," 2015 

IEEE International Conference on Automation Science and Engineering 

(CASE), Gothenburg, 2015, pp. 586-592. 
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Motion Planner 

• Syncing with a run-time world 

model for keeping track of 

changes in the workcell 

• RRT-based implementation 

 
P. Lehner and A. Albu-Schäffer, "Repetition sampling for efficiently 

planning similar constrained manipulation tasks," 2017 IEEE/RSJ 

International Conference on Intelligent Robots and Systems (IROS), 
Vancouver, BC, 2017, pp. 2851-2856 
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Sequence Example 

• Four major task types: 

• insert_slot_nut 

• add_angle_bracket 

• add_screw 

• position_profiles 

• Every task is mapped to a 

sequence of robotic skills provided 

by a skill library 
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Why not assemble more complex 

products? 

limited workspace specialized fixtures 

not enough 

manipulability 

specialized  tools 
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Need for relative motion coordination 
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Roa, M. A., Nottensteiner, K., Wedler, A., & Grunwald, G., Robotic Technologies for In-Space Assembly Operations. ASTRA 2017 



Skill observation based on intrinsic tactile sensing 
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• Use external torque sensors to 

estimate parts positions 

• Generate representations of the 

relative configuration space 

 

 Allow for adaption of the execution on the current assembly and contact state 

K. Nottensteiner, M. Sagardia, A. Stemmer and C. Borst, "Narrow passage sampling in the observation of robotic assembly tasks," 

2016 IEEE International Conference on Robotics and Automation (ICRA), Stockholm, 2016, pp. 130-137. 

 

K. Nottensteiner and K. Hertkorn, "Constraint-based sample propagation for improved state estimation in robotic assembly," 2017 

IEEE International Conference on Robotics and Automation (ICRA), Singapore, 2017, pp. 549-556. 



• Intrinsic tactile sensing 

 

• Structure borne sound classification  

 

• Vision feedback for assembly state tracking 

 

Multiple sensory inputs 
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Apply machine learning to incorporate multiple sensory inputs as 

feedback for the execution of robotic assembly tasks 

Goal:  



• Planner driven robotic assembly system that creates individual assemblies with 

no expert required. 

 

• In a one-of-a-kind production scenario:  

More complex products require assembly systems with more degrees of 

freedoms and high manipulability. 

 

• In workcell layouts without calibrated fixtures: 

Need for feature-based relative motions during the assembly process.  

 

• Multi-sensory skill observation is required to reduce uncertainty and 

monitor the world state.  

 

• Machine learning will help to adapt and react on the current situtation. 

 

 

Conclusions  
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