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AGENDA 
Day 1 - Wednesday, September 18, 2019 
 
 

Session 1 – Perspectives on Standardization 
 

09:00 Welcome Remarks 
Michael Tarlov, NIST 

09:10 Current Practices for Regulatory Applications  
Arifa Khan, FDA  

09:40 Overview of NIST Viral Standards 
Megan Cleveland, NIST  

10:10-
10:30 Coffee break 

10:30 dPCR as a reference measurement procedure for viral detection and quantification 
Jim Huggett, UK National Measurement Laboratory  

11:00 Standardization of Next Generation Sequencing Methods for the Quality Control of Live-attenuated 
Vaccines 
Javier Martin, National Institute for Biological Standards and Control (NIBSC) 

11:30 Building Standardized Dendograms for Viruses 
David Ussery, University of Arkansas for Medical Sciences 

12:00 – 
12:30 Q&A and Discussion 

12:30 – 
2:00 Lunch 

 
 

Session 2 – Current Viral Reference Materials 
 
2:00 Characterization of Reference Viral Stocks for NGS Standardization 

Pei-Ju Chin, FDA 
2:30 Exploring the Human Virome – The importance of Standards 

Heather Couch, ATCC 
2:45 -3:15 Coffee Break 
3:15  Sensitivity of NGS Based Viral Detection Methods using Viral Stocks Characterized for Genome Copy 

Number  
Mike Brewer, Thermo Fisher Scientific 

3:30 NGS Internal Controls for Adventitious Agent Testing to Ensure Sensitivity for All Targets in Every 
Sample 
Tom Morrison, Accugenomics 

3:45 AccuPlex™ Recombinant Virus Technology – A tool to generate reference material for pathogenic 
virus 
Bharathi Anekella, LGC-SeraCare 

4:00– 5:00  Q&A and Discussion 
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 Outline:

1. Background: the explosion in sequences

2. More background - FAIR principles for data stewardship.

3. What is a Dendogram (and how is this different from a ‘tree’?)

4. How can we standardize this? 

11:30 Building Standardized Dendograms for Viruses 
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Long-read nanopore sequencing by a MinION device offers the unique possibility
to directly sequence native RNA. We combined an enzymatic poly-A tailing reaction
with the native RNA sequencing to (i) sequence complex population of single-
stranded (ss)RNA viruses in parallel, (ii) detect genome, subgenomic mRNA/mRNA
simultaneously, (iii) detect a complex transcriptomic architecture without the need for
assembly, (iv) enable real-time detection. Using this protocol, positive-ssRNA, negative-
ssRNA, with/without a poly(A)-tail, segmented/non-segmented genomes were mixed
and sequenced in parallel. Mapping of the generated sequences on the reference
genomes showed 100% length recovery with up to 97% identity. This work provides a
proof of principle and the validity of this strategy, opening up a wide range of applications
to study RNA viruses.

Keywords: native RNA, genome, subgenomic mRNA, single-stranded RNA, virus, nanopore sequencing, rapid
detection, MinION

INTRODUCTION

Infectious disease epidemics are primarily driven by RNA viruses (Woolhouse et al., 2016;
Carrasco-Hernandez et al., 2017) and hence are likely agent of future pandemics (Carrasco-
Hernandez et al., 2017). Due to the lack of proofreading in RNA polymerases, RNA viruses
are error�prone during genome replication, providing a platform for rapid evolution in new
environments and hosts. Currently, genome sequences of many viruses are available and served
as a powerful resource for molecular surveillance, pathogen characterization, diagnosis, and
antiviral drug discovery (DeFilippis et al., 2003). Still, outbreaks of viral diseases are a never-
ending challenge. Short-read sequencing methods to recover RNA viral genomes relies on reverse
transcription (RT) of RNA to cDNA which requires primer optimization and amplification.
These steps introduce many biases, artifacts and make rapid diagnosis di�cult (Marston et al.,
2013). Alternatively, real-time sequencing using a pocket-sized MinION device Oxford Nanopore
Technologies (ONT) skips these steps and makes rapid detection and characterization of emerging
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Rapid Third Generation Sequencing of mixtures of viruses

The reads of all viruses 
found within 2 min

~2 hours for getting 
complete genome
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Growth in GenBank / SRA  1982-2019

Modified from Figure 4 in Land et al., Functional & Integrative Genomics, 15:141-161 (2015).
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1. Background: the explosion in sequences
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CHALLENGES IN  
Genetic Data  
Management

Following the introduction of Next Gen Sequencing (NGS) technologies in 2004 
and aided by falling costs, genomics has raced into the age of big data. This begs 
the question; can we store the vast quantities of genomic data we are producing?

Sequencing Costs Have Plummeted 
$100M

$10M

$1M

$100K

$10K

$1K
2001 2002 2003 2004 2005 2006 2007 2008 2009 2010 2011 2012 2013 2014 2015

Cost per Human Genome1

What’s the problem? 
Data generated by the first  

commercially available NGS  
 

Maximum of  

0.6 Gb  

of sequencing data in 40 hours.2

Data generated by a high-end, 
modern sequencing system. 
 

Maximum of  

6,000 Gb 
of sequencing data in 40 hours. 3, 4 

That’s a 10,000-fold increase in data output!

40h 

2005 2017

The Human Genome Project5

13 years

$2.7 billion 

200 research groups

Sequencing a human genome now6

26 hours

$1,000 

one operator

Putting things into 
perspective

1 KILOBYTE   1000 BYTES

1 MEGABYTE   1000000 BYTES

1 GIGABYTE    1000000000 BYTES

1 TERABYTE    1000000000000 BYTES

1 PETABYTE   1000000000000000 BYTES

1 EXABYTE    1000000000000000000 BYTES 

To give some context, data scientists have drawn comparisons with other big data 

generators. So what are their predictions of data output by 2025? 7

Twitter
YouTube 

Astronomy 

1.5 Petabytes 

2 Exabytes 

1 Exabyte including data from huge 
complexes like the Australian Square 
Kilometre Array Pathfinder project. 

 

40 Exabytes  
for human genomes alone!

Genomics 
=

APPLICATIONS OF NGS TECHNOLOGIES ARE INCREASING RAPIDLY

z  Genomics Research 

z  Oncology 

z  Reproductive Health 

z  Forensic Genomics 

z  Agrigenomics 

z  Disease Genomics 

z  Microbial Genomics 

z  Genetic Health 

z  Personalised medicine

Google Genomics charges 2.2 cent per Gb per month8 

which seems fairly reasonable…

But based on predictions, by 2025 storing one year’s  

worth of human genome data alone, for one year, would cost 

$10,560,000,000  
That’s more than the estimated GDP of 43 entire countries! 7,8

US data centres consumed  

about 70 billion kilowatt hours of electricity in 2014. 

That’s the same as 

6.4 million  
average American homes! 9

Based on an average cost of 12 cents per kilowatt hour10 that’s  

$8,400,000,000 of energy.

Data security  
and integrity 

Vast collections of human DNA data could lead to very 

real advances in medicine. But they could also be used 

or misused - for a variety of reasons.11,12

z  Identity theft   z  Targeted marketing about specific diseases  

z Blackmail  z  Health insurance based on your predisposition to specific diseases   

Laws and data regulations are evolving but they need to move quickly.  
A 2013 study demonstrated that it is possible to re-identify research participants  

using easily accessible “de-identified” genomic data alongside genealogical  

databases and public records. 13

How long should genomics data be stored?  

Nobody knows!  
There’s not even agreement on what format genomics data should be stored in!

From helium hard drives to DNA digital storage, the future holds smaller, higher 

capacity, more efficient data storage devices for us to cram all of this data in to.

Helium drive technology will 

soon cram 18TB into a 3.5-inch 

enclosure. 14

Holographic storage has the 

potential to store 1 TB in a one 

centimetre hologram. 15

DNA is an incredible storage 

medium, with the potential to 

cram 125,000 GB into just one 

cubic millimetre. 16

IBM are developing Multi 

Cloud Storage to help avoid 

service outages and maintain 

data accessibility. 17

Companies like Verne Global 

are developing their huge, 

new data centres in places 

like Iceland, where energy 

costs are low. 18

Bioinformaticians are 

increasingly looking to improve 

data compression tools to 

help reduce the data footprint 

required in the first place. 19

The huge cost of 
data storage 

 
BUT FEAR NOT 

The future is bright 

$4 billion 
for storage!!~20 Zetabytes (1021)
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2. FAIR principles for data stewardship.
A Simple Question:

NATURE GENETICS | VOLUME 48 | NUMBER 4 | APRIL 2016 343

ED ITOR IAL

FAIR principles for data stewardship
The FAIR data principles are simple guidelines for ensuring that machines can find and use data, supporting data 
reuse by individuals. More—and better—research can be generated by designing data and algorithms to be findable, 
accessible, interoperable and reusable, together with the tools and workflows that led to these data.

contained therein, even in the case of sensitive data that identify  
persons. The data fields and metadata schema should be accessible, 
together with the details of any access restrictions, whether or not the 
underlying data can actually be accessed. In contrast, many of the products  
of low-throughput bench science do not fit into these standard data-
bases. The repositories so far created for such data are becoming increas-
ingly diverse in purpose and form. The key to taming these is to realize 
that they will need to be searched by general-purpose open technologies 
because they contain unpredictable data types unsuited to specialized 
parsers.

Equally important to good scholarship is the publication of non-data 
research objects. Explicit analytical workflows, for example, are essential 
to most forms of knowledge generation. Publication of these accord-
ing to FAIR principles is essential to ensure transparency of the work 
as well as maximal use to the community. The key to working with 
data is to realize that the human touch, the urge to annotate tables with 
footnotes and cram multiple elements and data types into every cell of 
a table, gets in the way of computation, automation and scaling up. And 
this impedes the usefulness of your work for other people. All research 
objects should be findable, accessible, interoperable and reusable (FAIR) 
both for machines and for people. ■

We are not lacking standards. Indeed, over 600 content standards 
for biological data types are listed by the BioSharing registry 
alone (https://biosharing.org). However, one recent attempt 

to set standards for all kinds of data generated by scholarly activity gets 
right to the point: much of our scholarship gets in the way of data reuse 
because it obscures the machine readability of the data. The consequence 
of this limitation is that the scale of data reuse by human researchers is 
restricted (Sci. Data 3, 160018, 2016).

The authors, from diverse backgrounds (including representatives 
from Scientific Data and this journal), conclude that, rather than set yet 
more standards, we should deposit data and design tools for their for-
matting, distribution and storage according to the four basic principles 
of finding, accessing, integrating and reusing all scholarly data. This 
emphasis is designed to put a stop to the arms race between diversify-
ing data types and metadata annotations on the one side and bespoke 
mining tools designed to parse those data and metadata on the other. 
The question to ask in order to be a data steward, to handle data or to 
simplify a set of standards is the same: “is it FAIR”?

Most types of reusable data that are expensive to produce now have 
purpose-built databases. FAIR principles dictate the publication of 
rich metadata to describe these data and to enable discovery of what is  

How many virus genomes are in GenBank?
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https://www.ncbi.nlm.nih.gov/genome/browse/#!/viruses/

32,539 Viruses



!12

4,391,604 Viruses ?4,391,604 Viruses ?

2,755,306 Viruses ?
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1. Background: the explosion in sequences

A Simple Question:

How many virus genomes are in GenBank?

32,539 Viruses

4,391,604 Viruses ?

2,755,306 Viruses ?

921,019 Viruses ?

346,695 Viruses ?

9,288 Viruses

12,145 Viruses in RefSeq
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Comment: The FAIR Guiding
Principles for scientific data
management and stewardship
Mark D. Wilkinson et al.#

There is an urgent need to improve the infrastructure supporting the reuse of scholarly data. A diverse
set of stakeholders—representing academia, industry, funding agencies, and scholarly publishers—have
come together to design and jointly endorse a concise and measureable set of principles that we refer
to as the FAIR Data Principles. The intent is that these may act as a guideline for those wishing to
enhance the reusability of their data holdings. Distinct from peer initiatives that focus on the human
scholar, the FAIR Principles put specific emphasis on enhancing the ability of machines to automatically
find and use the data, in addition to supporting its reuse by individuals. This Comment is the first
formal publication of the FAIR Principles, and includes the rationale behind them, and some exemplar
implementations in the community.

Supporting discovery through good data management
Good data management is not a goal in itself, but rather is the key conduit leading to knowledge
discovery and innovation, and to subsequent data and knowledge integration and reuse by the
community after the data publication process. Unfortunately, the existing digital ecosystem
surrounding scholarly data publication prevents us from extracting maximum benefit from our
research investments (e.g., ref. 1). Partially in response to this, science funders, publishers and
governmental agencies are beginning to require data management and stewardship plans for data
generated in publicly funded experiments. Beyond proper collection, annotation, and archival, data
stewardship includes the notion of ‘long-term care’ of valuable digital assets, with the goal that they
should be discovered and re-used for downstream investigations, either alone, or in combination with
newly generated data. The outcomes from good data management and stewardship, therefore, are
high quality digital publications that facilitate and simplify this ongoing process of discovery, evaluation,
and reuse in downstream studies. What constitutes ‘good data management’ is, however, largely
undefined, and is generally left as a decision for the data or repository owner. Therefore, bringing some
clarity around the goals and desiderata of good data management and stewardship, and defining
simple guideposts to inform those who publish and/or preserve scholarly data, would be of great utility.

This article describes four foundational principles—Findability, Accessibility, Interoperability, and
Reusability—that serve to guide data producers and publishers as they navigate around these
obstacles, thereby helping to maximize the added-value gained by contemporary, formal scholarly
digital publishing. Importantly, it is our intent that the principles apply not only to ‘data’ in the
conventional sense, but also to the algorithms, tools, and workflows that led to that data. All
scholarly digital research objects2—from data to analytical pipelines—benefit from application of
these principles, since all components of the research process must be available to ensure
transparency, reproducibility, and reusability.

There are numerous and diverse stakeholders who stand to benefit from overcoming these obstacles:
researchers wanting to share, get credit, and reuse each other’s data and interpretations; professional
data publishers offering their services; software and tool-builders providing data analysis and
processing services such as reusable workflows; funding agencies (private and public) increasingly

Correspondence and requests for materials should be addressed to B.M. (email: barend.mons@dtls.nl).
#A full list of authors and their affiliations appears at the end of the paper.
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discovery and innovation, and to subsequent data and knowledge integration and reuse by the
community after the data publication process. Unfortunately, the existing digital ecosystem
surrounding scholarly data publication prevents us from extracting maximum benefit from our
research investments (e.g., ref. 1). Partially in response to this, science funders, publishers and
governmental agencies are beginning to require data management and stewardship plans for data
generated in publicly funded experiments. Beyond proper collection, annotation, and archival, data
stewardship includes the notion of ‘long-term care’ of valuable digital assets, with the goal that they
should be discovered and re-used for downstream investigations, either alone, or in combination with
newly generated data. The outcomes from good data management and stewardship, therefore, are
high quality digital publications that facilitate and simplify this ongoing process of discovery, evaluation,
and reuse in downstream studies. What constitutes ‘good data management’ is, however, largely
undefined, and is generally left as a decision for the data or repository owner. Therefore, bringing some
clarity around the goals and desiderata of good data management and stewardship, and defining
simple guideposts to inform those who publish and/or preserve scholarly data, would be of great utility.

This article describes four foundational principles—Findability, Accessibility, Interoperability, and
Reusability—that serve to guide data producers and publishers as they navigate around these
obstacles, thereby helping to maximize the added-value gained by contemporary, formal scholarly
digital publishing. Importantly, it is our intent that the principles apply not only to ‘data’ in the
conventional sense, but also to the algorithms, tools, and workflows that led to that data. All
scholarly digital research objects2—from data to analytical pipelines—benefit from application of
these principles, since all components of the research process must be available to ensure
transparency, reproducibility, and reusability.

There are numerous and diverse stakeholders who stand to benefit from overcoming these obstacles:
researchers wanting to share, get credit, and reuse each other’s data and interpretations; professional
data publishers offering their services; software and tool-builders providing data analysis and
processing services such as reusable workflows; funding agencies (private and public) increasingly
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3. What is a Dendogram (and how is this different from a ‘tree’?)
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The genetic diversity of HCV is the highest of the three species. The  genotypes 1 to 7 are well resolved, except for a few 
genomes whose incorrect genotype were all described in the same ref.   Gts 4 and 1 have been described as younger than the 
other gts,  which is reflected by their position on the tree. The abundance of genotypes (indicated for some large clusters) does 
not reflect  frequency of infection, as genome sequence datasets are biased.

Comparative Genomics of Hepatitis A Virus, Hepatitis C Virus and Hepatitis E Virus, and their Genotypes and Subtypes

Methods 1: Over 5000 genome sequences were downloaded from Genbank, to assess their inter- 
and intraspecies relationships. Redundancy was removed and only sequences at least covering the 
complete proteome without gaps or ambiguities >2 were considered. Animal isolates were 
excluded, except for swine/wild boar/rabbit HEV isolates. This retained 1999 genomes. Phylogenetic 
ML trees were constructed and annotated genotypes (Gts) and subtypes were mapped on the tree. 

Methods 2: The ratio between non-synonymous (dN) and synonymous (dS) mutations was 
calculated based on a gap-free polypeptide alignment of representative genomes per species.  
Codon usage tables were calculated for representative genomes (there are only minor differences 
between gts within a species) and results were plotted in net plots. The effect of overlapping orfs 
in HepE was assessed.

1 2 2 2T. Wassenaar  , S-R. Jun  , M. Robeson  , D. Usssery 

The incidence rate of 
chronic hepatitis C 
(unknown genotypes)  
infections in Arkansas 
was estimated in 2014 as 
20.8 to 56.9 per 100,000.  
Hotspots coincide with 
populations of low socio-
economic standards. The 
map to the right shows 
newly diagnosed cases 
during 2013, colored for 
numbers per county.  source:  
Arkansas Dept. of Health.

Background: Viral hepatitis in humans is caused by various virus species. Three of 
these are positive strand ssRNA viruses: Hepatitis A virus (Hepatovirus A, HAV, 
Picornaviridae), Hepatitis C virus (Hepacivirus C, HCV, Flaviviridae) and Hepatitis E 
virus (Orthohepevirus A, HEV, Hepeviridae).  Despite their shared replication strategy, 
host and tissue tropism, they share no sequence conservation. All three species are 
subdivided into genotypes and subtypes therein, based on short hypervariable 

regions. Here, we compare 
these groupings with 

phylogenetics of a world-
wide dataset of genomes. 

The dN/dS ratios of the 
virus species were  compared, 

and with their codon usage this 
analysis provided insights 
towards the possible 
evolutionary origine of 
HAV.

 Phylogenetic trees of Hepatitis C virus n=2542, collapsed at 90%,  Hepatitis E virus n=502, collapsed at 90%, and Hepatitis A virus n=173  

The codon usage of HCV or HEV overlap with their human host. Separate analysis of 
pig/wild boar isolates vs. human HEV isolates did not reveal differences in codon 
usage (not shown). The genome region used in 2 frames was so short it did not affect 
overall codon usage. 
HAV has a codon preference that is deoptimized for its host, as already suggested by 
its GC content. A preference for third position T over C is noted. We hypothesize this 
might be a reflection of a non-mammalian host in which an ancestor virus propagated. 
This could have been an virus of blood-sucking insects with a codon usage similar to 
HAV. For example, a striking match was found with triatomavirus (to which HAV has 
structural similarity  ) and its host, the kissing bug, was found. Such a past host jump 
might explain the current codon use of HAV and that of other hepatovirus species.

The degree of genetic diversity of HEV is lower 
than that of HCV. Although the 6 HEV genotypes 
are well resolved, they do not represent genomic 
relationships very well. As noted before, 
subtypes within Gt1 can share >90% sequence 
similarity, while the diversity within Gt3 is so 
extensive that this Gt could be split up in several 
novel Gts, based on complete genome sequences, 
Isolates from pig/wild boar (Gt3, Gt4), and rabbit   
(Gt3) cluster together with human isolates 
according to their genotype.

There were far fewer genomes available for HAV 
and their genetic diversity is much lower than 
that of HEV or HCV (all trees are shown at the 
same scale), reflecting the slow evolution of HAV. 

Analysis of dN/dS of proteomes revealed that 
HAV contains more amino acids under negative 
selection and fewer under positive selection 
compared to HCV or HEV.
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MAIN 
CONCLUSIONS

/

The codon usage of HAV suggests it was derived from an ancestor virus replicating in a 
non-mammalian host. A striking resemblance to Triatomavirus was observed. Possibly, a 
virus of a blood-sucking insect was the ancestor of HAV and related hepatovirus species.
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Phylogenetic analysis
The genomes were aligned by Mafft (Yamada et al. 2016) and FastTree was used to build 
phylogenetic Maximum-Likelihood (ML) trees (Price et al. 2009). This infers approximately 
maximum likelihood phylogenetic trees and is much faster than other algorithms; we used the 
generalized time-reversible (GTR) model of nucleotide evolution and the Shimodaira-Hasegawa 
test for statistical confidence of internal nodes. Information on genotypes and subtypes that were 
included in Genbank annotations were used to map these on the trees. For visual representation, 
the HCV and HEV trees are shown after collapsing branches at 90% identity.

Se-Ran Jun, Ph.D. Mike Robeson, Ph.D.

11:30 Building Standardized Dendograms for Viruses 



!23

Standards Seekers Put the Human Microbiome in Their
Sights

One day in the future, doctors may add a step to
your routine checkup. In addition to measuring
your blood pressure, putting a stethoscope to your

chest, and running some blood tests, they may examine your
poop. The stool sample you provide, loaded with the
bacteria and other microbial matter that populate your gut,
could divulge whether you have a particular disease or
provide clues about your diet, stress levels, or other health
markers. On the basis of that stool sample, doctors might
prescribe medicines like the ones we already havedrugs
that target specific proteins in our guts, for instance. But
they might also give you medicines that rebalance the types
and amounts of bacteria in your gut microbiome.
Dozens of companies are racing to develop drugs (or

microbes prescribed as drugs) that target the microbiome
and that change its composition, aiming to treat a wide
range of conditions, including recurring bacterial infections,
autism, depression, Parkinson’s disease, asthma, cancer, and
more. So far, no such drugs have been approved by
regulatory agencies, although a few are close. And academic
laboratories are still trying to work out some basic
questions, including the full lineup of microbial species
inhabiting the gut and how they interact with each other to
affect health. A few hundred microbial species inhabit the
human gut, and the population fluctuates in complicated
ways. But because the methods and tools to make
measurements of the microbiome vary widely, different
laboratories’ efforts to characterize this horde of tiny
organisms are often not comparable.
Now, researchers are pushing to create standard tools for

studying the gut microbiometools that would allow
different laboratories to compare their results, apples to
apples. One resource that would be especially helpful,
experts say, is gut microbiome reference materialsome
known set of gut microbes, as close as possible to those in

an actual human gutthat could be used as a yardstick for
aligning results across the field. The US National Institute of
Standards and Technology (NIST) has set out to create this
and other tools that could serve as standards for micro-
biome measurements. Such tools will be crucial for gaining a
full picture of the microbiome’s basic features, as well as
getting a handle on how to modulate it for therapies.

A complex ecosystem
“The human gut microbiome has been describedand
I believe rightfully soas the most complex ecosystem on
Earth,” says Scott Jackson, who leads the Complex
Microbial Systems Group at NIST. “It raises measurement
challenges that no one has figured out how to address yet.”
Jackson’s employer is the US agency responsible for

pulling uniformity out of the chaos of the world’s natural
variation. NIST is in the measurement business, setting
quality and reference standards for an enormous range of
stuff, including steel pipes, peanut butter, cigarettes, and
human plasma. Companies rely on these standards to ensure
the safety and uniformity of all kinds of products. And as
interest surges around the potential for improving human
health via the gut microbiome, researchers from industry
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Standards Seekers Put the Human Microbiome in Their
Sights

One day in the future, doctors may add a step to
your routine checkup. In addition to measuring
your blood pressure, putting a stethoscope to your

chest, and running some blood tests, they may examine your
poop. The stool sample you provide, loaded with the
bacteria and other microbial matter that populate your gut,
could divulge whether you have a particular disease or
provide clues about your diet, stress levels, or other health
markers. On the basis of that stool sample, doctors might
prescribe medicines like the ones we already havedrugs
that target specific proteins in our guts, for instance. But
they might also give you medicines that rebalance the types
and amounts of bacteria in your gut microbiome.
Dozens of companies are racing to develop drugs (or

microbes prescribed as drugs) that target the microbiome
and that change its composition, aiming to treat a wide
range of conditions, including recurring bacterial infections,
autism, depression, Parkinson’s disease, asthma, cancer, and
more. So far, no such drugs have been approved by
regulatory agencies, although a few are close. And academic
laboratories are still trying to work out some basic
questions, including the full lineup of microbial species
inhabiting the gut and how they interact with each other to
affect health. A few hundred microbial species inhabit the
human gut, and the population fluctuates in complicated
ways. But because the methods and tools to make
measurements of the microbiome vary widely, different
laboratories’ efforts to characterize this horde of tiny
organisms are often not comparable.
Now, researchers are pushing to create standard tools for

studying the gut microbiometools that would allow
different laboratories to compare their results, apples to
apples. One resource that would be especially helpful,
experts say, is gut microbiome reference materialsome
known set of gut microbes, as close as possible to those in

an actual human gutthat could be used as a yardstick for
aligning results across the field. The US National Institute of
Standards and Technology (NIST) has set out to create this
and other tools that could serve as standards for micro-
biome measurements. Such tools will be crucial for gaining a
full picture of the microbiome’s basic features, as well as
getting a handle on how to modulate it for therapies.

A complex ecosystem
“The human gut microbiome has been describedand
I believe rightfully soas the most complex ecosystem on
Earth,” says Scott Jackson, who leads the Complex
Microbial Systems Group at NIST. “It raises measurement
challenges that no one has figured out how to address yet.”
Jackson’s employer is the US agency responsible for

pulling uniformity out of the chaos of the world’s natural
variation. NIST is in the measurement business, setting
quality and reference standards for an enormous range of
stuff, including steel pipes, peanut butter, cigarettes, and
human plasma. Companies rely on these standards to ensure
the safety and uniformity of all kinds of products. And as
interest surges around the potential for improving human
health via the gut microbiome, researchers from industry
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Standards Seekers Put the Human Microbiome in Their
Sights

One day in the future, doctors may add a step to
your routine checkup. In addition to measuring
your blood pressure, putting a stethoscope to your

chest, and running some blood tests, they may examine your
poop. The stool sample you provide, loaded with the
bacteria and other microbial matter that populate your gut,
could divulge whether you have a particular disease or
provide clues about your diet, stress levels, or other health
markers. On the basis of that stool sample, doctors might
prescribe medicines like the ones we already havedrugs
that target specific proteins in our guts, for instance. But
they might also give you medicines that rebalance the types
and amounts of bacteria in your gut microbiome.
Dozens of companies are racing to develop drugs (or

microbes prescribed as drugs) that target the microbiome
and that change its composition, aiming to treat a wide
range of conditions, including recurring bacterial infections,
autism, depression, Parkinson’s disease, asthma, cancer, and
more. So far, no such drugs have been approved by
regulatory agencies, although a few are close. And academic
laboratories are still trying to work out some basic
questions, including the full lineup of microbial species
inhabiting the gut and how they interact with each other to
affect health. A few hundred microbial species inhabit the
human gut, and the population fluctuates in complicated
ways. But because the methods and tools to make
measurements of the microbiome vary widely, different
laboratories’ efforts to characterize this horde of tiny
organisms are often not comparable.
Now, researchers are pushing to create standard tools for

studying the gut microbiometools that would allow
different laboratories to compare their results, apples to
apples. One resource that would be especially helpful,
experts say, is gut microbiome reference materialsome
known set of gut microbes, as close as possible to those in

an actual human gutthat could be used as a yardstick for
aligning results across the field. The US National Institute of
Standards and Technology (NIST) has set out to create this
and other tools that could serve as standards for micro-
biome measurements. Such tools will be crucial for gaining a
full picture of the microbiome’s basic features, as well as
getting a handle on how to modulate it for therapies.

A complex ecosystem
“The human gut microbiome has been describedand
I believe rightfully soas the most complex ecosystem on
Earth,” says Scott Jackson, who leads the Complex
Microbial Systems Group at NIST. “It raises measurement
challenges that no one has figured out how to address yet.”
Jackson’s employer is the US agency responsible for

pulling uniformity out of the chaos of the world’s natural
variation. NIST is in the measurement business, setting
quality and reference standards for an enormous range of
stuff, including steel pipes, peanut butter, cigarettes, and
human plasma. Companies rely on these standards to ensure
the safety and uniformity of all kinds of products. And as
interest surges around the potential for improving human
health via the gut microbiome, researchers from industry
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Standards Seekers Put the Human Microbiome in Their
Sights

One day in the future, doctors may add a step to
your routine checkup. In addition to measuring
your blood pressure, putting a stethoscope to your

chest, and running some blood tests, they may examine your
poop. The stool sample you provide, loaded with the
bacteria and other microbial matter that populate your gut,
could divulge whether you have a particular disease or
provide clues about your diet, stress levels, or other health
markers. On the basis of that stool sample, doctors might
prescribe medicines like the ones we already havedrugs
that target specific proteins in our guts, for instance. But
they might also give you medicines that rebalance the types
and amounts of bacteria in your gut microbiome.
Dozens of companies are racing to develop drugs (or

microbes prescribed as drugs) that target the microbiome
and that change its composition, aiming to treat a wide
range of conditions, including recurring bacterial infections,
autism, depression, Parkinson’s disease, asthma, cancer, and
more. So far, no such drugs have been approved by
regulatory agencies, although a few are close. And academic
laboratories are still trying to work out some basic
questions, including the full lineup of microbial species
inhabiting the gut and how they interact with each other to
affect health. A few hundred microbial species inhabit the
human gut, and the population fluctuates in complicated
ways. But because the methods and tools to make
measurements of the microbiome vary widely, different
laboratories’ efforts to characterize this horde of tiny
organisms are often not comparable.
Now, researchers are pushing to create standard tools for

studying the gut microbiometools that would allow
different laboratories to compare their results, apples to
apples. One resource that would be especially helpful,
experts say, is gut microbiome reference materialsome
known set of gut microbes, as close as possible to those in

an actual human gutthat could be used as a yardstick for
aligning results across the field. The US National Institute of
Standards and Technology (NIST) has set out to create this
and other tools that could serve as standards for micro-
biome measurements. Such tools will be crucial for gaining a
full picture of the microbiome’s basic features, as well as
getting a handle on how to modulate it for therapies.

A complex ecosystem
“The human gut microbiome has been describedand
I believe rightfully soas the most complex ecosystem on
Earth,” says Scott Jackson, who leads the Complex
Microbial Systems Group at NIST. “It raises measurement
challenges that no one has figured out how to address yet.”
Jackson’s employer is the US agency responsible for

pulling uniformity out of the chaos of the world’s natural
variation. NIST is in the measurement business, setting
quality and reference standards for an enormous range of
stuff, including steel pipes, peanut butter, cigarettes, and
human plasma. Companies rely on these standards to ensure
the safety and uniformity of all kinds of products. And as
interest surges around the potential for improving human
health via the gut microbiome, researchers from industry
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and academia, as well as from the US Food and Drug
Administration, have prodded his lab at NIST to take up the
especially thorny challenge of creating standardized and
validated methods and materials for studying the gut
microbiome.
NIST is not alone in tackling these problems. A subset of

microbiome researchers has had them in its sights since the
field began to take off a decade ago. A few years ago, a
consortium of microbiome researchers called the Micro-
biome Quality Control project had 15 independent labora-
tories genetically sequence a common set of gut and oral
microbiome samples. Although the set of detected microbes
differed significantly among the 18 people who provided the
samples, suggesting that relative differences between
individuals remained intact from lab to lab, each step of
the analysis injected substantial variation, too, the group
reported in 2017.
Typically, when companies develop a drug, they must

demonstrate its identity, as well as its purity, potency, and
stability. But what those terms mean in the context of the
microbiome, where the “drugs” may be communities of
microbes, is still being defined. The methods so far available
for identifying the microbial species within these complex
communities yield highly variable results.
That variability likely won’t stymie the path to approval of

the first microbiome-based drugs, if the pioneering
companies developing them can show the FDA internally
consistent data that demonstrate safety and efficacy. But as
the second, third, and fourth drugs progress to the clinic,
regulators will need solid ways of comparing them with
what’s already on the market, says Matthew Henn, chief
scientific officer at Seres Therapeutics, which has a microbe-
based therapy in late-stage clinical trials. And academic
researchers studying the basic biology of how the micro-
biome functions also need to be able to compare their
results across different laboratories. Yet groups are using such
different methods to determine what species are present that
the measurements are essentially “being made almost in
different languages,” says Daryl Gohl, a molecular biologist at
the University of Minnesota and chief scientific officer of
CoreBiome, which provides services for microbiome
sequencing and analysis.

Persistently, consistently variable
To some extent, the methodological woes bedeviling micro-
biome science simply represent a new field’s inevitable
growing pains. When researchers first began sequencing the
human genome en masse about a decade ago, they similarly
had to contend with lots of inaccuracy, as well as uncertainty
about what specific variations in the genome’s sequence

reflect about people’s health. As the technology improved,
the problems diminished, though they never fully disappeared.
But the human genome has only 23 chromosomes and two
copies of each gene. “The microbiome has an infinite number
of possibilities” in terms of the kinds of microbes that could
be present, Gohl says. No matter how good the research
tools get, he predicts, it will be difficult to eliminate all the
imprecision.
One of the biggest sources of variability in pinning down

the cast of characters in the microbiome is the step in which
researchers extract DNA from all the bacteria in a sample for
sequencing, Gohl says. Some types, like Escherichia coli, break
apart and release their DNA with just a little detergent,
whereas others require special enzymes or mechanical force
to break open their membranes and give up their genetic
material. That means no single approach will extract a
uniform cross section of microbial DNA from a given
sample.
But even before researchers extract DNA, they must

consider how a sample is collected. Is it preserved at the
point of collection or carried fresh to the lab? Is it an actual
stool sample or the toilet tissue used to wipe? Different
DNA profiles also arise from different procedures for
sequencing samples and from differences in the bioinfor-
matic tools for identifying which microbes are present.
“A colleague and I tracked itthere are currently 97 differ-
ent ways to analyze the same raw data, and they will give
you 97 different answers,” NIST’s Jackson says.
That variation adds up in unpredictable ways, and it has

undoubtedly muddled the literature. “That’s why you don’t get
reproducible results,” says Rashmi Sinha, an epidemiologist at

A scanning electron micrograph showing several types of
bacteria in a human feces sample. Credit: Steve Gschmeissner/
Science Source.
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are mainly ssRNA(+ ), ssRNA(− ), and dsRNA. Each classification forms a few small clusters and then group with 
the others. It is worth noting that animal ssRNA(+ ) viruses are closer to animal dsRNA viruses than to plant 
ssRNA(+ ) viruses, although the latter are in the same classification. Also, in this dendrogram, Mononegavirales 
viruses have an independent clade with different hosts.

For the largest viruses (Q4; genome size > 75%).), most of them are dsDNA viruses (Supplementary Figure S8). 
The Caudovirales viruses, most of which are bacterial viruses, form three large clades. Among these are animal 
viruses with a few protist viruses whose orders are Herpesvirales or unknown.

Discussion
Identifying optimal feature length in an alignment-free phylogenomic method is an important but challeng-
ing process, especially when we construct phylogenomic trees for large-scale datasets of divergent genomes of 
varied size. In this study, we have developed a comprehensive strategy to find the optimal length of k-mers in 
alignment-free phylogenomic analysis, and we built phylogenomic dendrograms for all complete viral genomes 
in the NCBI RefSeq as of October 201441.

With the development of sequencing technologies, whole-genome information presents new possibilities for 
microbial classification42. Compared to traditional gene trees, whole-genome phylogenies use completed genomic 
information and solve the incongruence generated by gene trees from various studies. The alignment-free method 
with k- mers is useful for comparing genomes with low homology and has been applied to various microbial stud-
ies. However, it is still not clear how to find the optimal feature length of k-mers in alignment-free phylogenomic 
analysis, especially for large-scale comparison of viral genomes. CRE and RSD values have been used as criteria 
in previous studies29,31,32,39, however, these studies used, at most, hundreds of genomes and their lengths did not 
change greatly. However, thousands of viral genomes in the NCBI RefSeq showed a great difference in size, which 
ranged from the smallest (Anguilla anguilla circovirus) at 1,378 nucleotides to the largest (Pandoravirus salinus) 
at 2,473,870 nucleotides. As a result, their CRE curves cannot simultaneously drop to < 10% of maximum as 
required in previous studies. Furthermore, CRE reflects the ability to identify individual whole genomes at var-
ious lengths of k. More details should be taken into consideration when dealing with such highly-diverse data, 
such as pairwise-comparison information and shared k-mers among all genomes. Hence, we divided our dataset 
into four subgroups by 25%, 50%, and 75% quantiles cut-off of genomic size.

In this study, we designed a comprehensive strategy to find the optimal length of k-mers for alignment-free 
FFP phylogenomic analysis. This comprehensive strategy combines three steps: (1) an individual genome per-
spective: CRE to find the minimum feature length; (2) pairwise-comparison perspective, where the ACF among 
genomes is applied to determine the maximum feature length; (3) an all-genome comparison perspective, where 

Figure 9. Optimal dendrogram of the 3,905 RefSeq viral genomes (k = 9). The braches are colored by 
Baltimore classifications. The circles, from inside to outside, are colored by different orders, hosts, and genome 
sizes as follows: The ranches by Baltimore classification: dsDNA (no RNA stage), red; dsRNA, green; RT viruses, 
pink; ssDNA, blue; ssRNA negative-strand, bright blue; ssRNA positive-strand, yellow. The First circle, inside 
to outside, by order: Caudovirales, red; Herpesvirales, green; Ligamenvirales, blue; Mononegavirales, orange; 
Nidovirales, cyan: Picornavirales, pink; Tymovirales, dark green; unclassified, silver. The second circle, inside to 
outside, by host: protist, orange; archaea, red; bacteria, dark green; fungi, blue; animal, cyan; animal and plants, 
pale violet red; plant, pink; environment or NA, silver.The third circle, inside to outside, by genome size: Q1, 
green; Q2, yellow; Q3, orange; Q4, red.

Q Zhang, SR Jun, M Leuze, D Ussery, I Nookaew, “Viral Phylogenomics Using an Alignment-Free Method: A Three-Step Approach to Determine 
Optimal Length of k-mer.” Sci. Rep. 7, 40712; doi: 10.1038/srep40712  (2017). 

Some suggestions:

RefSeq viruses 
1. Anchor to a reference

2. Check genome quality
3. Check alignment length
4. Use FAIR guidelines

Benchmark with standardized, reproducible 
methods, including ’containers’ for 
computational flow, with reference data 
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