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11:30 Building Standardized Dendograms for Viruses

Outline:

1. Background: the explosion in sequences
2. More background - FAIR principles for data stewardship.
3. What is a Dendogram (and how is this different from a ‘tree’?)

4. How can we standardize this?
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DiI'ECt RNA Sequencing TECHNOLOGY REPORT

published: 25 February 2019

in Microbiolog \ doi: 10.3389/fmicb.2019.00260
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Rapid Sequencing of Multiple RNA
Viruses in Their Native Form
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D.

Long-read nanopore sequencing by a MinlON device offers the unique possibility
to directly sequence native RNA. We combined an enzymatic poly-A tailing reaction
with the native RNA sequencing to () sequence complex population of single-
stranded (ss)RNA viruses in parallel, (i) detect genome, subgenomic mMRNA/MRNA
simultaneously, (i) detect a complex transcriptomic architecture without the need for
assembly, (iv) enable real-time detection. Using this protocol, positive-ssRNA, negative-
ssRNA, with/without a poly(A)-tail, segmented/non-segmented genomes were mixed
and sequenced in parallel. Mapping of the generated sequences on the reference
genomes showed 100% length recovery with up to 97% identity. This work provides a
proof of principle and the validity of this strategy, opening up a wide range of applications
to study RNA viruses.

Keywords: native RNA, genome, subgenomic mRNA, single-stranded RNA, virus, nanopore sequencing, rapid
detection, MinlON
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Our solid protocol, ready for pooled viruses

6 ssRNA viruses
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Rapid Third Generation Sequencing of mixtures of viruses

The reads of all viruses
found within 2 min
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1. Background: the explosion in sequences

Biological Information = Sequences = “Big Daté”
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To give some context, data scientists have drawn comparisons with other big data
generators. So what are their predictions of data output by 2025? 7
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Kilometre Array Pathfinder project.

GENOMICS

~20 Zetabytes (1021)
FOR HUMAN GENOMES ALONE!




nature

2. FAIR principles for data stewardship.
A Simple Question:

genetics

How many virus genomes are in GenBank?

FAIR principles for data stewardship

The FAIR data principles are simple guidelines for ensuring that machines can find and use data, supporting data
reuse by individuals. More—and better—research can be generated by designing data and algorithms to be findable,
accessible, interoperable and reusable, together with the tools and workflows that led to these data.

for biological data types are listed by the BioSharing registry

alone (https://biosharing.org). However, one recent attempt
to set standards for all kinds of data generated by scholarly activity gets
right to the point: much of our scholarship gets in the way of data reuse
because it obscures the machine readability of the data. The consequence
of this limitation is that the scale of data reuse by human researchers is
restricted (Sci. Data 3, 160018, 2016).

The authors, from diverse backgrounds (including representatives
from Scientific Data and this journal), conclude that, rather than set yet
more standards, we should deposit data and design tools for their for-
matting, distribution and storage according to the four basic principles
of finding, accessing, integrating and reusing all scholarly data. This
emphasis is designed to put a stop to the arms race between diversify-
ing data types and metadata annotations on the one side and bespoke
mining tools designed to parse those data and metadata on the other.
The question to ask in order to be a data steward, to handle data or to
simplify a set of standards is the same: “is it FAIR™?

Most types of reusable data that are expensive to produce now have
purpose-built databases. FAIR principles dictate the publication of
rich metadata to describe these data and to enable discovery of what is

We are not lacking standards. Indeed, over 600 content standards

contained therein, even in the case of sensitive data that identify
persons. The data fields and metadata schema should be accessible,
together with the details of any access restrictions, whether or not the
underlying data can actually be accessed. In contrast, many of the products
of low-throughput bench science do not fit into these standard data-
bases. The repositories so far created for such data are becoming increas-
ingly diverse in purpose and form. The key to taming these is to realize
that they will need to be searched by general-purpose open technologies
because they contain unpredictable data types unsuited to specialized
parsers.

Equally important to good scholarship is the publication of non-data
research objects. Explicit analytical workflows, for example, are essential
to most forms of knowledge generation. Publication of these accord-
ing to FAIR principles is essential to ensure transparency of the work
as well as maximal use to the community. The key to working with
data is to realize that the human touch, the urge to annotate tables with
footnotes and cram multiple elements and data types into every cell of
a table, gets in the way of computation, automation and scaling up. And
this impedes the usefulness of your work for other people. All research
objects should be findable, accessible, interoperable and reusable (FAIR)
both for machines and for people. [
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Camelpox virus M-96 from Kazakhstan, complete genome
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Canarypox virus strain ATCC VR-111, complete genome
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1. Background: the explosion in sequences

A Simple Question:

How many virus genomes are in GenBank?

9,288 Viruses 4 391,604 Viruses ?
12,145 Viruses in RefSeq 2,755,306 Viruses ?
921,019 Viruses ?
32,539 Viruses
346,695 Viruses ?
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www.nature.com/scientificdata

SCIENTIFIC DATA | 3:160018 | DOI: 10.1038/sdata.2016.18

This article describes four foundational principles—

Findability, Accessibility, Interoperability, and Reusability—
that serve to guide data producers and publishers as they
navigate around these obstacles, thereby helping to
maximize the added-value gained by contemporary, formal
scholarly digital publishing. Importantly, it is our intent that
the principles apply not only to ‘data’ in the conventional
sense, but also to the algorithms, tools, and workflows that
led to that data. All scholarly digital research objects—from
data to analytical pipelines—benefit from application of
these principles, since all components of the research process
must be available to ensure transparency, reproducibility,
and reusability.

BMIG 6050 - Research Design UAMS Department of Biomedical Informatics 5 September, 2019
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3. What is a Dendogram (and how is this different from a “tree’?)
NCBI Virus

AboutUsv  FindDatav  Helpv  How to Participate v Cantact Us

Selected Results: 27 Build Phylogenetic Tree
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Release Date 4

NC_009824 Hepacivirus C complete, refseq New Zealand Homo sapiens
Environmental Source +

NC_038882 Hepacivirus C complete, refseq
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Phylogenetic Tree

27 Hepatitis RefSeq genomes
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What is Viral Hepatitis?

Viral hepatitis is an infection that causes
liver inflammation and damage. Several
different viruses cause hepatitis, including
hepatitis A, B, C, D, and E. The hepatitis A
and E viruses typically cause acute
infections. The hepatitis B, C, and D viruses
can cause acute and chronic infections.

Hepatitis A

Hepatitis A causes only acute infection and
typically gets better without treatment
after a few weeks. The hepatitis A virus
spreads through contact with an infected
person’s stool. You can protect yourself by
getting the hepatitis A vaccine.

Hepatitis B

Hepatitis B can cause acute or chronic
infection. Your doctor may recommend
screening you for hepatitis B if you are
pregnant or have a high chance of being
infected. You can protect yourself from
hepatitis B by getting the hepatitis B
vaccine.

e Hepatitis B: What Asian and Pacific
Islander Americans Need to Know

Hepatitis C

Hepatitis C can cause acute or chronic
infection. Your doctor may recommend
screening you for hepatitis C if you have a
high chance of being infected or were born
between 1945 and 1965. Early diagnosis and
treatment can prevent liver damage.

Hepatitis D

The hepatitis D virus is unusual because it
can only infect you when you also have a
hepatitis B virus infection. A coinfection
occurs when you get both hepatitis D and
hepatitis B infections at the same time. A
superinfection occurs if you already have
chronic hepatitis B and then become
infected with hepatitis D.

Hepatitis E

Hepatitis E is typically an acute infection
that gets better without treatment after
several weeks. Some types of hepatitis E
virus are spread by drinking water
contaminated by an infected person's stool.
Other types are spread by eating
undercooked pork or wild game.
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FEMS Microbiology Reviews, Volume 39, Issue 5, pages 764 - 778 [September,2015]

% EDITOR'S CHOICE %

REVIEW ARTICLE

Ebolavirus comparative genomics

Se-Ran Jun®?', Michael R. Leuze®, Intawat Nookaew?, As_et'RtaPn gun

Ssistan roressor
Edward C. Uberbacher?, Miriam Land?, Qian Zhang!*, Visanu Wanchai?, UAMS
Juanjuan Chai®, Morten Nielsen>-°, Thomas Trolle>, Ole Lund®>, Greg Buzard’,

Thomas D. Pedersen>-8, Trudy M. Wassenaar® and David W. Ussery’*>*

ABSTRACT

The 2014 Ebola outbreak in West Africa is the largest documented for this virus. To examine the dynamics of this genome,
we compare more than 100 currently available ebolavirus genomes to each other and to other viral genomes. Based on
oligomer frequency analysis, the family Filoviridae forms a distinct group from all other sequenced viral genomes. All
filovirus genomes sequenced to date encode proteins with similar functions and gene order, although there is considerable
divergence in sequences between the three genera Ebolavirus, Cuevavirus and Marburguvirus within the family Filoviridae.
Whereas all ebolavirus genomes are quite similar (multiple sequences of the same strain are often identical), variation is
most common in the intergenic regions and within specific areas of the genes encoding the glycoprotein (GP),
nucleoprotein (NP) and polymerase (L). We predict regions that could contain epitope-binding sites, which might be good
vaccine targets. This information, combined with glycosylation sites and experimentally determined epitopes, can identify
the most promising regions for the development of therapeutic strategies.

Keywords: Ebola; comparative genomics; viral genomes; epitope prediction; Ebola virus disease (EVD); Filovirus
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The genetic diversity of HCV is the highest of the three species. The genotypes 1 to 7 are well resolved, except for a few
g y g P g yp P
genomes whose incorrect genotype were all described in the same refl”! Gts 4 and 1 have been described as younger than the

other gts!'which is reflected by their position on the tree. The abundance of genotypes (indicated for some large clusters) does
not reflect frequency of infection, as genome sequence datasets are biased.

TM Wassenaar, SR Jun, M Robeson, D W Ussery, “Comparative genomics of Hepatitis A virus, Hepatitis C virus and Hepatitis E virus
provides insights into the evolutionary history of Hepatovirus species”, submitted to Microbiology Open, August, 2019
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Phylogenetic analysis

The genomes were aligned by Mafft (Yamada et al. 2016) and FastTree was used to build
phylogenetic Maximum-Likelihood (ML) trees (Price et al. 2009). This infers approximately
maximum likelihood phylogenetic trees and is much faster than other algorithms; we used the
generalized time-reversible (GTR) model of nucleotide evolution and the Shimodaira-Hasegawa
test for statistical confidence of internal nodes. Information on genotypes and subtypes that were
included in Genbank annotations were used to map these on the trees. For visual representation,
the HCV and HEV trees are shown after collapsing branches at 90% identity.

11:30 Building Standardized Dendograms for Viruses

TM Wassenaar, SR Jun, M Robeson, D W Ussery, “Comparative genomics of Hepatitis A virus, Hepatitis C virus and Hepatitis E virus
provides insights into the evolutionary history of Hepatovirus species”, submitted to Microbiology Open, August, 2019
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Problems in microbial taxonomy
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Standards Seekers Put the Human Microbiome in Their

Sights

Alla Katsnelson

NIST and others work to develop a
reference standard for the human gut
microbiome.

ne day in the future, doctors may add a step to
your routine checkup. In addition to measuring

your blood pressure, putting a stethoscope to your

chest, and running some blood tests, they may examine your
poop. The stool sample you provide, loaded with the
bacteria and other microbial matter that populate your gut,
could divulge whether you have a particular disease or
provide clues about your diet, stress levels, or other health
markers. On the basis of that stool sample, doctors might
prescribe medicines like the ones we already have—drugs
that target specific proteins in our guts, for instance. But
they might also give you medicines that rebalance the types
and amounts of bacteria in your gut microbiome.

Dozens of companies are racing to develop drugs (or
microbes prescribed as drugs) that target the microbiome
and that change its composition, aiming to treat a wide
range of conditions, including recurring bacterial infections,
autism, depression, Parkinson’s disease, asthma, cancer, and
more. So far, no such drugs have been approved by
regulatory agencies, although a few are close. And academic
laboratories are still trying to work out some basic
questions, including the full lineup of microbial species
inhabiting the gut and how they interact with each other to

Published: June 17, 2019

The US National Institute of Standards and Technology has
standards for peanut butter, limestone, and more. Will poop be
next? Credit: J. Stoughton/NIST.

an actual human gut—that could be used as a yardstick for
aligning results across the field. The US National Institute of
Standards and Technology (NIST) has set out to create this
and other tools that could serve as standards for micro-
biome measurements. Such tools will be crucial for gaining a
full picture of the microbiome’s basic features, as well as

getting a handle on how to modulate it for therapies.

A complex ecosystem

“The human gut microbiome has been described—and
I believe rightfully so—as the most complex ecosystem on
Earth,” says Scott Jackson, who leads the Complex

Microbial Systems Group at NIST. “It raises measurement
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But even before researchers extract DNA, they must
consider how a sample is collected. Is it preserved at the
point of collection or carried fresh to the lab? Is it an actual
stool sample or the toilet tissue used to wipe? Different
DNA profiles also arise from different procedures for
sequencing samples and from differences in the bioinfor-
matic tools for identifying which microbes are present.
“A colleague and I tracked it—there are currently 97 differ-
ent ways to analyze the same raw data, and they will give
you 97 different answers,” NIST’s Jackson says.

That variation adds up in unpredictable ways, and it has
undoubtedly muddled the literature. “That’s why you don’t get

reproducible results,” says Rashmi Sinha, an epidemiologist at

DOI: 10.1021/acscentsci.9b00557
ACS Cent. Sci. 2019, 5, 929—-932

24



4. How can we standardize this? Some suggestions:

1. Anchor to a reference
RefSeq viruses

2. Check genome quality

3. Check alignment length
4. Use FAIR guidelines

Benchmark with standardized, reproducible
methods, including 'containers’ for
computational flow, with reference data

Figure 9. Optimal dendrogram of the 3,905 RefSeq viral genomes (k=9). The braches are colored by
Baltimore classifications. The circles, from inside to outside, are colored by different orders, hosts, and genome
sizes as follows: The ranches by Baltimore classification: dsSDNA (no RNA stage), red; dsRNA, green; RT viruses,
pink; ssDNA, blue; ssSRNA negative-strand, bright blue; ssSRNA positive-strand, yellow. The First circle, inside

to outside, by order: Caudovirales, red; Herpesvirales, green; Ligamenvirales, blue; Mononegavirales, orange;
Nidovirales, cyan: Picornavirales, pink; Tymovirales, dark green; unclassified, silver. The second circle, inside to
outside, by host: protist, orange; archaea, red; bacteria, dark green; fungi, blue; animal, cyan; animal and plants,
pale violet red; plant, pink; environment or NA, silver.The third circle, inside to outside, by genome size: Q1,
green; Q2, yellow; Q3, orange; Q4, red.

Q Zhang, SR Jun, M Leuze, D Ussery, I Nookaew, “Viral Phylogenomics Using an Alignment-Free Method: A Three-Step Approach to Determine
Optimal Length of k-mer.” Sci. Rep.7,40712; doi: 10.1038/srep40712 (2017). 2
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