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Executive Summary 
When first introduced in the early 1980s the Internet appeared to be an interesting 
engineering curiosity, providing resource sharing and data communication services to 
support scientific researchers. Beginning with the introduction of the World Wide Web 
(circa 1995), the fundamental data communication services provided by the Internet 
transformed into a global infrastructure for commerce, education and entertainment. Later 
developments (circa 2005) built upon so-called Web Services to provide innovative 
social networking technologies that citizens the world over can use to organize and 
collaborate around collective interests. Along the way, innovative cell phones and other 
handheld devices were introduced and integrated with the Internet and the Web to extend 
available information and interaction services to people anytime, anywhere. The future 
promises a globe interconnected by large, distributed information networks, where people 
routinely interact in new and unexpected ways. Realizing this future relies in large part 
on our ability to understand and engineer globally distributed systems of interconnected 
hardware and software components, including their use by people. At present, society is 
technologically capable of building such systems but lacks the fundamental knowledge 
required to understand and predict macroscopic behaviors that may arise from complex 
interactions as such systems evolve with the addition of new technologies and new 
patterns of use. A similar lack of knowledge may impede progress with respect to other 
large systems engineered by society. For these reasons, researchers in the Information 
Technology Laboratory (ITL) of the National Institute of Standards and Technology 
(NIST) embarked upon a measurement science based program of research for complex 
systems. The NIST Complex Systems Program aims to investigate and evaluate methods 
and tools that system designers might adopt to improve scientific understanding of large 
distributed systems, such as information networks, electric grids and transportation webs. 

As part of the NIST Complex Systems Program, this special publication 
investigates and evaluates modeling and analysis methods that can be applied to predict 
and understand macroscopic behavior and variations in user experience that may arise as 
engineers introduce changes in software components into a large information network, 
such as the Internet. The Internet consists of millions (someday billions) of 
interconnected components that may be changed independently. For example, every time 
vendors of major operating systems introduce software updates, millions of users 
download new software modules into computers connected to the Internet. As another 
example, users may download software to support new functions, such as social 
networking or distributed gaming. At the current state of the art, system designers lack 
techniques to predict global behaviors that may arise in the Internet as a result of 
interactions among existing and altered software components. Similarly, hardware faults 
and unexpected usage patterns may occur within the Internet. Engineers have insufficient 
methods and tools available to forecast global behaviors and resulting effects on 
individual users. The study described in this special publication aims to improve existing 
knowledge about a range of methods and tools that could be applied to understand and 
predict behavior in such complex information systems. 

To give our study a concrete context, we selected a challenging problem of 
current interest and relevance for the Internet at large. Specifically, we study the likely 
consequences for macroscopic behavior and for individual users should any of several 
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proposed mechanisms be introduced to augment or replace congestion control procedures 
in the standard transmission control protocol (TCP), which is currently deployed to 
regulate the rate of information transfer among computers connected to the Internet. 
Congestion control procedures allow individual computers to measure available capacity 
on network paths and to attempt to transfer information as quickly as possible. Because 
conditions vary with time, congestion control procedures also enable detection of 
congestion that may arise as too many computers attempt to use a network path. Upon 
detecting congestion, TCP first substantially slows a computer’s rate of transfer and then 
attempts to slowly increase the rate. Researchers have predicted that the standard TCP 
congestion control procedures will inhibit users from realizing increased transfer speeds 
as capacity expands in the Internet backbone from the current rate of 10 Gigabits per 
second (Gbps) to 100 Gbps and beyond. For this reason, various researchers have 
proposed changes to the congestion control procedures implemented in standard TCP. At 
the current state of the art, such proposed changes have been studied on individual long-
lived flows using analytical methods and also studied using simulation and empirical 
measurements in small topologies with limited types of data traffic. Though researchers 
and engineers would like to predict the effects of such changes on macroscopic behavior 
and on individual users, no techniques are currently available to make such extrapolations 
to large, fast topologies transporting hundreds of thousands of simultaneous data transfers 
of various sizes under a wide range of network conditions. The study documented in this 
special publication describes and evaluates modeling and analysis techniques applied to 
make such extrapolations for seven proposed alternatives to standard TCP congestion 
control procedures. 

We apply techniques often used by scientists at NIST when studying physical 
systems. First, we propose an abstract simulation model, representing a data 
communications network (including TCP) with only 20 parameters, as compared with the 
hundreds of parameters typically used in detailed Internet simulators. Second, we adopt 
2-level-per-factor experimental designs, which consider each parameter at only two 
values, as compared with the billion or so values that each parameter could possibly take 
on. Third, we leverage orthogonal fractional factorial (OFF) experiment designs that 
enable us to model a sparse but balanced set of parameter combinations spread widely 
throughout the space of possible combinations. Reducing the number of parameters, 
parameter levels and combinations enables feasible simulation of large networks under a 
wide range of conditions. Third, we use a variety of statistical analysis and visualization 
techniques designed to explore multidimensional data sets. Fourth, we use detailed 
analyses of time series as required to supplement findings from statistical analyses. We 
demonstrate that our proposed combination of modeling and analysis techniques allows 
us to predict the influence of seven proposed congestion control mechanisms on 
macroscopic network behavior and individual user experience. 

In summary, this special publication contributes to current knowledge about 
modeling and analysis techniques for complex information systems and also contributes 
to the body of knowledge surrounding proposals for improving congestion control 
mechanisms considered for deployment in the Internet. Six specific contributions 
improve current knowledge regarding techniques to understand and predict behavior in 
complex information systems. First, we summarize the current state of the art in 
modeling and analysis of communication networks and we identify several hard problems 
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that inhibit the study of large, fast networks. Second, we propose an approach to 
construct simulation models with a reduced parameter space. As a corollary contribution, 
we identify and explore some alternative, promising modeling approaches, including 
fluid flow models and hybrid models, which combine quantized time calculations with 
discrete events. Third, we describe and demonstrate how two-level OFF experiment 
designs can be applied to reduce the number of parameter combinations that must be 
considered, while yielding maximum information from available simulation resources. 
Fourth, we describe and apply a variety of analysis and visualization techniques for 
interpreting multidimensional data. We first use these techniques to conduct sensitivity 
analyses of our simulation model and then apply the techniques to compare congestion 
control mechanisms. Fifth, we evaluate our proposed modeling and analysis techniques, 
discussing the strengths and weaknesses of various methods and identifying those 
methods that proved most effective for our study. Sixth, we outline future research 
needed to improve upon the methods we evaluated. Our six contributions enhance 
understanding of methods and tools available to designers of complex systems. 

Four specific contributions add to the body of knowledge surrounding proposals 
for improving Internet congestion control. First, we characterize likely macroscopic 
behavior and user performance for seven proposed alternatives to TCP congestion control 
procedures. In doing so, we reveal that proposed improvements to TCP congestion 
control would benefit individual users under a specific combination of circumstances 
unlikely to arise very often in the general Internet. We also identify some cautionary 
findings with respect to various congestion control mechanisms we study. Second, we 
identify key behavioral characteristics to be considered when comparing congestion 
control mechanisms. We found these characteristics through analyses of experiment data, 
rather than through a priori analyses. Part of our method was to collect as much 
measurement data as possible and then to use statistical techniques (e.g., correlation and 
principal components analyses) to identify those measures representing different facets of 
system behavior. Then, given selected measures, we could determine the key factors 
influencing macroscopic behavior and user experience. Previous studies of congestion 
control mechanisms did not reflect these key factors. Third, we identify and compare the 
main differences among the congestion control mechanisms we studied. We show that, 
for the key behavioral factors we identify, one of the seven mechanisms we studied fares 
better than the others. Fourth, we suggest some future research directions related to 
Internet congestion control. Our four contributions should help researchers to better 
understand the problem space surrounding congestion control in the Internet. 

While the current study is quite comprehensive with respect to the study of large 
distributed systems, we have certainly not covered every method and technique that 
might prove useful. For example, a related project in the NIST Complex Systems 
Program is investigating how Markov models, coupled with perturbation analysis, 
Eigenanalysis and graph theory, can be used to identify specific aspects of system designs 
that might significantly degrade performance when subjected to failures. Further, while 
some of the methods we applied appear quite effective in the context of Internet 
congestion control, we also need to demonstrate effectiveness in other applications. In 
summary, this study makes substantial contributions to methods for modeling and 
analyzing complex information systems and also provides significant information to the 
community of researchers studying Internet congestion control. 
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1 Introduction 
Society is becoming increasingly reliant on large networked information systems for 
commerce, communication, education, entertainment and government. “[Despite] 
society’s profound dependence on networks, fundamental knowledge about them is 
primitive. [Global] communication…networks have quite advanced technological 
implementations but their behavior under stress still cannot be predicted reliably…. There 
is no science today that offers the fundamental knowledge necessary to design large 
complex networks [so] that their behaviors can be predicted prior to building them.” 
[104] This lack of knowledge grows more acute as society moves toward service-oriented 
architectures [102-103] that deploy software, platforms and infrastructure as distributed 
services accessible through networks.  

 Why are large distributed systems so difficult to predict? Such systems exhibit 
global behavior that arises from independent decisions made by many simultaneous 
actors, which adapt their behavior based on local measurements of system state. As a 
result of actor adaptations, global system behavior may change, influencing subsequent 
measurements, and leading to further adaptations. This continuous cycle of measurement 
and adaptation produces a time-varying global behavior that drives the performance 
experienced by individual actors within spatiotemporal regions of a large distributed 
system. Thus, to truly understand and predict behaviors in such systems requires 
techniques to model and analyze designs at large scale. Such techniques are currently 
beyond the state of the art, as practiced by network researchers. 

As part of a team of researchers [105] at NIST, we are investigating methods to 
model and analyze distributed systems, such as the Internet, computational grids, service-
oriented architectures and computing clouds. As part of this investigation, the study 
reported here develops, applies and evaluates a coherent set of modeling and analysis 
methods for distributed information systems of large spatiotemporal scale. The methods 
are adapted from techniques often applied by NIST scientists to study physical systems.   

In this study, we develop methods to investigate global system behavior within 
the context of a challenge problem: comparing some proposed changes to the standard 
congestion control algorithm [9-10] for the Internet. Congestion control procedures are 
implemented as part of the transmission control protocol (TCP) that operates within every 
computer attached to the global Internet. Numerous researchers [46-51] have forecast 
changes in relationships among bandwidth and propagation delay as the speed of network 
links increases. These researchers predict that the current version of TCP will prove 
inadequate, leading to substantial underutilization in network resources and preventing 
end users from achieving high transfer rates. Such predictions have stimulated 
researchers to propose alternate congestion control algorithms [52-61] intended to 
achieve higher network utilization and better user performance. Evaluating the 
implications of adopting proposed changes to TCP congestion control procedures 
requires investigating global behaviors that result when such changes are deployed on a 
large scale throughout an Internet-like network. The current study provides such an 
investigation. 

We begin (in Chapter 2) with a discussion of the challenge problem and the 
current state of the art with respect to investigating proposed Internet congestion control 
algorithms. We outline various approaches that we considered for modeling and analysis 
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and we describe the approach we selected. We introduce five hard problems we needed to 
solve in order to implement our approach and we discuss the solutions we adopted. In 
Chapter 3, we describe MesoNet, a medium scale, discrete-event simulation model that 
we created for use in this study. MesoNet allowed us to expose candidate congestion 
control algorithms to a wide variety of network conditions. We subjected MesoNet to 
sensitivity analyses, as documented in Chapter 4 and in Appendix C. These sensitivity 
analyses helped us to gain confidence that MesoNet provides a suitable model for TCP 
networks, and also enabled us to identify the most important parameters influencing 
MesoNet behavior. As part of our sensitivity analyses, we employ a NIST-developed, 10-
step graphical analysis process, which is described in Appendix D. In Chapter 5, we 
explain our models for various congestion control algorithms and we document key 
empirical comparisons used to verify model correctness. The bulk of the study consists of 
six experiments, which we describe in Chapters 6 through 9. As we discuss in Chapter 2, 
these experiments were not constructed as an integral campaign, but rather arose through 
a process of iterative refinement, where findings from previous experiments suggested 
useful directions for subsequent experiments. We first compare (Chapter 6) congestion 
control regimes in a large, fast network simulation and then repeat the comparison 
(Chapter 7) in a simulated network with smaller size and slower speeds. In Chapter 8, we 
enlarge the traffic classes considered, while comparing the congestion control algorithms 
in a network where some flows use standard TCP and some use alternate algorithms. In 
Chapter 9, we repeat an experiment from Chapter 8 but in a larger, faster simulated 
network, where theorists suggest alternate congestion control algorithms could provide 
best advantage. Taken together, these experiments compare the behavior of seven 
congestion control algorithms under a wide range of simulated conditions. We generate 
sufficient information to draw some conclusions in Chapter 10 about the congestion 
control algorithms. Chapter 10 also provides an evaluation of the methods that we 
developed and applied. We include some appendices to document auxiliary investigation 
of analytical (Appendix A) and hybrid (Appendix B) models of TCP networks. 

This study may interest two different audiences: (1) those seeking to understand 
and evaluate methods to model and analyze behavior in large, distributed information 
systems and (2) those aiming to compare proposed changes in algorithms for the Internet. 
Readers in the first audience can expect to learn about various modeling, experiment 
design and statistical analysis techniques applied to study dynamics in complex systems. 
In addition, such readers may benefit from our findings with regard to the strengths and 
weaknesses of the techniques we applied. Readers in the second audience can expect to 
learn how to model a data communications network with a manageable set of parameters. 
In addition, such readers may benefit from learning how we let measurement data (rather 
than preconceived metrics) drive our comparison of alternative congestion control 
algorithms. Mindful of these two different audiences, we attempt to provide a sufficient 
level of explanation to engage every reader. We explain our modeling and analysis 
methods in detail so that networking experts can follow our methods. And we provide 
sufficient tutorial information to allow those readers who are not networking experts to 
follow our challenge problem and related findings. Where appropriate, we also provide 
references to additional sources where readers in each audience can pursue more 
information.  
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We can summarize the contributions of this study along several lines. First, we 
define and demonstrate a coherent set of modeling and analysis methods that can be used 
to investigate behavior in distributed systems of large spatiotemporal scale. The methods 
we develop represent an advance in the state of the art, as currently practiced by network 
researchers. Second, we evaluate our modeling and analysis methods in the context of a 
challenge problem that investigates behavior of various proposed Internet congestion 
control algorithms. The challenge problem is of current interest to industrial and 
academic researchers within the Internet Congestion Control Research Group (ICCRG) 
of the Internet Research Task Force (IRTF). Third, we provide conclusions and 
recommendations with respect to the congestion control algorithms that we study. We 
demonstrate that our methods lead to insights that have not been obtained using existing 
methods. Fourth, we describe a medium-scale, discrete-event network simulator that we 
developed for our study. The simulator, called MesoNet, can be efficiently parameterized 
and allows feasible simulation of high-speed networks transporting hundreds of 
thousands of simultaneous flows. The most commonly used network simulators are 
incapable of supporting such large-scale models. Fifth, we suggest an approach that 
might improve the accuracy of existing analytical models for Internet congestion control 
algorithms. We anticipate future work to include improved analytical models within 
existing fluid-flow simulation frameworks in an effort to obtain accurate predictions 
regarding spatiotemporal behavior in large networks.  



Chapter 2 – Method and Related Work  
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2 Method and Related Work 
The work described in this report supports an overarching goal to develop and evaluate a 
coherent set of methods that can be applied to understand behavior in large distributed 
systems, such as the Internet, computational grids, service-oriented architectures and 
computing clouds. Large distributed systems may exhibit emergent behaviors, which are 
global behaviors arising from independent decisions made by many simultaneous actors, 
which adapt their behavior based on local measurements of system state. As a result of 
actor adaptations, system state shifts, influencing subsequent measurements made by the 
actors, which leads to further adaptations. This continuous cycle of measurement, 
adaptation and changing system state produces a time-varying (emergent) global behavior 
that influences performance experienced by individual actors within specific 
spatiotemporal regions of a large distributed system. For this reason, any proposed 
changes in decision algorithms taken by actors must be examined within the context of a 
large spatiotemporal scale in order to predict the effects of such algorithms on overall 
system behavior, as well as the resulting implication for individual actors. 

In this study, we develop methods to investigate global system behavior within 
the context of a challenge problem: comparing selected proposed changes to the standard 
congestion control algorithm [9-10] for the Internet. As we show later, in Chapter 10, 
using our methods we were able to draw conclusions (1) about likely network-wide 
behaviors and user experiences that may arise if the Internet adopts any one of the 
algorithms we studied and (2) about the efficacy of the methods we used. In this chapter, 
we introduce the challenge problem, describe the current state-of-the-art techniques used 
to address the problem and outline a proposed advance in the state of the art. We consider 
some approaches that might be adopted to achieve our intended improvement in practice 
and then we explain the approach we adopted for the current study. We identify five hard 
problems we had to solve to develop our approach and we discuss some possible 
solutions to the problems and identify the solutions we adopted for the current study. We 
conclude with an argument that the methods we develop and apply in the current study 
should be generally applicable to a wide array of large distributed systems.   

2.1 Challenge Problem 
The fundamental design of the Internet protocol suite [3] assumes that network elements, 
such as routers, are relatively simple – receiving, buffering and forwarding packets 
among connected links and dropping packets when buffers are insufficient to 
accommodate arriving packets. Under this assumption, computers connected to the 
Internet must implement decision algorithms to pace the rate at which packets are 
injected into the network. Such decision algorithms, known typically as congestion 
control mechanisms, operate independently for each network flow between a source and 
receiver. The overall network, with a goal of achieving satisfactory service and a fair 
distribution of resources among all simultaneously active flows, relies upon each network 
source to measure congestion and then adapt the rate at which the source injects packets 
into the network – injecting faster when congestion is low and slower when congestion is 
high. Thus, congestion in the Internet is an emergent property of the simultaneous 
operation of many independent sources. 
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In current practice, congestion control mechanisms are implemented as part of the 
transmission control protocol (TCP) that operates within every computer attached to the 
global Internet. While TCP congestion control procedures have proven quite successful 
[2] at achieving desired global properties, numerous researchers [46-51] have postulated 
potential changes in relationships among bandwidth and propagation delay as the speed 
of network links increases toward 10s and 100s of gigabits per second (Gbps). Under the 
envisioned circumstances, researchers predict that TCP congestion control procedures 
will prove insufficient, leading to substantial underutilization in network resources and 
preventing end users from achieving high transfer rates, potentially reaching or 
surpassing one Gbps. These predictions have stimulated researchers to propose alternate 
congestion control procedures [52-61] that might achieve higher network utilization and 
better user performance as network speeds increase. Given the increasing number of 
proposals, interest is growing [62-68] in developing procedures to fairly and effectively 
evaluate properties of the various proposals. Evaluating the implications of adopting 
proposed changes to TCP congestion control procedures requires investigating global 
behaviors that result when such changes are deployed on a large scale throughout an 
Internet-like network. This is the challenge problem we tackle within the current study.   

2.1.1 Current State of the Art 
As part of proposing changes to standard congestion control procedures, researchers 
typically model, simulate and implement prototypes and then explore how candidate 
congestion control mechanisms might affect the Internet and its users. In general, 
researchers investigate candidate algorithms using three primary approaches: (1) 
empirical studies, (2) simulation studies and (3) analytical studies. In this section we 
outline and critique the current state of the art with respect to these approaches.  
  
2.1.1.1 Empirical Studies. A fundamental approach to studying proposed changes to TCP 
congestion control procedures involves deploying a few computers, acting as sources and 
receivers, connected to Gigabit Ethernet switches in a dumbbell topology, where the 
network links are represented by a single computer that can be parameterized with 
specific bottleneck speed, buffer size and propagation delay. Several, typically two to ten, 
long-lived flows share the bottleneck path in the dumbbell topology and various 
measurements are made regarding traits such as fairness of resource allocation, 
responsiveness to changing conditions and link and buffer utilizations. Additional sources 
are often added to investigate the response of the proposed congestion control algorithms 
in the presence of background traffic, sometimes TCP flows and sometimes user-
datagram protocol (UDP) streams. Usually the background traffic crosses the bottleneck 
link in an orthogonal direction to the long-lived flows. Several examples of such studies 
appear in the literature [65-68] and the basic approach is being considered by a group of 
researchers [62] intending to standardize procedures to characterize proposed changes to 
TCP. 

Simple empirical studies have several merits. First, a topology involving few 
computing elements can be constructed conveniently in a laboratory setting. Further, the 
fundamental characteristics (speed, buffer size and propagation delay) of a bottleneck 
path can be reliably established to provide a suitable basis for head-to-head comparisons 
of alternate congestion control algorithms in identical, controlled situations. Third, 
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empirical studies investigate actual implementations of proposed algorithms as would be 
distributed in code used by computers on the Internet; thus, there is no room for modeling 
error. Of course, code bugs can exist; however, those code bugs, if undiscovered, would 
be actually deployed on the Internet. Fourth, as demonstrated in a recent study [67], 
empirical measurements in a simply topology can reveal behavioral properties that might 
well have significant implications. For purposes of our study, the major shortcoming of 
simple empirical studies is an inability to investigate the influence on global network 
behavior should proposed congestion control algorithms be adopted on a large scale. As 
we discuss below in Sec. 2.2.1, some researchers are investigating techniques to support 
configuration of larger empirical networks, which might be used to study global network 
behavior.  
 
2.1.1.2 Simulation Studies. Another approach is to implement proposed congestion 
control algorithms within a simulation modeling framework and then to construct (or 
generate) simulated topologies representing large networks and conduct experiments to 
evaluate global behavior and user experience. In fact, many of the proposed congestion 
controls we investigate in the current study have been implemented within a widely 
accepted simulation framework, ns2 [79].  

Simulation provides a convenient vehicle for defining controlled experiments that 
can be used to compare alternate congestion control algorithms, head-to-head, with 
respect to potential effects on global network behavior. Further, using simulation, an 
experimenter can measure many network-wide properties that might be difficult or 
impossible to measure in a large, empirical network. Several simulation studies [46, 48, 
54-56, 61, 64] have been conducted using the ns2 framework, but all of these studies 
have simulated small topologies with a limited number of flows, perhaps up to hundreds. 
Simulations at such small scales are unlikely to reveal the influence of alternate 
congestion control algorithms on global network behavior. Large topologies must be 
simulated while simultaneously transporting up to hundreds of thousands of active flows. 
The computational and memory demands of ns2 are significant, which discourages 
experimenters from attempting large simulations. We certainly decided that we could not 
achieve our goals using ns2 simulations. 

There exist many other network simulation frameworks [76-78, 80-83], both 
commercial and academic, that might be adopted. Most of these frameworks would need 
to be expanded to include simulations of the alternate congestion control algorithms. Still, 
at least one of these simulation frameworks has been used in an experiment transporting 
up to 105 TCP flows [69]. Unfortunately, configuring such a simulation experiment 
requires setting values for thousands of parameters, which must be managed by a 
database. To define a comprehensive set of experiments, such as we envisioned, would 
require significant, perhaps insurmountable effort. Further, we would need to specify 
settings for many parameters that require values but that would not necessarily be 
germane to our experiments. As we discuss below in Sec. 2.2.2, some researchers are 
investigating techniques to support faster simulations of large networks, which might be 
used to study global network behavior. 
 
2.1.1.3 Analytical Studies. A third approach is to construct a model as a system of 
differential equations that represent network flows as fluids rather than as a sequence of 
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discrete packets. A fluid approximation is justified using an argument that when the 
number of packets flowing through routers is very large and when the packets move at 
very high speed then packet flows can be well approximated by a smoothly varying 
continuous data steam with an average flow rate. Continuous systems can be modeled 
with differential equations. Several researchers [107, 112, 114, 119, 122-127] have 
proposed differential equation models for standard TCP congestion control procedures. 

Existing differential equation models for TCP exhibit some significant 
shortcomings for our purposes. First, existing models yield inaccurate results [112-113], 
which derive largely from difficulties in modeling the loss-estimation function in the 
differential equations. Existing models have tried estimating loss probability using an 
M/M/1/B queuing system; however, when considering many flows transiting a single 
router, such models give inaccurate results for many parameter combinations. Second, the 
difficulty of estimating loss probability increases with increasing complexity in network 
topology. For this reason, employing differential equations to model network flows in 
large topologies has received little attention. Third, current differential equation models 
treat only standard TCP congestion control procedures. For our purposes, such models 
must be augmented to include congestion control procedures for the set of alternate 
congestion control algorithms we studied. As we discuss below in Sec. 2.2.3, we are 
investigating techniques to model network flows with differential equations that have 
improved accuracy and that incorporate alternate congestion control procedures. When 
combined with fluid-flow simulators [73], our extended models might prove applicable to 
study global network behavior under various congestion control regimes.   

2.1.2 Proposed Advance in the State of the Art 
As described in the preceding overview, the current state of the art in modeling and 
analysis of distributed systems is limited to relatively small scales. We propose to define 
and apply modeling and analysis techniques that enable measurement and investigation 
of global behavior and actor experience in relatively large models of distributed systems. 
In this study, we explain and investigate our proposed modeling and analysis techniques 
in the context of comparing alternate congestion control algorithms suggested for use on 
the Internet. As a result of our investigation, we provide new insights into likely global 
behavior and user experience should the Internet deploy any of the alternate algorithms 
we study. Further, we characterize strengths and weaknesses of the modeling and analysis 
methods we use. Finally, we suggest additional directions for future investigations in 
modeling and analyzing global behavior in large distributed systems. We expect the 
methods illustrated in our study to advance the state of the art in modeling and analyzing 
large distributed systems because we believe our methods can be applied beyond the 
current study to consider other large-scale feedback processes, such as might arise in 
computational grids, computing clouds and service-oriented architectures.   

2.2 Potential Approaches 
In this section, we consider some potential approaches to achieve our goal to define and 
apply modeling and analysis techniques that enable measurement and investigation of the 
global behavior and actor experience in relatively large models of distributed systems. 
We discuss the possibility of expanding either empirical, simulation or analytical studies 
in order to consider larger systems than possible within the current state of the art.  
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2.2.1 Expanded Empirical Studies 
In increasing numbers, researchers are investigating management frameworks that allow 
experimenters to configure collections of hardware and software components into 
specified, reproducible topologies that enable empirical experiments with distributed 
systems. Emulab [99], perhaps the earliest instance of such a framework, provides access 
to hundreds of configurable nodes made available to experimenters. Emulab has been 
replicated at several sites around the world. Perhaps inspired by Emulab and its clones, 
PlanetLab [101] has connected a network of sites across the globe that allocates hardware 
and software components for configuration into distributed-system topologies for 
controlled experiments. Similar management frameworks, though limited to controlling 
configurations within a single laboratory, have been developed by various university 
researhers [65, 97]. While most of these efforts include innovations with respect to 
system configuration and experiment control, the scale of topologies that can be 
constructed is limited to a few hundred nodes and often such a topology exhausts the 
resources of a given facility. In an effort to overcome such scaling concerns, some 
researchers have reported progress in emulating virtual topologies an order of magnitude 
larger than the available physical hardware [98]. 

Recognizing the limitations of current facilities for configuring topologies in 
support of experiments with large distributed systems, a community of researchers is 
pursuing GENI [100] (Global Environment for Network Innovations), a project 
sponsored by the National Science Foundation (NSF). GENI aims to create a virtual 
laboratory for exploring future distributed systems at scale. The GENI facility promises 
to provide a platform on which we could conduct empirical investigations into global 
implications of deploying various congestion control algorithms. Unfortunately, GENI is 
in early stages of development, so the timing is inopportune for our study. We hope that 
we can use GENI at some later time to validate findings from the experiments we 
conducted.       

2.2.2 Expanded Simulation Studies 
While explaining that simulation models hold a key position when attempting to 
understand behavior in large distributed systems, Paxson and Floyd [72] identify several 
impediments to simulating the Internet. First, the Internet is big; simulating a model at 
scale can require significant, perhaps impractical, computational resources. Second, the 
Internet is diverse with respect to administrative policies and technologies deployed. 
Third, the Internet is evolving in size, technologies, traffic patterns and applications. 
While these impediments might prove difficult to overcome, Paxson and Floyd discuss 
some possible coping strategies. First, they suggest that researchers search for invariants 
that can reduce the parameter space of the models. They identify two candidate 
invariants: (1) model session arrivals with a Poisson distribution and (2) model session 
sizes with heavy-tailed distributions such as log-normal or Pareto (  < 2). Second, Paxson 
and Floyd suggest judiciously exploring the parameter space of a simulation model in 
order to identify parameters to which the model is sensitive. In a subsequent paper, six 
years later, Floyd and Kohler [70], critique the continued poor state of Internet modeling 
and admit that the research community does not know whether their models are valid. 
Floyd and Kohler prescribe four steps that could improve the situation. First, models 
should be limited in scope to the specific research questions under investigation in 
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particular studies. That is, the research community should abandon hopes of developing a 
single model of the global Internet. Second, any model used should be subjected to a 
sensitivity analysis in order to understand how parameter settings affect results. Third, 
with respect to important parameter settings, models should be compared against 
measurements in order to further increase confidence in real-world relevance. Fourth, a 
continuous program of measurements should be conducted with the aim of distinguishing 
between invariant and rapidly changing parameters in the real Internet. This enables 
models to be kept current and allows previous modeling studies to be placed in a 
temporal context. 

The perceptive critique from Floyd and colleagues provides a context for 
considering current research into network simulation. Much of the current work revolves 
around developing improved simulation frameworks intended to provide a model of the 
global Internet. For example, a group of open-source developers is working on ns3 [80], a 
replacement for ns2 that is motivated by overcoming some perceived software limitations 
that make ns2 difficult to use. Another group of researchers [82] is creating a parallel 
version of ns2 in an effort to allow simulation of larger systems by dividing work among 
multiple processors. Constructing parallel network simulators has been a research topic 
for some time [69, 76, 83]; unfortunately, successful use of such simulators has proven 
elusive for network models. Some researchers [71] have begun to investigate hybrid 
models as a technique to reduce the resources required by network models, which might 
allow larger topologies to be simulated. Various other simulators [77, 78, 81] have been 
developed in order to teach university students about both networks and about software 
development. 

While parallel simulators and hybrid models hold promise to increase the size of 
systems that can be simulated, few existing simulation research projects are motivated 
specifically to address the critique of Floyd and colleagues. Under some preliminary 
work leading up to the current study, Yuan and Mills [74] conducted a judicious search of 
a model parameter space to investigate the influence of various transport protocols on 
correlation structure in network traffic. The study, which adopted a cellular automaton 
model of a network of sources and receivers interacting within a grid topology, also 
adopted some of the invariants identified by Paxson and Floyd. Later, Yuan and Mills 
[75] converted the model to include a four-tier topology, which was used to study 
detection methods for distributed denial of service attacks within the Internet. The 
cellular automaton model, including the four-tier topology, was used to conduct 
preliminary experiments for the current study. Specifically, the model was subjected to a 
sensitivity analysis (using an approach explained in Chapter 4). Unfortunately, as 
explained in Sec. 3.1, scaling the cellular automaton model to represent a network with 
Internet-like speed and size proved computationally infeasible. 

A hybrid network simulation model [71], combining discrete events with 
continuous approximation of discrete variables, may provide an attractive alternative 
because published computational and memory requirements appear quite promising. 
Specifically, the model appears to have required about 2 hours of processor time to 
simulate 30 long-lived flows operating for 11 simulated hours in a partial topological 
model of the Abilene backbone with 10 Gbps links. The published results for the hybrid 
model indicated the scenario was infeasible using ns2. Further, the hybrid model included 
many of the alternate congestion control models we studied. On the other hand, the 
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hybrid model included only a two-tier topology with sources and receivers connected 
directly to the backbone. In addition, the hybrid model did not include the existing 
measurement and parameterization capabilities included within our cellular automaton 
model. We did not explore the computational implications of expanding the hybrid model 
to add (access and point-of-presence) tiers to the topology, to expand the number of 
sources to hundreds of thousands, to introduce the TCP connection phase, to add various 
scenarios and to incorporate addition measurement code. Based on comparing the 
published computation requirements of the hybrid model and with the measured 
computational requirements of a discrete-event simulator (see Appendix B), we conclude 
that the hybrid model warrants further investigation (as discussed below in 2.5.1).  

2.2.3 Expanded Analytical Studies 
To employ analytical methods for our study, we needed to overcome three limitations of 
existing fluid-flow models: (1) improve accuracy in modeling queue evolution in order to 
obtain realistic estimates of loss probability, (2) construct differential equation models for 
alternate congestion control algorithms under study and (3) determine how to evaluate the 
resulting models in topologies of sufficient size and complexity. We believe we can 
leverage existing fluid-flow simulators [73], solved using numerical methods, to scale 
fluid-flow models to large networks. Solving the other two problems required more 
research, but we believed we could make some progress. Unfortunately, to complete our 
study in a timely fashion we needed solutions sooner rather than later. We decided to 
investigate analytical solutions to more accurately model queue evolution and then to 
construct differential equation models for some alternate congestion control algorithms. 
These investigations, documented in Appendix A, ran in parallel with our main study. At 
a later date we could use our analytical models to repeat our current studies and compare 
the predictions obtained and the resources required. 

2.3 Selected Approach 
Lacking a sufficiently large emulation facility and without an accurate fluid-flow model 
for the congestion control algorithms under study, we had little choice but to adopt 
simulation for our study. Following recommendations from Floyd and colleagues [70, 
72], we aimed to reduce model scale and improve model quality by focusing the model 
on the study at hand, by adopting some recommended invariants, by conducting a 
sensitivity analysis of model parameters and by comparing key model behaviors with 
empirical measurements. We did not adopt ns2, or similar existing simulation 
frameworks, because the parameter spaces of such models are too large for our needs and 
because the computational and memory requirements are too costly for tractable 
simulations of systems of the size we envisioned. We also did not adopt our existing 
cellular automaton model because the computational costs made it infeasible to simulate 
networks of very high speeds and large sizes. On the other hand, the parameter space of 
our cellular automaton model was quite concise and appropriate for the studies we 
envisioned. 

We decided to convert our cellular automaton model to a discrete-event 
simulation (DES), which we call MesoNet (see Chapter 3 for a description of the 
simulator). The DES simulator proved significantly faster than the cellular automaton, 
especially as simulated network size and speed increased. As described in Chapter 5, we 
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extended MesoNet, adding six alternate congestion control algorithms to the standard 
TCP congestion control procedures. We also found it necessary to add TCP connection-
establishment procedures to the simulator. To allow exploration of flow dynamics under 
a range of network conditions, we adopted a single, heterogeneous topology for our 
study. As explained in Sec. 3.1.2, we modeled the topology after characteristics of 
existing network topologies and traits revealed by studies of topologies used by 
commercial Internet service providers. Given a concise set of model parameters, we 
applied statistically-based, experiment design techniques, as used typically in rigorous 
scientific and engineering studies. We then leveraged statistical properties of the 
experiment designs to conduct statistical analyses of response data. We say more 
regarding our approach below in Sec. 2.5, where we outline solutions (and possible 
alternatives) to five hard problems we had to solve in order to develop the details of our 
approach. First, though, we introduce the hard problems we faced. 

2.4 Hard Problems 
The approach we adopted for our study could not be developed and applied without 
devising solutions to five hard problems. We describe these problems below. 

2.4.1 Model Scale 
Simulating networks of the size and speed we envisioned presents two significant 
impediments: substantial computation and large parameter space, which combine to 
create a significant scaling problem. Models with thousands of parameters usually 
include many details. Such detailed simulators, while perhaps easy to relate to real 
systems, can require substantial computation to process each packet. The more packets 
processed the greater the computational time required for a simulation run. For networks 
of large size and high speed that are simulated over minutes or hours of operation, the 
number of packets per simulated second can prove quite high, so reducing per-packet 
processing time can substantially reduce computation demands for a given simulation 
run. A large parameter space requires simulating many runs to cover various parameter 
combinations. The computational requirements for simulating a specific combination 
multiplied by a large number of combinations can lead to an infeasible demand for 
computation. Reducing the number of runs required can substantially reduce computation 
demands for a particular simulation study. Beyond influencing computation demands, 
large parameter spaces require significant intellectual and practical effort from 
experimenters who must design and configure experiment runs. Experimenters must 
select the parameters of interest to vary for a given study. For other parameters, 
experimenters must determine fixed values for use throughout the study. Further, under a 
large parameter set, configuring parameters requires significant automation aid, such as 
databases or scripting. Even with automation, erroneous configurations can lead to 
incorrect experiment executions, which not only waste precious processing resources but 
also require significant intellectual effort and time to detect. A similar problem (see 2.4.3 
below) can arise when simulations produce a large response space. Analyzing 
multidimensional data can prove intellectually challenging and can consume substantial 
processing resources. These problems of scale should be quite familiar to experimenters 
who use network simulations.  
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2.4.2 Model Validation 
Whatever solution is adopted to reduce model scale, the resulting representation is likely 
more abstract than that provided by a typical detailed simulation model, such as ns2, and 
certainly less realistic than a deployed network. With a reduced model in hand, an 
experimenter faces the problem of establishing that the model is valid for purposes of an 
intended study. Often, experimenters compare results from two models, one more 
detailed, in order to establish confidence in a reduced model. Sometimes, experimenters 
compare predictions from simulations against predictions from widely accepted 
analytical models. Such comparisons between two models leave an uneasy feeling that 
perhaps both models might be wrong. Of course, the widely accepted model could be 
wrong and the newly created model correct, so changing the newly created model until it 
yields results aligned with the accepted model might be the wrong course. Further, even 
when two models are compared, experimenters typically consider only a small subset of 
parameter configurations. Fundamentally, when an experimenter produces a reduced-
scale model, some means must be found to determine that the model is error free and that 
the model represents valid behaviors for purposes of the intended study. As software 
developers understand, producing error-free software is quite difficult; demonstrating that 
software is without error even more so. System modeling adds on top of that hard 
problem, the challenge of demonstrating a model is valid for its intended purposes.   

2.4.3 Tractable Analysis 
One of the significant advantages of modeling a large system using simulation is that any 
conceivable response can be measured at any time. Measuring responses from an 
empirical system can be much more difficult; impossible for some desired responses. In 
an analytical model, the level of detail may be insufficient even to represent various 
behaviors one might wish to measure. The measurement advantage of simulation can 
quickly introduce two challenges: identifying which responses are significant (or 
redundant) and analyzing large volumes of multidimensional response data. The first 
challenge might be rephrased as: What responses should one analyze? The second 
challenge might be rephrased as: Over what spatiotemporal extent should one analyze 
responses? 

2.4.4 Causal Analysis 
Analyzing measurement data from large systems allows various spatiotemporal patterns 
to be discerned. In general, the patterns appear from statistical analyses applied to various 
dimensions of the model parameter space. Existence of significant patterns can be 
detected and revealed to an experimenter using statistical analyses. Such patterns suggest 
that a model behaves in particular fashion under specified conditions. An experimenter 
usually desires to understand causality underlying significant patterns. Bridging the gap 
between statistical patterns and underlying causes represents a significant challenge with 
respect to any large system, including models of such systems. 

2.4.5 Experiment Selection 
Assuming existence of a valid, scalable simulation model where data can be analyzed 
tractably and causality can be established, a remaining challenge relates to selecting 
experiments that will probe a system in a manner needed to reveal key aspects of global 
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behavior that are germane to a particular study. Should an experimenter fail to include the 
necessary parameter values and scenarios then a simulation study may miss significant 
aspects of system behavior that would arise in an analogous real system.    

2.5 Selected Solutions and Possible Alternatives 
The modeling and analysis methods we developed and applied in the current study were 
intended to provide some level of solutions for the hard problems we described above. 
Below, we describe the solutions we adopted to address each problem. The combined 
solutions to the hard problems comprise the modeling and analysis methods we used, so 
we introduce our solutions in some detail. Where applicable, we also identify potential 
alternatives that might be used to address each problem. Before discussing our solutions, 
we provide a general mathematical introduction to the modeling state-space problem. 

y1, …, ym = f( x1|[1,…,k], …, xn|[1,…,k] )

Response State‐Space Stimulus State‐Space  
n Number of inputs (i.e., stimulus factors)
k Factor range (i.e., number of values each factor can assume)
m Number of outputs (i.e., responses)

 
Figure 2-1. The Modeling State-Space Problem 

 
The mathematical transformation shown in Fig. 2-1 represents the modeling state-

space problem as a mathematical equation transforming a set of input parameters into a 
vector of responses. This equation underlies the hard problems associated with model 
scale (2.4.1) and tractable analysis (2.4.3). The equation represents a simulation model as 
a function (f) returning a set of responses (y1 to ym) given a specified combination of input 
parameters (x1 to xn). Each input factor can take on a range (k) of values, often referred to 
in the experiment design literature as levels. The state-space transformation presents few 
problems when values of n, k and m are small; however, for detailed network simulators 
the values can be large. For example, in a network model with 103 parameters, and 
assuming each parameter may be represented as a 32-bit integer1, the stimulus state space 
would comprise (kn =) (232)1000 combinations, which is on the order of 109633. Even if 
each simulation run can be made quite efficient, this is an infeasible parameter space to 
compute. The response state-space can also present a challenge when each of the m 
responses can be assigned to spatial partitions. For example, in a model with a actors 
each characterized by m responses, the response state-space becomes ma. For a model 
with 105 actors and 20 responses, the response state-space becomes 20100000. The response 
state-space can grow in other dimensions. For example, the m responses might be 
assigned to specific time intervals or to particular logical partitions. Spatial, temporal and 
logical partitions can be combined to further increase the response state-space. 

                                                 
1 Model parameters, when represented using floating point notation, may take on even more values. 
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2.5.1 Scale Reduction 
To constrain computational demands for our study, we adopted two main strategies: 
reduce the parameter space and use a two-level (or two-value) per factor orthogonal 
fractional factorial (OFF) experiment design method. Reducing the parameter space 
requires lowering the value of n, while using a two-level OFF requires reducing the 
values of both n and k. In two-level per factor experiments each parameter is assigned 
only 2 of its possible k values. Fig. 2-2 illustrates the theory underlying these strategies. 

As a first step in reducing the scale of computational demands, a domain expert 
creates a model that can be specified with a reduced number (n – r1) of input parameters. 
One practical means to achieve this step is to construct a model that includes only 
parameters germane to an intended study.  For us, this amounted to designing MesoNet 
(see Chapter 3), which can be parameterized with around 56 parameters, depending on 
how one chooses to count. Thus, assuming that a model such as ns2 requires 103 
parameters to configure the experiments we might design, our initial reduction factor was 
quite impressive (r1 = 944). Unfortunately, even with such a large reduction, the 
parameter state space remains infeasible to compute, as shown in Fig. 2-3. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 2-2. A Method to Reduce the Scale of Computational Demands 
 
As a second step in reducing computational demands, a domain expert reexamines 

model parameters to identify those that can be grouped together to represent aspects of a 
single factor. This step requires both domain knowledge and creativity. In particular 
cases, parameter grouping might be guided by knowledge of the type of experiments 
envisioned for a study. We illustrate examples of parameter grouping in Chapter 4, where 
we conduct a sensitivity analysis of selected MesoNet parameters. When planning a 
complete sensitivity analysis of MesoNet we used parameter grouping to lower the 
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parameter count to 20 (r2 = 36). As shown in Fig. 2-3, the reduced parameter space still 
requires an infeasible amount of computation. 

Having reduced n significantly, the next step involves reducing k, the range of 
values each parameter may by assigned. Here, we are guided by experiment design 
theory [89], as developed by statistical researchers and as applied in rigorous scientific 
and engineering studies [95]. A major scale reduction is achieved by lowering k to a 
small number of levels (or values), typically 2 or 3. This reduction has two positive 
effects. First, the number of parameter combinations to simulate falls substantially – to a 
number that may be computationally feasible. Second, experiment design theory includes 
procedures for specifying 2-level and 3-level designs that can be subjected to statistical 
analyses that yield fundamental insights into system behavior. For our study, we set k to 
2; as shown in Fig. 2-3, this reduces the parameter space to a point where we need to 
simulate only 106 parameter combinations. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
Figure 2-3. An Example Applying Scale Reduction to MesoNet Simulations – we use O( ) notation to 
denote “on the order of” 
 

Suppose that using MesoNet to simulate one combination of parameters for a 
specified scenario requires 8 processor hours. Further suppose that we have 48 processors 
available for our simulations. Under those assumptions, we could simulate 220 parameter 
combinations in about 20 years2 (220 runs x 8 processor-hours per run / 48 processors = 
about 1.748 x 105 hours). Obviously, we need to further reduce the computational 
demands because no one would be willing to wait two decades to learn the results of our 

                                                 
2 If 103 processors were available, then the 220 simulations could be completed in about one year, but we 
would still need to pay for the use of the processors. 
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study. We applied orthogonal fractional factorial (OFF) experiment design methods to 
further reduce n. 

To develop an OFF design, the experimenter first determines how many 
experiment repetitions are feasible. Suppose the experimenter decides to devote at most 
2.048 x 103 processor hours to our sample experiment. Since 8 processor hours are 
needed to run each simulation, the experimenter can afford to investigate only (2.048 x 
103 / 8 =) 256 different combinations of parameters. Thus, given that k = 2, the 
experimenter requires that n = 8. This means that 220 parameter combinations must be 
divided by 212, leaving only 28 combinations. In this example, as shown in Fig. 2-3, the 
reduction factor r3 is 12. 

Experiment design theorists have developed rules [89] to select which subset of 
parameter combinations to examine. The rules compose parameter combinations in a 
balanced and orthogonal form. A balanced design ensures that every factor is assigned 
each of its levels an equal number of times. An orthogonal design ensures that the subset 
of parameter combinations selected is spread evenly throughout the full set of parameter 
combinations. Further, the resulting design can be assessed precisely with regard to any 
confounding that may occur. Confounding means that given results cannot be attributed 
clearly to a main effect (i.e., single parameter) because the results might be due to 
interactions between two or more parameters. An experimenter should strive to select a 
Resolution IV design [89], where main effects are not confounded with two-parameter 
interactions; confounding between main effects and three-parameter interactions is 
usually acceptable because most systems are not driven by three- parameter interactions. 
When data analysis points to two-parameter interactions as drivers of system behavior, 
then a domain expert can usually determine which of the two is most likely. 

A Resolution IV experiment design requires a sufficient number of simulations 
(n) to estimate a leading constant, each parameter (p) and each pair of parameters (p 
choose 2). This means the example given in Fig. 2-3 requires a least 211 (n = 1 + 20 + 
190) simulations for a Resolution IV design. For a two-level design, choose the next 
higher power of 2 above n, i.e., 256 runs, which identifies the need for a 220-12 design. 
Reducing the number of simulations below this would lead to confounding between main 
effects and two-parameter interactions.  

The ultimate result of statistically based experiment design is that all experiment 
parameters (often called factors) are varied simultaneously. This powerful technique for 
reducing the search space stands in stark contrast to the approach typically adopted in 
networking simulation studies. For example, Paxson and Floyd [72] recommend holding 
all factors fixed except for one element, which becomes a single factor that is varied over 
a range during a particular simulation experiment. Varying only one factor at a time 
yields little information about overall system dynamics. Instead, such experiments 
indicate only the influence of the single varied factor given the fixed combination of 
other parameters. By varying all factors simultaneously, the system being investigated is 
examined over a much wider range of conditions. Of course, to derive useful information 
the resulting system responses must be analyzed with statistical methods matched to two-
level OFF designs. We say more about this aspect of our approach in Sec. 2.5.3. 

As shown above, reducing the parameter space of a model and applying two-level 
OFF designs can significantly reduce computation demands when simulating large 
systems. Of course, interpreting results from such experiments entails a key assumption 
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that system behavior is monotonic in regions between selected parameter values. OFF 
experiment designs will not reveal any nonmonotonicity that occurs within such regions. 
For this reason, an experimenter might wish to cover more than two levels in a design. In 
addition, the processing cost of running each simulation might require an experimenter to 
select an r3 reduction value that provides an insufficient number of runs for a Resolution 
IV design, leading to an undesirable confounding structure. Thus, there exists a tradeoff 
between the cost of running each simulation and the number of simulations that might be 
desired. 

In our study, we found that experiments with MesoNet require substantial 
computation when simulated network speeds mirror modern Internet speeds and when 
network size reaches hundreds of thousands of sources. Fortunately, though costly 
(averaging about 420 processor hours per simulation), such large simulations were not 
infeasible3 with MesoNet, as is typically the case with more detailed simulators. Further, 
we found that we could obtain similar results when simulating a network with an order of 
magnitude lower router speed and only tens of thousands of sources. The smaller scale 
simulations were much less costly (averaging about 24 processor hours per simulation). 
Even with the smaller scale simulations, simulating 256 combinations of parameters can 
require more than 6 x 103 processor hours. Given 48 processors, the necessary 
simulations can be carried out within a week. Increasing the number of processors used to 
256 would allow such simulations to be completed in about a day. Thus, smaller scale 
simulations are quite affordable and computationally feasible. Running a larger scale 
simulation experiment with 256 parameter combinations would take about 3 months 
when 48 processors are available and about 3 weeks when 256 processors are available. 
Thus, running larger simulations and more parameter combinations could be made more 
cost effective if the computation requirements for each simulation could be reduced. An 
alternative modeling method, known as hybrid systems, promises to reduce computation 
demand for network simulations. 

Lee and colleagues [71] apply a combination of continuous-time dynamics and 
event-based logic to model long-lived flows transiting a portion of the Abilene backbone. 
In addition to TCP congestion control procedures, the hybrid model includes three of the 
congestion control algorithms examined in our study. As described in Appendix B, we 
used MesoNet to replicate an experiment reported by Lee and colleagues where 30 long-
lived flows transmitted packets for 11 simulated hours. While MesoNet and the hybrid 
model obtained similar results, the hybrid model appears to require about two orders of 
magnitude less computation. Thus, for a study such as ours, a hybrid model combining 
continuous-time dynamics with event-based logic might offer a promising alternative to 
reduced-scale discrete-event simulation.  

2.5.2 Sensitivity Analysis and Key Empirical Comparisons 
To establish the validity of MesoNet for our study, we adopted two main strategies: (1) 
sensitivity analysis and (2) key empirical comparisons. Paxson and Floyd [72] 
recommend conducting a judicious exploration of a model’s parameter space. Floyd and 
Kohler [70] repeat this advice. Floyd and colleagues also indicate that such explorations 
are seldom, if ever, practiced in the network simulation community. A main motivation 
                                                 
3 Of course, the model code, the simulation framework, the underlying operating system and all required 
hardware must be highly reliable in order to run such large simulations without failures. 



Study of Proposed Internet Congestion Control Mechanisms NIST 
 

Mills, et al. Special Publication 500-282 20 

for exploring a model’s parameter space is to understand how responses change with 
combinations of input parameters. Generating such knowledge can help identify 
parameter combinations for which experiments could yield insights and can build 
confidence in the operation of a model. We implemented the aims of Floyd and 
colleagues by conducting a sensitivity analysis of MesoNet. We designed the sensitivity 
analysis (described in Chapter 4) as a 211-5 orthogonal fractional factorial (OFF) 
experiment4, which requires 64 individual simulations. We interpreted the results of the 
experiment using statistical analysis methods, which we outline in Sec. 2.5.3 and explain 
in detail in Chapter 4. Given results from a 211-5 OFF experiment, a domain expert 
determined if the results were as expected for a valid network model. In the case of 
unexpected results, the domain expert established whether the new insights were 
legitimate or whether the model exhibited errors. The sensitivity analysis of MesoNet 
uncovered both legitimate and illegitimate unexpected results. Where illegitimate results 
were identified, MesoNet was corrected and the sensitivity analysis was conducted again. 
In the end, the sensitivity analysis helped us to reduce the parameter space in later 
experiments so that we could focus on the top handful of factors influencing model 
behavior. In addition, related analyses (see Sec. 2.5.3) allowed us to reduce the response 
space we needed to examine in subsequent experiments. And, of course, the sensitivity 
analysis increased our confidence in MesoNet as a simulation platform on which to base 
further experiments. 

One shortcoming of our sensitivity analysis arose from limiting parameter settings 
to only two levels. As mentioned earlier, behaviors might not be monotonic between the 
chosen levels. In addition, outside the range of the chosen levels a model might not 
exhibit the same behaviors. To address these shortcomings to some extent, we conducted 
a second sensitivity analysis where we chose different values to represent the two levels 
for each parameter. We document this second sensitivity analysis in Appendix C. We 
also took further steps to explore MesoNet. Some researchers [71] had conducted a 
hybrid simulation aimed at replicating findings expected from accepted analytical 
insights into TCP flows. As described in Appendix B, we repeated this published 
experiment using MesoNet and we compared our results to the published results. 
Demonstrating that MesoNet could reproduce findings predicted from accepted analytical 
models also raised our confidence. 

Establishing MesoNet as an effective simulator of TCP flows transiting a network 
topology was a necessary, but insufficient, validation for the experiments we intended to 
conduct. Since we added six proposed alternate congestion control algorithms into 
MesoNet, we needed some means to establish that our models correctly implemented the 
algorithms. Fortunately, in a recently published paper, researchers [67] reported some 
empirical results from studying five of the six algorithms in a dumbbell topology. 
Another paper [66] provided empirical results for the sixth algorithm in a similar setting, 
                                                 
4 The actual process involved multiple repetitions of sensitivity analyses, which enabled us to eliminate 
some model parameters from our experiments. In addition, we chose to fix selected parameters because 
they were not germane to the issues we intended to study. This is the reason we focused our sensitivity 
analysis on 11 parameters instead of 20. In later work we conducted a full sensitivity analysis using all 20 
parameters in MesoNet. This later sensitivity analysis used a 220-12 OFF design, which required simulating 
256 parameter combinations. This later sensitivity analysis revealed that MesoNet is driven primarily by 6 
or 7 of the 20 model parameters. This result confirmed our choice to use about 32 conditions for each of 
our experiments, described in Chapters 6-9. 
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though with different parameter combinations. Since MesoNet could be configured with 
various topologies, we were able to simulate parameter combinations from the empirical 
study within a dumbbell topology. As described in Chapter 5, we compared behaviors 
generated from our MesoNet simulations against the published empirical results. In fact, 
we continued to improve our models of the alternate congestion control algorithms until 
the simulated behavior generated by MesoNet matched the empirical behavior reported in 
the literature. By making these key empirical comparisons, we gained confidence that we 
had correctly simulated the congestion control algorithms under study.    

2.5.3 Statistical Analysis Methods 
By adopting two-level OFF designs as the basis for all of our experiments, we enabled 
the application of numerous statistical analyses that could provide insights into 
relationships between patterns of input parameters and observed responses. We explain 
the analysis methods we used in detail at each point in our study where we apply them 
(see Chapter 4 and Chapters 6 through 9). Here, we introduce the key analysis methods in 
outline form, focusing on the major contributions of each method. As a general 
contribution to tractable analysis, all methods we adopt either reduce the dimension of 
multidimensional data, concisely summarize multidimensional data in succinct form or 
both.  
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Figure 2-4. Reducing the Space of Model Responses using Correlation and/or Principal Components 
Analysis 
 

One statistical method we adopted was correlation analysis, which we used to 
reduce the dimension of multidimensional response data. Simulation models provide 
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experimenters with the possibility to measure many different system responses. 
Correlation analysis can identify where only a subset of responses need be analyzed in 
order to portray system behavior. As an alternate or complementary approach one could 
also apply principal components analysis. Fig. 2-4 illustrates the general idea behind 
these two analyses. Given a set of m responses, principal components analysis can find 
that a lower dimension m – d1 can capture the variation in response data. Alternatively, 
correlation analysis can suggest that fewer responses m – d2 can suitably represent 
variation in system behavior. Given two different proposals for reducing the response 
space of a model, a domain expert may then choose which responses to analyze for 
subsequent experiments. Chapter 4 provides a specific example where we applied these 
methods to MesoNet. 

Another reason to apply correlation and principal components analyses is to help 
validate a model. A domain expert likely has expectations that selected responses mirror 
similar aspects of system behavior. Correlation analysis can provide clusters of similar 
responses that an expert can verify. Surprising correlations may indicate errors in a model 
or else new findings. Similarly, a domain expert may have expectations about general 
network characteristics that drive behavior. By examining results from a principal 
components analysis, an expert can verify these overall aspects of system behavior, as 
represented by a model. 

We also adopted a 10-step technique developed at NIST [92] to support analysis 
of data generated by two-level experiments designed using OFF. Each of the 10 steps 
produces a graphic (or plot) aimed at concisely summarizing some aspect of response 
data. The plots include: (1) ordered data plot, (2) scatter plot, (3) main effects plot, (4) 
interaction effects matrix, (5) block plot, (6) Youden plot, (7) |effects| plot, (8) half-
normal probability plot of |effects|, (9) cumulative residual standard deviation plot and 
(10) contour plot of two dominant factors. We explain each of the plots in detail in 
Appendix D, and we apply selected plots in Chapter 4 to support of our sensitivity 
analysis of MesoNet. We also demonstrate in Chapter 4 how two-level OFF designs can 
aid other exploratory data plots to reveal insights about system behavior. 

As demonstrated in Chapters 6 through 9, we used cluster analysis in many of our 
experiments to provide a concise summary of multidimensional response data. Cluster 
analysis computes multidimensional distances between sets of responses associated with 
specified parameters, or combinations of parameters, and then groups the combinations 
based upon similarities in distances. For example, we might cluster responses associated 
with each congestion control algorithm for each combination of experiment parameters 
(i.e., experiment condition) to produce a set of dendrograms5, one per condition (e.g., Fig. 
6-4). Clustering can help us identify patterns among responses. For example, we might 
find that two algorithms always cluster near each other (i.e., have similar responses). Or 
we might find that three different algorithms cluster together only under selected 
conditions. We sometimes combine cluster analysis with other methods to reveal 
additional patterns. For example, we use an ordered data plot to classify the relative 
levels of congestion associated with each condition and then overlay the classification 
onto a set of clustering dendrograms (e.g. Fig. 6-8) to identify how congestion level 
influences clustering. 
                                                 
5 A dendrogram is a tree diagram frequently used to depict the arrangement of clusters, as produced by 
some hierarchical clustering algorithm. 
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In addition to clustering, we also used time series plots (e.g. Fig. 6-6) to 
investigate particular response dimensions highlighted by other analyses. Given a time 
series plot, we could determine if specific responses can be adequately summarized with 
an average value over particular time periods of interest. In addition, comparing time 
series of aggregate flow states allowed us to see how changing parameter combinations 
influence the pattern of flow states. We also applied time series of selected responses in 
selected situations (i.e., time periods and conditions) to investigate particular detailed 
behaviors. 

Aside from the standard available statistical analyses, we combined various 
statistical methods into custom analysis visualizations aimed at revealing patterns for our 
particular experiments. We constructed such custom visualizations to provide concise 
summaries of multidimensional response data. We used a specific visualization (e.g., Fig. 
6-9), which we designated a detailed analysis plot, to compare residuals about the mean 
(y axis) for each congestion control algorithm under each experimental condition, sorting 
the conditions on the x axis in increasing magnitude of difference. We generated one 
such plot for each response of interest. We labeled each condition (x axis) with a 
multidimensional set that included: experiment factor settings, algorithm identifier, order 
of magnitude in dispersion among the residuals, percentage difference in absolute 
response and a discriminating statistic derived from a test for outliners. We introduce and 
explain the details of our custom analysis plots in Chapter 6. We also used custom plots 
in Chapters 7 through 9. 

Though each custom detailed analysis plot provided a significant amount of 
information about a single response, the plots, when taken together, obscured any overall 
pattern that might arise across responses. To overcome this limitation, we designed a 
second custom visualization, which we called condition-response summaries – introduced 
in Chapter 6 and applied also in Chapter 7. Condition-response summaries (for example 
see Fig. 6-10) are constructed as matrices of responses (columns) by conditions (rows), 
where each cell is either blank or contains the identifier assigned to a specific congestion 
control algorithm under test. To generate a condition-response matrix, we analyzed 
(automatically) each detailed response to identify cases where some algorithm was 
identified as a significant outlier under the corresponding combination of parameters. In 
such cases, we placed the identifier assigned to the outlying algorithm into the 
corresponding condition-response cell of the summary matrix. If the algorithm was a high 
outlier then the identifier was colored green. If the algorithm was a low outlier then the 
identifier was colored red. Further, we could apply filtering so an outlier would be 
included in the summary only where additional criteria were satisfied. For example, as 
shown in Fig. 6-11, we might specify that the outlier must show at least a 10% absolute 
difference from the mean of all responses for the same condition. Condition-response 
summaries enabled us to identify patterns where algorithms became outliers under 
specific conditions.  

We generated several other custom visualizations, introduced in Chapter 8 and 
also applied in Chapter 9, to support our analyses comparing relative goodput6 of TCP 
flows and competing flows running alternate congestion control algorithms. One 

                                                 
6Goodput is application level throughput, i.e. the number of useful packets per unit of time forwarded by 
the network from a certain source to a certain destination, excluding protocol overhead, and excluding 
retransmitted data packets. 
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visualization (e.g. Fig. 8-34) comprised a set of scatter plots (one per alternate congestion 
control algorithm) of goodput on alternate flows (x axis) vs. goodput on TCP flows (y 
axis), where each data point represented the goodputs associated with a specific 
combination of input parameters for a particular flow group7. We used these plots to 
identify algorithms that outperformed competing TCP flows. We augmented the scatter 
plots with a set of bar graphs (e.g., Fig. 8-35), one per combination of input parameters, 
ordered by increasing congestion. Each bar graph contained seven bars, one per alternate 
congestion control algorithm. One end of the bar represented the higher of the average 
goodputs (either on TCP flows or alternate flows) and the other end represented the 
lower. The bar was colored green when the alternate algorithm gave flows higher 
goodput and colored red when TCP flows gave higher goodput. These bar graphs enabled 
us to discern patterns associated with conditions under which specific alternate 
congestion control algorithms gave better goodputs than TCP. Finally, we designed a 
custom visualization (e.g., Fig. 8-12), which we called rank matrices8, to explore patterns 
associated for relative goodput among alternate congestion control algorithms and among 
TCP flows competing with alternate algorithms under the same conditions. We generated 
a pair of rank matrices for each alternate congestion control algorithm. One matrix in the 
pair analyzed flows running the alternate algorithm and the second matrix in the pair 
analyzed TCP flows competing with the alternate algorithm. Each matrix intersected flow 
groups (columns), sorted by decreasing file size, with conditions (rows), sorted by 
increasing congestion. Each cell in a matrix contained a number representing the relative 
rank in goodput when considering all alternate congestion control algorithms under the 
same flow group and combination of input parameters. We used rank matrices to 
compare goodput among the alternate congestion control algorithms and to judge their 
relative influence on competing TCP flows. 

2.5.4 Data-Supported Domain Expertise 
The statistical analysis methods we adopted proved quite effective at identifying overall 
patterns from summarizations of experiment data. Further, the analysis methods that 
incorporated level settings for experiment input parameters could sometimes yield 
information that suggested causality. Unfortunately, not all of the statistical analysis 
methods we adopted considered input parameters. Further, in many cases specific input 
parameters did not directly identify causes. For example, while we inferred that varying 
levels of congestion in our simulations caused behavioral differences with respect to 
some measured responses, various parameter combinations tended to influence observed 
congestion. Thus, we sometimes established causality by classifying combinations of 
parameters with respect to responses indicating congestion (e.g., packet loss or 
retransmission rates). In that way, we could match patterns in other response data to 
changes in congestion. A similar approach could be used to classify combinations of 
parameters with respect to other macroscopic patterns, such as delay and demand from 
packets or flows. Domain expertise was required to decide which larger patterns to 
classify and which responses represented such patterns. Similarly, results from statistical 

                                                 
7 A flow group is defined by three attributes: the relative potential for congestion on a path through the 
topology, the file size and the maximum achievable goodput on the path. 
8 Rank matrices report the relative ordering from lowest (1) to highest (7) goodput achieved by a particular 
congestion control algorithm when compared against the competing congestion control algorithms. 
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methods, such as correlation and principal components analyses, provided a basis for 
patterns on which domain experts needed to superimpose interpretations. 

  Establishing causality in our study always required a domain expert to interpret 
data. In many cases, the summarized data we used for statistical analyses was insufficient 
to establish causality. For this reason, we instrumented our simulation model to capture 
data at more detailed levels. For example, most responses reported by MesoNet were 
captured as time series9, so that we could observe temporal evolution. In addition we 
were able to capture spatiotemporal evolution by producing time series of many 
characteristics (e.g., queue size, utilization, losses and count of transiting flows) for every 
router in our simulated topology. We did not capture spatiotemporal evolution for every 
source or flow. The reason we did not is twofold: (1) the model could potentially simulate 
hundreds of thousands of sources and (2) billions of flows could come and go over the 
course of a simulation. In order to gather insight into detailed behavior of flows and 
sources, we took two steps. First, we enabled experimenters to define long-lived flows 
between specified pairs of routers. The experimenter also specified when each long-lived 
flow would start and stop. We coded MesoNet to capture detailed temporal information 
(such as congestion window size, goodput, window increases, losses and timeouts) for 
each long-lived flow. Second, we enabled experimenters to capture message and state 
changes for a random sample of flows. We also instrumented MesoNet to capture 
temporal evolution with respect to logical classifications such as flow types. Finally, we 
included the option for an experimenter to capture time series of packet counts on 
selected links in a simulated topology. We explain these detailed measurements in 
Chapter 3. 

Given patterns revealed by statistical analyses and armed with detailed temporal 
and spatiotemporal data captured from the same simulations, we investigated causality 
using the scientific method. When statistical analyses revealed a significant pattern, we 
developed a hypothesis regarding the cause. We then used detailed data to test the 
hypothesis; usually positing evidence that should exist if the hypothesis proved correct. If 
detailed data provided supporting evidence, then we considered the hypothesis 
confirmed. Where detailed data did not provide supporting evidence, we developed a 
different hypothesis and sought supporting evidence among the detailed data. For a given 
pattern of interest, we iterated the approach until we found a hypothesis supported by the 
data. For the patterns investigated in the current study we were able to find detailed data 
providing evidence of causality. 

In addition to supporting the findings in the study, our approach to establishing 
causality also proved useful in identifying occasional errors within our simulation. For 
example, during one experiment, statistical analysis of summary data revealed that under 
lightly loaded conditions one of the alternate congestion control algorithms exhibited 
both a higher retransmission rate and a larger average congestion window10 size. These 
two patterns seemed unlikely to occur simultaneously, so we needed to determine a 
cause. Here, we adopted an exploratory approach. We turned to detailed data mapping 
temporal evolution of average congestion window size for a particular flow type under a 

                                                 
9 Data subjected to statistical analyses were derived from summarizations of time series captured by the 
simulation model. 
10 Congestion window defines the number of packets that may be sent prior to receiving an 
acknowledgment. A larger congestion window generally means a higher potential goodput. 
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specific combination of conditions. We compared related time series for eight congestion 
control algorithms. In seven of the algorithms, the temporal evolution of the average 
congestion window was flat. For the eighth algorithm, congestion window increased 
linearly with time. The eighth algorithm was the same algorithm identified by the 
statistical analysis. The comparison of time series indicated that something was wrong 
with respect to congestion window adjustment in the eighth algorithm. Armed with this 
information we examined the specific temporal evolution of the congestion window for a 
long-lived flow managed by each of the algorithms under the same conditions. 
Comparing these time series revealed that, early in the flow’s life, the offending 
algorithm increased the congestion window much more quickly than the other algorithms. 
Detailed examination of the related time series identified the exact time when the 
incorrect algorithm began its unexpectedly sharp rate of increase in the congestion 
window. The time was coincident with the point where the flow had reached the initial 
slow-start threshold, which initiated congestion avoidance procedures even in the absence 
of a loss. Examination of the related code revealed that the model failed to record the 
time of the transition into a variable intended to hold the time of the last congestion 
event. After correcting the error, the experiment was rerun and the results (both summary 
and detailed) were compared with the previous erroneous results, which established that 
the cause had been identified and corrected. 

2.5.5 Domain Expertise and Incremental Design 
We adopted an incremental approach to experiment selection. We relied on domain 
expertise to design the initial experiment (described in Chapter 6). Designing an 
experiment involves three main activities: (1) deciding which input parameters to vary 
and which input parameters to fix, (2) selecting values for both the variable and fixed 
input parameters and (3) specifying any spatiotemporal scenario embodied within the 
experiment. In deciding which input parameters to vary and fix, we were guided initially 
by findings from the sensitivity analysis of the simulation model. The factors that most 
influenced model behavior were selected as input variables for the first experiment; less 
influential factors were assigned fixed values. In selecting values for fixed and variable 
parameters, we were guided by our understanding of networks, by the intended aims of 
the study and by results from the sensitivity analysis. For the initial experiment, we 
identified an interest in investigating: (1) how congestion control algorithms behave 
under normal Web-browsing traffic, (2) how congestion control algorithms respond to the 
onset of heavy spatiotemporal congestion caused by a period of large file transfers and 
(3) how well congestion control algorithms recover as congestion eases when traffic 
transitions back toward normal Web-browsing. This naturally led to an experiment 
scenario encompassing three separate time periods. In addition, we wished to show that 
MesoNet could simulate networks of significant speed and size. This led to selecting 
parameters to simulate a large, fast network. To investigate how congestion control 
algorithms behave on various types of paths within a network, we constructed a simulated 
topology that permitted heterogeneity in network paths. 

The design for the second experiment (described in Chapter 7) was influenced by 
two main factors: (1) determining whether similar findings (to the first experiment) could 
be obtained when simulating a smaller, slower network and (2) investigating the 
influence of the initial slow-start threshold. Given these incremental objectives, we 
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simply repeated the first experiment while specifying lower values for network speed, 
network size and initial slow-start threshold. 

After reflecting on results from the first two experiments, we decided to extend 
the range of simulated user traffic in the third experiment (described in Chapter 8). This 
decision tests the intended purpose of the alternate congestion control algorithms: to 
improve user performance on large files. We specified four sizes for user flows: 
increasing from Web objects to documents to service packs to movies. Of course, users 
could transmit such files over paths with various congestion profiles, and constrained by 
the maximum interface speed of a source or receiver. For this reason, we introduced new 
code to measure flows in groups, based upon three dimensions: (1) file size, (2) network 
path type and (3) interface speed. This enables goodputs to be compared with respect to 
flows sharing similar characteristics. Given that the previous two experiments exercised 
the algorithms under relatively heavy congestion, we also decided to significantly reduce 
overall congestion in the parameter combinations specified for the third experiment. We 
eliminated variation in temporal congestion; the scenario considered the network 
operating under the same traffic mix for a single, one-hour time period. Spatial 
congestion could still arise due to many flows transiting particular areas of the network, 
but the overall level of congestion was much reduced from previous experiments. To 
investigate the influence of various alternate congestion control algorithms on competing 
TCP flows, we decided to include a mix of flows: some operating under TCP and others 
operating under one of the alternative algorithms. To represent a network that might be 
moving incrementally toward replacing TCP, we introduced a new model parameter and 
selected two settings: (1) more TCP flows and (2) more alternate flows. Finally, because 
the first two experiments suggested that the initial slow-start threshold exerted significant 
influence on network behavior, we chose to replicate the third experiment twice: once 
with a high initial slow-start threshold and once with a low initial slow-start threshold. 

After reflecting on results from the third experiment, we decided on a fourth 
experiment (described in Chapter 9) to increase the size and speed of the network by an 
order of magnitude and to retain other parameters from the third experiment. This 
decision reflects two main purposes: (1) to investigate behavior of alternate congestion 
control algorithms under networks of speed and size comparable to modern Internet-
based networks and (2) to demonstrate that simulating large, fast networks with large 
files may be computationally feasible under MesoNet. Of course, the computational 
requirements proved substantial, so we chose to repeat only one instance of the third 
experiment: the case with a high initial slow-start threshold. The choice of a high initial 
slow-start threshold was motivated by desire to focus on the influence of loss/recovery 
procedures in the alternative congestion control algorithms. 

Only a domain expert can decide on the specific experiments to run and the 
parameters and values to fix and vary. No general method exists for making these 
decisions. By designing experiments incrementally, the motives and results of preceding 
experiments can be considered when selecting the aims and designs for subsequent 
experiments.   

2.6 Conclusions 
In this chapter, we described the motivation underlying our goal to develop and evaluate 
a coherent set of methods that can be applied to understand behavior in large distributed 
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systems. We introduced a challenge problem: comparing alternative congestion control 
algorithms proposed for the Internet. We described and critiqued current state-of-the-art 
approaches adopted by researchers to compare congestion control algorithms. We 
outlined how our research aims to advance the state of the art. We considered several 
approaches that might be used to achieve our intended advances. We described the 
approach we developed, which required solving five hard problems. We explained the 
solutions we adopted to address each problem. In the remainder of this study, we use the 
challenge problem to develop and evaluate our methods. 

While the current study investigates a specific challenge problem, the methods we 
apply should be generally applicable to a wide array of large distributed systems. 
Discrete-event simulation (DES) is applied to study a diverse range of scientific and 
engineering problems. Though DES requires substantial computation to represent large 
systems, computing power is becoming more cost-effective as system designers adopt 
multi-core, multiprocessor (MCMP) designs. Orthogonal fractional factorial (OFF) 
designs have a long history of application in rigorous scientific and engineering studies. 
Further, OFF experiment designs construct simulation runs that each considers a 
specified combination of input parameters. Such designs provide a good match for 
MCMP computer systems because each simulation can be run in parallel. Thus, the more 
processors available, the faster the simulation campaign can be completed. The statistical 
analysis methods we adopted are largely independent of the details of specific system 
models. Even our custom visualizations are based on general analysis approaches. Of 
course, the methods we developed and applied in the current study have limitations that 
must be considered. We discuss these limitations in Sec. 10.2, where we evaluate the 
methods we used to compare alternate congestion control algorithms.  
 



Chapter 3 – Description of MesoNet  
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3 Description of MesoNet 
MesoNet is a medium-scale (i.e., mesoscopic) packet-level simulator, which represents 
transport flows that regulate the generation of packets, routers that queue (or discard), 
forward and transmit packets, and links that subject packets to propagation delays. 
MesoNet achieves scale reduction by eliminating packet sizes (i.e., expressing capacities 
in terms of integral packets) and by simplifying routers to share forwarding capacity 
across all attached outgoing links. Each backbone router contains a single, drop-tail 
queue of finite length. Each lower-level router contains two, finite-length, drop-tail 
queues – one for packets moving toward the network core and one for packets moving 
toward the network edge. These simplifications prevent MesoNet from providing precise 
quantitative estimates but enable qualitative understanding of relationships driving 
behavior in networks of reasonably large size: hundreds of routers transporting hundreds 
of thousands of flows. In what follows, we explain the structure of MesoNet and then 
describe how to configure the model for particular simulations. We also define 
measurements that the model can produce, including the ability to provide detailed traces 
of flow state and packet exchanges.  We close with a brief discussion of how MesoNet is 
coded in SLX [84-85], a discussion intended to aid those who wish to review the model’s 
source code, which is freely available from the authors. 

3.1 Model Structure 
MesoNet was motivated by finite-element, discrete-time (FEDT) models, also called 
cellular automata (CA) models [74], which are often used by physical scientists when 
attempting to understand general relationships that drive spatiotemporal evolution in 
complex physical systems, such as collections of particles and structural arrangements of 
chemicals in materials. In CA models, the state of each element is updated at each 
discrete time step. MesoNet was originally designed and implemented as a CA model. In 
this form, MesoNet worked fairly well for networks of limited size (on the order of up to 
3 x 104 sources) and forwarding speed (on the order of 13 million packets per second). 
When MesoNet simulated networks of larger size (hundreds of thousands of sources) and 
faster speed (hundreds of millions of packets per second), the CA modeling foundation 
proved quite inefficient. Simulating 1.5 million time steps of network operation could 
take more than two weeks on contemporary (circa 2007) PC-based servers. A CA model 
can require substantial useless processing when elements within the model have little to 
do for relatively long periods of simulated time. While the CA version of MesoNet was 
constructed as efficiently as possible, expanding the size and simulated speed of model 
elements produced a model with too much overhead. Ultimately, for models of a size and 
speed of interest for the studies reported in this document, the CA version of MesoNet 
needed about 5 CPU seconds to simulate 6 time steps of network operation. 

MesoNet was subsequently recast into a discrete-event simulation (DES) model 
[94]. This means that model elements (i.e., all elements except for simulated flows and 
packets, which are transient) persist for the duration of the simulation and that the state of 
each model element is updated at varying time intervals dictated by the global sequence 
of events, where each event is generated by some model element. A DES model skips 
over idle time and processes only when events occur. As a result, processing speeds 
increase and the increase (over the CA version of MesoNet) increases with model size 
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and simulated network speed. For models of a size and speed used in the current study, 
the DES version of MesoNet needed about 5 CPU seconds to simulate 26 time steps of 
network operation. Thus, 1.5 million time steps of simulated network operation could be 
computed in about 4 days (instead of 16 days). To achieve this speedup, the DES version 
of MesoNet requires about double the memory of the CA version.   

In what follows, we introduce the six fundamental elements of MesoNet and then 
describe how these elements are structured into a simulated network topology. We also 
introduce our representation of simulated packets, which are the mechanism through 
which MesoNet elements interact. Packets are originated by sources and receivers, flow 
through a topology of routers and links and then cease to exist. We provide with a brief 
discussion of our DES model, including one means to relate abstract time to the typical 
notion of real time in networks. 

3.1.1 Model Elements 
The persistent elements of MesoNet interact through two types of transient elements: 
packets and flows. Packets are the fundamental messages that move among the model’s 
persistent elements. Flows are collections of packets that move between specific sources 
and receivers over a defined time period. Flows then represent logically related 
spatiotemporal sequences of packets. The operation of each flow is controlled jointly by 
three elements: a source, a receiver and an access router (to which the source is attached). 
Each source generates data packets, subject to various constraints. Each receiver 
generates acknowledgment packets as required to indicate reception of expected data. 
Each receiver also generates negative acknowledgment packets to indicate that expected 
data was missed. Access routers update appropriate state variables for subordinate 
sources based upon information in arriving acknowledgments and negative 
acknowledgments. Access routers, point-of-presence (POP) routers and backbone routers 
manage the forwarding of packets. The simulated propagation of packets over distance is 
achieved through backbone links. Below, we describe the detailed operation of each of 
these element classes. 
 
3.1.1.1 Sources. MesoNet sources represent user behaviors associated with data sources. 
Sources alternate between ON and OFF periods. During each ON period, a source 
generates data packets under regulation of congestion control rules implemented by a 
specific, simulated transport protocol. During each OFF period, a source simply waits for 
simulated time to advance (an exponentially distributed value) to the beginning of the 
next ON period. The alternation of a source between ON and OFF periods simulates a 
user surfing the Web and downloading selected files of interest. Initially, sources are 
placed into the ON state with a specified probability. Sources that start in the OFF state 
are scheduled to enter the ON state at some random time after the model starts execution. 

 Upon entering the ON state, a source selects a file size, which designates the 
number of data packets to transfer to a receiver. The source remains in the ON state until 
the receiver has acknowledged the required number of data packets. The file size is 
selected from a distribution (usually a Pareto distribution with a designated mean and 
shape) that represents the aggregate size of objects that might typically be downloaded to 
display a Web page. With some probability, a given file size is multiplied by a factor, 
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which represents the situation where a Web-surfing user decides to download a particular 
file (e.g., document, service pack or movie). 

After selecting a file size, a source selects a specific receiver with which to 
exchange the file. The source selects a receiver associated with a different backbone 
router than the source. This ensures that each simulated flow will transit the network 
backbone. Each eligible backbone (first-tier) router has a uniform probability of being 
selected. Once a backbone router is selected, the source chooses among one of the 
second-tier routers beneath the backbone router. For this selection, the probability of 
choosing a particular second-tier router is proportional to the number of receivers 
encompassed by each eligible router. If a selected second-tier router is a point-of-present 
(POP) router, then there will be third-tier (access) routers beneath it. In this case, the 
source selects a specific access router. For this selection, the probability of choosing a 
particular third-tier router is proportional to the number of receivers encompassed by 
each eligible router. Once a specific access router is determined, the source chooses any 
idle receiver encompassed by the access router. If no receiver is idle, then the source 
conducts another selection process, beginning with selection of a backbone router. The 
selection process continues until the source finds an available receiver. 

After selecting a receiver, a source initiates a connection process, intended to 
simulate the establishment of transmission control protocol (TCP) flows [5, 8-9]. Without 
including a connection process, the model would tend to generate congestion patterns 
inconsistent with real TCP traffic, which must establish a connection before attempting to 
exchange data. MesoNet simulates a two-way handshake, with behavior patterned after 
TCP implementations deployed in Microsoft Windows™ operating systems [11]. The 
source sends a SYN packet and then waits 3 x 103 time steps for a connection to be 
established. If a connection is not established, then the source sends a second SYN and 
waits 6 x 103 time steps for a connection to be established. If a connection is not 
established, then the source sends a third SYN packet and waits 12 x 103 time steps for a 
connection to be established. If no connection is established after 21 x 103 time steps, 
then the connection is declared to have failed and the source enters the OFF state after 
selecting the next time for the source to reenter the ON state. 

After successfully establishing a connection, a source enters the CONNECTED 
state and begins to transfer data packets. Upon initially entering the CONNECTED state, 
a source checks the time step and flow class (see 3.1.2.3 below) to determine whether the 
file size should be increased. MesoNet permits qualified flows to be designated as jumbo 
flows during particular time periods. The size of a jumbo flow is multiplied by an 
additional factor, intended to simulate the exchange of large data sets between research 
organizations. Upon transferring the first data packet of a file, the flow state is initialized 
– consistent with requirements of the particular transport protocol used on the flow. For 
all flows, both the congestion window and slow-start threshold are set to initial values 
and the flow is placed into the SLOW-START phase. The flow also establishes an initial 
estimate for the smoothed round-trip time (SRTT) between the source and receiver. This 
initial estimate is derived from the network topology used in the simulation (see 3.1.2 
below). The first packet is transferred to the access router that encompasses the source. If 
the incoming queue in the access router is full, then the data packet is dropped. 

After transferring the initial data packet of a flow, a source enters its main 
processing mode that attempts to transfer data packets whenever permitted and until all 
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required data packets have been sent. The source maintains a retransmission timeout 
(CRTO) that allows it to recover from situations where required feedback does not arrive. 
The first step of processing is to determine if the retransmission timer has expired. If so, 
following rules associated with a specific transport protocol, the source reduces the slow-
start threshold and resets the congestion window to its initial value. The source also 
doubles and resets the retransmission timeout and then reenters the SLOW-START 
phase. 

Before sending additional data packets, a source determines how many data 
packets it may send. Roughly, this is the congestion window minus the number of data 
packets sent but not yet acknowledged by the receiver. Of course, the number of data 
packets to be sent must also be bounded by the file size for the flow. If any data packets 
may be sent, then the source transfers one data packet to the access router that 
encompasses the source. If the incoming queue in the access router is full, then the data 
packet is dropped. Sending multiple data packets requires multiple invocations of a 
source. Thus, the number of packets that a source may send per time step is limited by the 
source’s capacity (in packets per time step, or ppts), which is established by a 
configuration parameter (see 3.2.4 below).        
 
3.1.1.2 Receivers. MesoNet receivers are responsible for sending positive and negative 
acknowledgment packets as directed by entries in an incoming queue. In MesoNet, each 
data packet associated with a flow is assigned a monotonically increasing (integer) 
sequence number. Acknowledgement (ACK) and negative acknowledgment (NAK) 
packets also contain a sequence number that identifies the sequence number of the next 
data packet expected by a receiver. In MesoNet, packets flow along a fixed route; thus, 
packets may be lost but not reordered. For this reason, the sequence numbers of packets 
on a flow can continually increase and still indicate packet losses and receptions. When a 
data packet arrives with an expected sequence number then an ACK packet should be 
sent with the next sequence number. When a data packet arrives with an unexpected 
sequence number then a NAK packet should be sent with the next sequence number. 
When a source receives either an ACK or a NAK, this means that a receiver got a data 
packet, though perhaps not the expected data packet. Thus, by counting the number of 
ACK and NAK packets from a receiver, a source can determine how many data packets 
were received. Data packets lost before reaching a receiver or ACK and NAK packets 
lost before reaching a source will cause a source to send additional data packets, which 
are retransmissions.  

    The processing of a receiver is quite simple. If there are no entries in its queue, 
then the receiver does nothing. If there are entries in its queue, then the receiver removes 
the first entry and generates an outgoing SYN+ACK, ACK or NAK packet as indicated. 
The outgoing packet is given to the access router associated with the receiver. If the 
incoming queue of the access router is full, then the packet is discarded. Sending multiple 
ACK or NAK packets requires multiple invocations of a receiver. Thus, the number of 
packets that a receiver may send per time step is capped by the receiver’s capacity (in 
ppts), which is established by a configuration parameter (see 3.2.4 below). 
 
3.1.1.3 Access Routers. Access routers are the most complex elements of a MesoNet 
model. Each access router has two queues: one for packets bound up toward the network 
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core and one for packets bound down toward sources and receivers. At each invocation, 
an access router processes at most one packet, alternating between the up and down 
queues. If no packet is available, then the access router simply does nothing. Access 
routers are also responsible for three roles: (a) forwarding outgoing packets from sources 
and receivers toward the network core, (b) processing incoming SYN and data packets on 
behalf of subordinate receivers, and (c) processing incoming SYN+ACK, ACK and NAK 
packets on behalf of subordinate sources. Each of these roles is addressed in turn. 

If a packet is outbound toward the network core, then the access router removes 
the packet from the up queue and finds the next-hop router (either a POP router or a 
backbone router) and forwards the packet to that router. If the incoming queue of the 
destination router is full, then the packet is discarded. 

If a packet is inbound toward the network edge, then the router removes the 
packet from the down queue and applies processing that depends upon the packet type. If 
the inbound packet is a SYN, then the access router creates an entry for the destination 
receiver requesting generation of a SYN+ACK and places the entry into the receiver’s 
work queue. If the inbound packet is a SYN+ACK, then the access router changes the 
phase of the destination source to CONNECTED. If the inbound packet is a data packet, 
then the access router compares the packet sequence number to the sequence number 
expected by the receiver. If the sequence numbers match, then the access router creates 
an ACK entry and places it into the work queue of the destination receiver. If the 
sequence numbers do not match, then the access router creates a NAK entry and places it 
into the work queue of the destination receiver. The access router also updates the 
sequence number of the destination receiver to be one greater than the sequence number 
in the received data packet. 

If the inbound packet is an ACK or NAK packet, then the access router updates 
the destination source state to reflect the feedback. First, the access router decrements the 
number of data packets that remain to be sent on the flow. If no more data packets remain 
to be sent, then the source is placed into the OFF state and a time is selected for the 
source to return to the ON state. If the inbound ACK or NAK is an interim packet in the 
flow, then the access router updates the SRTT and retransmission timeout for the source. 
The access router also sets the highest sequence number acknowledged for this flow to be 
the sequence number in the ACK or NAK. If the sequence number in the ACK or NAK is 
lower than a sequence number recorded when the last NAK was received for the source, 
then the remainder of the feedback processing is skipped because the packet provides 
outdated information. The feedback processing that remains is to update the state of the 
source’s congestion control variables (notably the congestion window and slow-start 
threshold) based on (a) packet type (ACK or NAK), (b) current state of the congestion 
control variables, and (c) rules of the specific congestion control algorithm being 
simulated for the flow associated with the packet. 

MesoNet increases the congestion window identically for all flows for which the 
congestion window is below the slow-start threshold. The procedures adopted correspond 
to limited slow-start, as suggested by Floyd [7]. Upon receiving an ACK, if the 
congestion window is below some MAX_SS_THRESHOLD, then the congestion 
window is increased by one, which amounts to an exponential increase. If the congestion 
window exceeds MAX_SS_THRESHOLD, then the congestion window (cwnd) is 
increased by 1/(cwnd/(0.5 x MAX_SS_THRESHOLD)), which amounts to a logarithmic 
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increase. When the congestion window exceeds the slow-start threshold, congestion 
avoidance procedures are adopted, where the increase resulting from an ACK depends 
upon the particular congestion control algorithm being simulated for the flow. For TCP 
Reno, receiving an ACK in congestion avoidance increases the congestion window by 
1/cwnd, which results in a linear increase.  

Upon receiving a NAK, the access router records the next data sequence number 
for the source when the NAK was received. This marks the ACK or NAK sequence 
number that must be received before feedback processing can recommence on this flow. 
In addition, receiving the NAK causes the access router to reduce the source’s congestion 
window. For TCP Reno, the congestion window is reduced by ½ and the slow-start 
threshold is set to the reduced congestion window, which ensures that the flow enters 
congestion avoidance, where cwnd increases linearly upon receiving new ACKs. The 
explanation of other congestion control algorithms is postponed until Chapter 5. 

Whenever an access router is invoked it processes only one packet. Thus, to 
process multiple packets an access router must be invoked multiple times. The rate at 
which an access router is invoked denotes its capacity (in ppts). This capacity is 
established by configuration parameters (see 3.2.3 below). 
 
3.1.1.4 Point-Of-Presence Routers. Point-of-Presence (POP) routers provide intermediate 
points to connect access routers to the network backbone. (Note that some access routers 
may be connected directly to backbone routers, as discussed below in 3.1.2.2). POP 
routers serve only to forward packets from access routers toward backbone routers and to 
forward packets from backbone routers toward access routers. Thus, POP routers act as 
statistical multiplexor and demultiplexor elements. MesoNet topologies do not permit 
POP routers to be connected to each other or to be connected to multiple backbone 
routers. 

Each POP router has two queues: one for packets bound up toward the network 
core and one for packets bound down toward the network edge. At each invocation, a 
POP router processes at most one packet, alternating between the up and down queues. If 
no packet is available from the appropriate queue, then the POP router is idle; otherwise, 
the POP router removes the first packet from the queue. If the packet is inbound, then the 
POP router looks up the next-hop access router and forwards the packet. If the incoming 
queue of the access router is full, then the packet is discarded. If the packet is outbound, 
then the POP router looks up the next-hop backbone router and forwards the packet. If 
the queue of the backbone router is full, then the packet is discarded. To process multiple 
packets, a POP router must be invoked multiple times. The rate at which a POP router is 
invoked denotes its capacity (in ppts). This capacity is established by configuration 
parameters (see 3.2.3 below).  
 
3.1.1.5 Backbone Routers. Backbone routers connect to each other through backbone 
links and also connect to POP or access routers. Thus, backbone routers forward 
outbound and transit packets to backbone links and forward inbound packets to POP or 
access routers. Each backbone router has a single queue from which one packet is 
processed on each invocation. If the queue is empty, then the backbone router does 
nothing. If the queue is not empty, then the backbone router removes and processes the 
first packet. If the packet is inbound, then the backbone router looks up the next-hop POP 
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or access router and forwards the packet onward. If the incoming queue of the next-hop 
router is full, then the packet is discarded. If the packet is an outbound or transit packet, 
then the backbone router forwards it on to the appropriate backbone link. To process 
multiple packets, a backbone router must be invoked multiple times. The rate at which a 
backbone router is invoked denotes its capacity (in ppts). This capacity is established by 
configuration parameters (see 3.2.3 below).  
 
3.1.1.6 Backbone Links. Backbone links are simplex links connecting (source and 
destination) pairs of backbone routers and delaying packets for a specified propagation 
time prior to delivering them to the next backbone router. Generally, backbone links are 
paired so that if one goes from source backbone router A to destination backbone router 
B, then a second goes from source backbone router B to destination backbone router A, 
Also, generally each of the paired backbone links exhibits the same propagation delay, 
though the model permits configuring asymmetric propagation times. Backbone links are 
simulated as queues sized to hold as many packets as a backbone router can forward in 
one time step times the number of time steps required to propagate packets on the link. At 
each invocation, a backbone link processes at most one packet. If the queue is empty, 
then the backbone link does nothing. If the queue is not empty, then the backbone link 
examines the first packet. If it is not yet time for the packet to arrive, then the backbone 
waits. Once the time has come for the packet to arrive at the destination backbone router, 
then the backbone link removes the packet from its queue and forwards it on to the 
backbone router. If the backbone router queue is full, then the packet is discarded. 

3.1.2 Network Topology 
Network topology (i.e., the arrangement of routers and links and routes that transit them) 
plays a key role in shaping macroscopic behavior in a packet network. The study of 
network topologies, particularly of the larger Internet topology, a network of networks, 
remains an object of extensive research [12-15, 18-22, 29, 32]. Given access to selected 
measurement points and little other information, researchers attempt to generate maps of 
network topologies [17, 23-24, 27-28, 31]. This becomes quite a difficult problem for the 
Internet as a whole, where a topology of autonomous systems is the measurement aim. 
Even generating maps of individual autonomous systems, each perhaps representing the 
topology of an Internet service provider (ISP), can be quite challenging when making 
measurements from outside the topology [16, 30]. 

MesoNet models a single ISP (Internet service provider) and thus the topology of 
interest is a collection of routers and links that compose a single autonomous system. 
MesoNet allows a user to define any network topology as long as a few restrictions are 
followed. First, POP routers may only connect to one parent (backbone) router, but may 
connect to multiple children (access) routers. Each access router may only connect to one 
parent router, either a POP router or a backbone router. This means that POP and access 
routers may not connect to routers of the same type. This results in fixed routing for 
packets flowing toward and away from the network backbone. Second, the network 
backbone must define fixed routes for packets flowing in a given direction between pairs 
of backbone routers. This means that packets flow on fixed routes among backbone 
routers. These restrictions deviate from some real network topologies in a couple of 
ways. First, some real network topologies provide multiple links between pairs of routers. 
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These multiple links provide increased capacity when all links are operating and also 
provide increased reliability when selected links are down. For MesoNet, higher capacity 
links would be modeled as higher capacity routers. MesoNet does not support capacity 
reductions that would occur when selected links within a multiple-link set fail. Second, 
some real network topologies allow links between routers at the same level. These same-
level links may provide multiple paths to adapt around temporary outages. MesoNet does 
not represent such alternate routes. Also, by assigning link costs, multiple paths may be 
used to engineer traffic flows along various routes. In such cases, link costs are not 
associated with link propagation delay but are chosen to create desired traffic patterns. 
MesoNet can be used to represent such traffic engineering because MesoNet does not 
explicitly require that routes be assigned based on link propagation delays. 

MesoNet topology restrictions have several implications. First, packets in each 
direction between a source and destination flow on the same fixed path. Second, the link 
capacities in MesoNet topologies remain fixed for the duration of a simulation.  

For the experiments discussed in this report, MesoNet uses a single topology, 
shown in Fig. 3-1. The backbone for this topology was adapted from the original Abilene 
backbone [25]. Other aspects of the topology were derived from investigations of ISP 
topologies, as reported in the published literature [26]. The simulated topology defines a 
fixed route for packets flowing between each source-receiver pair. While MesoNet may 
specify routes based on any criteria, the routes specified in the experiments reported in 
this document are shortest path routes that are based typically on link propagation delays. 
The assigned paths in both directions between a given pair of routers are usually, but not 
always, mirrors of each other. This implies that routes are not always determined by link 
propagation delays. The use of asymmetric routes is similar to the definition of traffic-
engineered routes defined for many real ISP topologies. The routes used in this study are 
specified below in Table 3-2. 

The resulting simulated topology was compared against an example topology 
used by an ISP. The comparison provided confidence in the main features of the topology 
shown in Fig. 3-1. Differences arose from topological restrictions imposed by MesoNet, 
as well as from the need to execute simulations within a tractable amount of computing 
time. There were four main differences observed between the topology in Fig. 3-1 and the 
example ISP topology. First, the real ISP topology used fixed path routing with weights 
assigned to achieve traffic engineering objectives rather than assigning weights based on 
propagation delays. Thus, while routes taken through both topologies are fixed, none of 
the routes in the real topology were shortest-path routes based on propagation delay. 
Second, the real ISP topology used multiple links to connect many pairs of routers. This 
provided an increase in both capacity and reliability. The simulated topology included 
only single links between router pairs. Thus, the simulated topology could not support as 
much traffic as the real topology. This restriction was adopted to decrease simulation 
time. Further, the simulated topology could not represent capacity decreases resulting 
from link failures. This restriction was adopted because the periods of time simulated 
(between 20 and 60 minutes) were of short duration and because investigations were not 
focused on network changes arising from link failures. Third, the real ISP topology 
exhibited multiple links from POP routers to backbone routers and also between POP 
routers. These multiple links were used for traffic engineering and for improving 
reliability. Fourth, the real topology included around 60 backbone routers and 81 bi-
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directional links, 85 POP routers and 663 access routers. The simulated topology includes 
only 11 backbone routers and 14 bi-directional links, 22 POP routers and 139 access 
routers. This restricts the simulated topology to carry less traffic than the real topology. 
Of course, restricting the size of the simulated topology reduces the computation time 
required to simulate the entire network over a given period of time. This is especially 
important when attempting to simulate high-speed forwarding capacities, ranging up to 
384 Gbps in simulations described in this report.  
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Figure 3-1. Topology used for simulation experiments discussed in this study 
 

In summary, the topology simulated in this study represents one instance of a real 
backbone topology (the original Abilene network). The remainder of the topology was 
inspired by traits from real ISPs, as reported from investigations in the published 
literature. The main restrictions adopted in the simulated topology deal with reducing the 
number and capacity of routers and links. These restrictions were adopted to allow for 
feasible simulations of network operation within available computing resources. The 
sections that follow describe the key aspects of the topology used in experiments 
throughout this study.    
 
3.1.2.1 Four-Tier Structure. The topology consists of a four-tier structure. The top tier is 
the network backbone, composed of 11 backbone routers (A-K in Fig. 3-1) and 14 bi-
directional links. Routers forward packets at some specified rate. Propagation delays are 
imposed only when packets transit backbone links. The second tier comprises 22 POP 
routers (A1-K2 in Fig. 3-1). The third tier comprises 139 access routers (A0a-K2d in Fig. 
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3-1). The fourth tier (not shown in Fig. 3-1) consists of sources and receivers that 
represent computers exchanging data over the network. 

Data packets are generated at a source, forwarded to an associated access router 
and then on to the access router’s parent, either a POP router or a backbone router. 
Outgoing data packets that reach a backbone router are forwarded on a link connecting to 
the next-hop backbone router on the route and so on until reaching the backbone router 
under which the receiver may be found. The destination backbone router forwards the 
packet on to the destination child router (either POP or access router). An inbound data 
packet reaching a POP router is forwarded on to the destination access router and then to 
the destination receiver. Acknowledgment packets flow in a similar fashion but in the 
reverse direction from receiver to source. This four-tier structure is similar to the 
structure that exists in many ISP networks. 

In general, backbone routers operate at higher speed than POP routers and POP 
routers operate at higher speed than access routers. Further, topologies are constructed so 
that backbone and POP routers can handle the expected load, leaving bottlenecks to arise 
at the level of access routers. For the topology in Fig. 3-1 to mimic this behavior requires 
that router speeds be configured properly.  
 
3.1.2.2 Heterogeneous Composition. Recent research, which attempts to map the network 
topology for selected ISPs, suggests a heterogeneous composition for real networks [26]. 
For example, some access routers operate at higher speeds than others and some access 
routers connect directly to backbone routers rather than transit across POP routers. The 
topology in Fig. 3-1 includes both forms of heterogeneity. First, access routers operate at 
three different speeds: normal, twice normal speed (green routers in Fig. 3-1) and ten 
times normal speed (red routers in Fig. 3-1). Second, selected access routers connect 
directly to backbone routers. The main reason access routers connect directly to backbone 
routers is because they require higher bandwidth. For this reason, the topology in Fig. 3-1 
has access routers, operating at ten times the normal speed, connect directly to backbone 
routers. Further, POP routers can handle fewer high-speed access routers than access 
routers of normal speed. The topology in Fig. 3-1 reflects this by allowing only four fast 
access routers to connect to a POP router, while a POP router can handle seven access 
routers of normal speed. Further heterogeneity is possible, for example, by allowing three 
normal access routers and two fast access routers to connect to POP routers.  
 
3.1.2.3 Flow Classes. Access routers provide network access for sources and receivers. 
The division of access routers into three speed classes (normal, fast and directly 
connected) has the effect of creating six possible classes of flows, depending upon the 
location of a flow’s source and receiver: NN1 (normal-normal), FN (fast-normal), DN 
(directly connected-normal), FF (fast-fast), DF (directly connected-fast) and DD (directly 
connected-directly connected). Thus, heterogeneity among access routers leads to 
heterogeneity among flows, which allows measurements to be made regarding the 
performance of flows within each of the six classes.  
 

                                                 
1 We color code flow-class designations to indicate their relationship to the types of access routers in the 
topology. 
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3.1.2.4 Fixed-Path Routing. Even when a choice exists among equal-cost routes, most 
deployed routers in the Internet attempt to ensure that all packets related to an individual 
flow transit the same fixed route in a given direction [41-43]. The aim is to have packets 
reaching receivers in sequence and thus to reduce problems associated with 
fragmentation of reassembly buffers. There exists debate on how successful routers are in 
achieving this aim [38-39, 45]. Since packet sequencing cannot be completely guaranteed 
on the Internet, receivers will sometimes indicate (via a duplicate acknowledgment) a 
packet has been missed, when in fact the packet may have been reordered rather than lost. 
For this reason, TCP sources typically wait for three duplicate acknowledgments before 
initiating retransmission of a lost packet. This allows time for reordered packets to arrive 
at a receiver and be acknowledged. The cost of this heuristic is that reaction to actual lost 
packets is somewhat delayed.    

MesoNet topologies are totally successful in achieving packet sequencing along 
the route in each direction between a source and receiver. The upshot of this MesoNet 
feature is that packets received out of order can be assumed to signal a loss. For this 
reason, MesoNet sources take retransmission actions after receiving one, rather than 
three, duplicate acknowledgments. (Note that MesoNet replaces the use of three duplicate 
acknowledgments with one explicit negative acknowledgment, or NAK). 
 

Table 3-1. Link Propagation Delays in the Base Simulated Topology 
 

Router Pair Link Pair Link Propagation Delay 
(in time steps) 

A-B 1-2 10 
A-C 3-4 12 
B-C 5-6 12 
B-D 7-8 4 
C-E 9-10 8 
D-F 11-12 20 
E-F 13-14 10 
E-G 15-16 7 
F-H 17-18 9 
G-H 19-20 7 
G-I 21-22 4 
H-J 23-24 7 
I-K 25-26 5 
J-K 27-28 3 

 
3.1.2.5 Simulated Abilene Backbone Characteristics. All experiments described in this 
study operate within the context of a simulated Abilene backbone network topology 
(recall Fig. 3-1) with the characteristics described in this section. First, the backbone links 
in the topology exhibit the base propagation delays shown in Table 3-1. The simulated 
topology encompasses (14 x 2 =) 28 unidirectional backbone links. The propagation 
delays, shown in Table 3-1, are the same for both backbone links (one in each direction) 
that connect the indicated router pairs. The odd numbered link of each pair flows in the 
forward direction (e.g., A to B) and the even numbered link flows in the reverse direction 
(e.g., B to A). 

The simulated topology defines fixed routes, given in Table 3-2, for packets 
flowing between sources and receivers located under specific pairs of backbone routers. 
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The fixed routes indicate links that are followed and so the sum of the link propagation 
delays determines the route propagation delays (as indicated in Table 3-2). The round-trip 
propagation times between selected source and destination domains can be determined by 
summing, from Table 3-2, the route propagation delay in the forward direction and the 
route propagation delay in the reverse direction. The average round-trip propagation 
delay for the base topology is 41 time steps; the minimum roundtrip propagation delay is 
6 time steps (i.e., route J-K-J) and the maximum roundtrip propagation delay is 100 time 
steps (i.e., route A-B-D-F-H-J-H-F-D-B-A). One-way paths that are part of the five 
asymmetric routes are highlighted in red in Table 3-2. 

 
Table 3-2. Routes across the Backbone from Source (S) to Destination (D) Domain 

(One-Way Route Propagation Delays in Time Steps Given in Parentheses) 
 

S\D A B C D E F G H I J K 

A - A-B 
(10) 

A-C 
(12) 

A-B-D 
(14) 

A-C-E 
(20) 

A-B-
D-F 
(30) 

A-C-
E-G 
(19) 

A-C-
E-G-H 
(34) 

A-C-
E-G-I 
(31) 

A-B-
D-F-
H-J 
(50) 

A-C-
E-G-I-

K 
(36) 

B B-A 
(10) - B-C 

(12) 
B-D 
(4) 

B-C-E 
(20) 

B-D-F 
(24) 

B-C-
E-G 
(27) 

B-D-
F-H 
(33) 

B-C-
E-G-I 
(31) 

B-D-
F-H-J 
(40) 

B-C-
E-G-I-

K 
(36) 

C C-A 
(12) 

C-B 
(12) - C-B-D 

(16) 
C-E 
(8) 

C-E-F 
(18) 

C-E-G 
(15) 

C-E-
G-H 
(22) 

C-E-
G-I 
(19) 

C-E-
G-H-J 
(29) 

C-E-
G-I-K 
(24) 

D D-B-A 
(14) 

D-B 
(4) 

D-B-C 
(16) - 

D-B-
C-E 
(24) 

D-F 
(20) 

D-F-
E-G 
(37) 

D-F-H 
(29) 

D-F-
H-G-I 
(40) 

D-F-
H-J 
(36) 

D-F-
H-J-K 
(39) 

E E-C-A 
(20) 

E-C-B 
(20) 

E-C 
(8) 

E-F-D 
(30) - E-F 

(10) 
E-G 
(7) 

E-G-H 
(14) 

E-G-I 
(11) 

E-G-
H-J 
(21) 

E-G-I-
K 

(16) 

F 
F-D-
B-A 
(30) 

F-D-B 
(24) 

F-E-C 
(18) 

F-D 
(20) 

F-E 
(10) - F-E-G 

(17) 
F-H 
(9) 

F-H-
G-I 
(20) 

F-H-J 
(16) 

F-H-J-
K 

(19) 

G 
G-E-
C-A 
(19) 

G-E-
C-B 
(27) 

G-E-C 
(15) 

G-H-
F-D 
(20) 

G-E 
(7) 

G-H-F 
(16) - G-H 

(7) 
G-I 
(4) 

G-H-J 
(14) 

G-I-K 
(9) 

H 
H-F-

D-B-A 
(43) 

H-F-
D-B 
(33) 

H-G-
E-C 
(22) 

H-F-D 
(29) 

H-G-E 
(14) 

H-F 
(9) 

H-G 
(7) - H-G-I 

(11) 
H-J 
(7) 

H-J-K 
(10) 

I 
I-G-E-
C-A 
(31) 

I-G-E-
C-B 
(31) 

I-G-E-
C 

(19) 

I-G-H-
F-D 
(40) 

I-G-E 
(11) 

I-G-H-
F 

(20) 

I-G 
(4) 

I-G-H 
(11) - I-K-J 

(8) 
I-K 
(5) 

J 
J-H-F-
D-B-A 
(50) 

J-H-F-
D-B 
(40) 

J-H-
G-E-C 
(29) 

J-H-F-
D 

(36) 

J-H-
G-E 
(21) 

J-F-H 
(16) 

J-H-G 
(14) 

J-H 
(7) 

K-I 
(5) - J-K 

(3) 

K 
K-I-G-
E-C-A 
(36) 

K-J-
H-F-
D-B 
(41) 

K-I-G-
E-C 
(24) 

K-J-H-
F-D 
(39) 

K-I-G-
E 

(16) 

K-J-H-
F 

(19) 

K-I-G 
(9) 

K-J-H 
(10) 

J-K-I 
(8) 

K-J 
(3) - 

3.1.3 Simulated Packets 
Simulated packets in MesoNet share many elements with real Internet packets, while also 
lacking some traits of real packets. Each simulated packet comprises six main fields: (a) 
packet type, (b) source address, (c) destination address, (d) flow identifier, (e) sequence 
number and (f) creation timestamp. Each simulated packet also contains a propagation 
time field used to control propagation across simulated backbone links. MesoNet packets 
can have one of the following types: SYN, SYN+ACK, DT, ACK or NAK. Each source 
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and destination address in MesoNet consists of three components: (1) domain identifier, 
(2) POP identifier, and (3) access-point identifier. Flow identifiers are represented as a 
pair of pointers: one to a source and one to a receiver. MesoNet packets are assigned 
monotonically increasing sequence numbers, but numbers are skipped whenever a packet 
in the flow is lost.  

The main difference between MesoNet packets and real Internet packets is that 
MesoNet packets lack size. This simplification was adopted to allow MesoNet to 
represent packet-level behavior without having to simulate the lower level of octets or 
bits. This was intended to make MesoNet easier to code and understand and faster to 
simulate. One could then assume that all MesoNet packets have the same size – for 
example, one could assume that each packet is 1500 octets (i.e., 12 x 103 bits) in length. 
In this way, processing rates expressed as packets per time step can be converted into 
other bases, such as octets per time step or bits per time step. 

Real Internet packet flows may consist of data going in both directions (i.e., flows 
may be full duplex), which also permits ACKs to be piggybacked on data packets. 
MesoNet flows simulate data moving in one direction only (i.e., flows are simplex) and 
thus ACKs are not piggybacked on data packets but instead are sent individually. The 
restriction to unidirectional data flows (with ACKs flowing in the reverse direction) 
combined with lack of packet size has the unrealistic effect that MesoNet processes 
simulated ACKs at the same rate as simulated data packets, which would not occur in the 
real Internet because ACK packets typically have a much smaller size than data packets. 
This is one reason why MesoNet cannot be used to derive precise quantitative measures 
of network performance. 

Real Internet packets do not include a NAK type – but instead use duplicate 
acknowledgments. Real Internet packets also include a FIN type, used to close flows. 
MesoNet dispenses with the FIN exchange and instead closes flows implicitly when a 
source receives the last expected ACK or NAK packet from a receiver. Real Internet 
packets may also include a RESET type, which can abort a flow. MesoNet allows a 
source to abort a flow with resorting to a RESET packet. 

Real TCP implementations may include several optional, optimization features, 
such as deferring ACKs, pacing data transmissions and selectively acknowledging 
packets. Further, real TCP implementations implement various procedures, such as keep-
alive ACKs that ensure a flow remains active even in the absence of data packets. 
MesoNet does not simulate any of these features or procedures, unless required by 
particular simulated transport protocols. 

3.1.4 Relating Abstract Time to Real Time 
MesoNet simulation progresses with respect to abstract time steps that have no specific 
meaning within the domain of real time. Various parameters in MesoNet specify element 
capacities in terms of units per abstract time step. This abstract formulation of time is 
quite unusual for network designers and engineers, who tend to think in capacities 
dimensioned along real time (e.g., bytes per second, packets per second or bits per 
second) instead of abstract time. To achieve mapping between abstract time steps and real 
time, MesoNet includes an explicit parameter to specify the basic simulated time unit. By 
setting this parameter, an experimenter creates a link between abstract time steps and real 
time. Configured capacities, given in packets per time step, are converted into delays 
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(i.e., 1/capacity) per packet, and then scaled by the basic time unit. For example, suppose 
a router is defined as operating at 400 packets per time step and the basic simulated time 
unit is defined as one millisecond (0.001), then the time taken to process one packet is 
computed as 1/400 x 0.001 = 2.5 x 10-6 seconds and thus the router processes packets at 
1/2.5 x 10-6 = 4 x 105 packets per second. 

3.2 Model Configuration    
The operation of MesoNet elements is controlled by a number of parameters that must be 
specified by the experiment designer. This section describes these configuration 
parameters, divided into six categories: (1) simulation control, (2) definition of user 
behavior, (3) adaptation of the network topology, (4) description of sources and receivers, 
(5) specification of optional long-lived flows, and (6) transport protocols. The settings of 
MesoNet parameters associated with a specific simulation run are reported in an output 
file, as explained below in Sec. 3.2.8.   

3.2.1 Simulation Control Parameters 
Simulation control parameters allow an experiment designer to control various aspects of 
a simulation’s operation, such as duration and measurement granularity. Parameter M 
defines the length of the measurement interval in abstract time steps. The model will 
make sample measurements (see Sec. 3.3 below) at the end of each measurement interval. 
Parameter MI defines the number of measurement intervals over which the simulation will 
execute. Thus, the total time simulated will be M * MI time steps. Parameter basicTimeUnit 
establishes a link between abstract time steps and simulated real time. This link is 
explained above in Sec. 3.1.4. 

Parameter MB defines the number of measurement intervals that can be buffered 
by the model. When the measurement buffer fills, measurements are appended to 
appropriate files and the measurement buffer is cleared to accumulate subsequent 
measurements. This enables very long simulations to be conducted without using 
excessive memory. 

Parameter exID can be used to assign a number to a simulation run. This number 
provides one means of distinguishing measurement file names and of associating a 
related set of measurement files. The system time is used as another means. Typically, 
the parameter exID would be set to specific run numbers associated with some experiment 
design. For example, a sensitivity analysis experiment requiring 64 runs would set exID 
sequentially from 1 to 64 to reflect each of the runs required by the experiment design. 
This would allow specific output files to be associated with specific experiment 
configurations. 

Parameter RandOffset defines the offset used to parameterize seeds for the random 
number streams2 used in MesoNet. Typically, for experiment designs that expose 
different system configurations to similar random conditions, the RandOffset should be set 
to the same value for all runs. Alternatively, when the same system configuration is to be 
exposed to varying random conditions, RandOffset should be set to different values for 
each run. 
                                                 
2 MesoNet uses seven uniform pseudo-random number streams to control various aspects of the simulation, 
such as assigning congestion control algorithms to sources, generating think times, assigning network-
interface speeds, starting sources, determining file sizes and file types, and selecting flow receivers. 
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3.2.2 Parameters Defining User Behavior 
Parameters defining user behavior determine the demand that users will generate on the 
simulated network. The parameters defining user behavior represent two main aspects: 
think time and file size. Parameter lambdaOFF specifies the average number of time steps 
that a user delays between file transfers. This parameter is the mean of an exponential 
distribution. Parameter lambdaON specifies the average number of packets that a flow 
transfers. This parameter is the mean of a Pareto distribution. Parameter alpha is the shape 
of the Pareto distribution of file sizes. The Pareto distribution results in heavy-tailed file 
sizes, which some researchers have observed on the Internet [33-36]. 

The fundamental file size parameter (lambdaON) should be construed as 
representing files sizes of typical Web pages on the Internet. Sometimes, users may 
decide to download files, linked from web pages. For example, a user may download a 
report, a dataset, a song, a photograph or a video. The parameter Fp represents the 
probability with which a user decides to download a linked file. In general, linked files 
would be larger than typical web pages, so the parameter Fx represents the multiplier by 
which linked files will be increased beyond normal Web page sizes. Thus, a user will 
select a file size with an average of lambdaON. Then, with probability Fp, the file size will 
be multiplied by Fx to represent a linked file3. 

MesoNet can also simulate specific periods during which DD flows (between 
sources and receivers under pairs of directly connected access routers) exchange very 
large scientific datasets. Parameter Jon defines the proportion of total simulated time that 
must elapse before this mode of operation commences and parameter Joff defines the 
proportion of total simulated time that must elapse before this mode of operation ceases. 
Thus, this special mode commences when simulated time steps reach M x MI x Jon and 
ceases when simulated time steps reach M x MI x Joff. When this mode is operational, the 
selected file size of any DD flow will be multiplied by parameter Jx. Setting Jon > 1.0 
disables this mode of operation.  

3.2.3 Parameters Adapting Network Topology 
While requiring specification of a basic network topology (such as defined in Sec. 3.1.2), 
MesoNet permits an experiment designer to adapt that topology in several ways. 
Parameter settings allow adjustment of link propagation delays, router speeds and buffer 
sizes in routers. 

Parameter deltaX is set to a factor that is used to multiply the link propagation 
delays that were specified in the base topology. Setting deltaX = 1.0 means that base 
propagation delays will remain unchanged. Setting deltaX > 1.0 increases propagation 
delays by the specified factor. Setting deltaX < 1.0 reduces propagation delays by the 
specified factor. 

 Parameter R1 establishes the basic forwarding speed (in packets per time step) of 
the backbone routers; however, since backbone routers handle transit traffic as well as 
inbound and outbound traffic, the actual capacity of backbone routers is set to R1 x 
BBspeedup, where BBspeedup could be set to reflect the number of transit links for a 
typical backbone router in a given topology. By default, BBspeedup = 1. MesoNet 

                                                 
3 In Chapter 8 we introduce additional file-size probabilities and multipliers that allow simulation of larger 
files, such as software service packs and movie downloads. 



Study of Proposed Internet Congestion Control Mechanisms NIST 
 

Mills, et al. Special Publication 500-282 45 

enforces the usual relationship that backbone routers are faster than POP routers, which 
are faster than typical access routers. To ensure this relationship, parameters R2 and R3 
are set to divisors4 that are used to reduce R1. The speed of POP routers is set to R1/R2, 
while the speed of typical access routers is set to R1/R2/R3. Recall, though, that MesoNet 
topologies allow for some heterogeneity with respect to access routers: some access 
routers may be faster than typical access routers and some access routers may be 
connected directly to backbone routers. Parameters Bfast and Bdirect are used to increase 
the speed of such routers. Fast access routers are assigned a capacity of R1/R2/R3xBfast. 
The capacity of each directly connected access router is set to R1/R2/R3xBdirect. 

In addition to assigning buffer sizes directly for routers, MesoNet also implements 
two alternative buffer-sizing algorithms. One algorithm, which embodies recommended 
practice [40, 44], sizes each router’s buffer to accommodate the estimated average round-
trip time (RTT) for routes transiting the router multiplied by the router’s capacity (C). 
Thus, this algorithm sets the buffer size of each router to RTTxC, where RTT is the 
average round-trip time for the topology and C is the capacity of the specified router – so 
faster routers will have larger buffers and larger propagation delays will increase buffer 
sizes in all routers. The second algorithm, following the suggestion of McKeown and 
colleagues [37], divides the computed buffer size by the square root of the expected 
number of flows transiting a router. This algorithm then sets buffer sizes to 
RTTxC/SQRT(N), where N is the expected number of flows transiting a given router. 
MesoNet estimates N by aggregating the number of sources and receivers under a router 
(or under subordinate routers) and then dividing by two. 

Parameter QszAlg specifies which buffer sizing algorithm to use: 1 means RTTxC; 
2 means RTTxC/SQRT(N); 3 means (RTTxC + RTTxC/SQRT(N))/2; and a higher 
number means all buffer sizes are set directly to the given number. Setting QszAlg = 3 
amounts to interpolating between algorithms 1 and 2. The buffer size, as set or as 
computed by the specified algorithm, is then multiplied by parameter Qfactor to establish 
the final buffer size of each router. Setting Qfactor = 1.0 uses the computed or assigned 
buffer size, while setting Qfactor > 1.0 increases buffer size and setting Qfactor < 1.0 
decreases buffer size.  

3.2.4 Parameters Describing Sources and Receivers 
MesoNet uses several parameters to control the number, distribution and speed of sources 
and receivers in the fourth tier of the network topology. Every access router in the 
simulated topology contains some number of sources and receivers. Parameter 
baseSources defines the relative scale of the number of sources (and receivers) under a 
typical access router. For example, if baseSources = 100, then access routers will have on 
the order of 100 sources each, subject to variations arising through specification of 
related parameters, as discussed below. If one knows the number of access routers (Na) in 
a given topology, then one can compute Na x baseSources, which gives the approximate 
maximum number of active flows. For example, the topology in Fig. 3-1 has 139 access 
routers, so for baseSources = 100 the maximum number of active flows would be about 
13.9 x 103. In order to reduce the blocking probability for a source seeking a receiver in 
any given domain, MesoNet ensures that the base number of receivers under each access 

                                                 
4 We use the symbol “/” to designate division 
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routers is 4 x baseSources. In the example used here, then, the number of receivers would 
be on the order of 4 x 100 x 139 = 55.6 x 103. 

Parameter deltaU permits linear scaling of baseSources in order to increase or 
reduce the approximate number of sources and receivers in a given topology. The 
approximate number of sources under each access router is then computed as deltaU x 
baseSources. Continuing the example, assume that deltaU = 2.0; then the approximate 
maximum number of active flows would become 2 x 100 x 139 = 27.8 x 103 and the 
number of receivers would be on the order of 2 x 4 x 100 x 139 = 111.2 x 103. 

The sources and receivers in a topology must be distributed in some fashion. One 
possibility is to assign an equal number of sources and receivers to each access router. 
This would suggest a peer-to-peer world [20], where flow patterns are equally likely 
between any pair of access routers. Another possibility is to concentrate sources in a 
selected set of access routers and to place most receivers in a different set of access 
routers. This would suggest a client-server world [23], where flow patterns reflect the 
location of customers and the popularity of content providers. MesoNet provides six 
parameters that can alter the distribution of sources and receivers among access routers in 
each of three classes: normal (N-class), fast (F-class) and directly connected (D-class). 

Given a set of sources and one access router of each class, parameters probNs, 
probNsf and probNsd specify, respectively, the probability that a source is located under 
the N-class router, the F-class router and the D-class router. Since each access router 
could contain deltaU x baseSources sources, three access routers would contain 3 x deltaU 
x baseSources sources. To distribute those sources under each class of access router, one 
multiplies the appropriate probability by the number of available sources. Continuing the 
example, given one access router in each of the three classes, one would find 3 x 2 x 100 
= 600 sources. Suppose that probNs = 0.1, probNsf = 0.6 and probNsd = 0.3. Each N-class 
router would contain 600 x 0.1 = 60 sources, each F-class router would contain 600 x 0.6 
= 360 sources and each D-class router would contain 600 x 0.3 = 180 sources. Given the 
topology shown in Fig. 3-1, this distribution changes the maximum number of active 
flows to 17.46 x 103, i.e., 105 (N-class routers) x 60 (sources) + 28 (F-class routers) x 360 
(sources) + 6 (D-class routers) x 180 (sources). This means that more flows will originate 
from fast and directly connected access routers than from normal access routers. Similar 
adjustments can be made with respect to the distribution of receivers. 

Given a set of receivers and one access router of each class, parameters probNr, 
probNrf and probNrd specify, respectively, the probability that a receiver is located under 
the N-class router, the F-class router and the D-class router. Since each access router 
could contain 4 x deltaU x baseSources receivers, three access routers would contain 3 x 4 
x deltaU x baseSources receivers. To distribute those receivers under each class of access 
router, one multiplies the appropriate probability by the number of available receivers. 
Continuing the example, given one access router in each of the three classes, one would 
find 3 x 4 x 2 x 100 = 2.4 x 103 receivers. Suppose that probNr = 0.8, probNrf = 0.1 and 
probNrd = 0.1. Each N-class router would contain 2.4 x 103 x 0.8 = 1.92 x 103 receivers, 
each F-class router would contain 2.4 x 103 x 0.1 = 240 sources and each D-class router 
would contain 2.4 x 103 x 0.1 = 240 sources. Given the topology shown in Fig. 3-1, this 
distribution changes the maximum number of active receivers to 209.76 x 103, i.e., 105 
(N-class routers) x 1.92 x 103 (receivers) + 28 (F-class routers) x 240 (receivers) + 6 (D-
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class routers) x 240 (receivers). This means that more flows will have receivers in normal 
access routers than in fast and directly connected access routers. 

The example used here might describe a client-server view of the distribution of 
sources and receivers. First, 58 % of data sources reside under the 28 F-class routers 
while the remaining 42 % of data sources reside under the other 111 access routers. 
Second, 96 % of all data sinks are under the 105 N-class routers, while the remaining 4 % 
of data sinks are under the 34 remaining access routers. This distribution of sources and 
receivers also influences the probability of various flow classes (recall the six flow 
classes described above in 3.1.2.3). For the example, 57 % of all flows will be FN flows 
and 35 % will be NN flows. The remaining 8% of flows are distributed as follows: 6.2 % 
DN flows, 1.9 % FF flows, 0.6 % DF flows, and the remaining 0.04 % DD flows. 

Aside from differences in location, sources and receivers might also transmit 
packets at different speeds. For example, many users have computers that transmit at 100 
million bits per second (Mbps), while some users have computers that transmit at 1 Gbps. 
MesoNet provides three parameters to specify speed differences among sources and 
receivers. Parameter Hbase defines the capacity (in packets per time step) of normal 
sources and receivers, while parameter Hfast defines the capacity of fast sources and 
receivers. Parameter FastHostProb specifies the probability that any given source or 
receiver is fast. Upon generation of a source or receiver, capacity is set to Hfast with 
probability FastHostProb and to Hbase with probability 1 – FastHostProb. 

Another key characteristic of sources is the mechanism used to react to congestion 
on flows (see Chapter 5). MesoNet simulates seven alternate congestion control 
algorithms: standard TCP Reno [8-9], Binary Increase Congestion control (BIC) [61], 
Compound TCP (CTCP) [58], FAST [60], High Speed TCP (HSTCP) [52], Hamilton 
TCP (HTCP) [54], and Scalable TCP [53]. Sources are assigned one of these seven 
algorithms with probabilities specified by the following parameters: prTCP, prBICTCP, 
prCTCP, prFAST, prHSTCP, prHTCP and prSCALABLE. Each of these parameters can be set 
to any real value between 0 and 1, provided that the sum of the seven parameter values is 
1. Each source retains its assigned congestion control algorithm for the duration of a 
simulation run. 

Finally, MesoNet uses a probability distribution to determine the initial activation 
time for sources. Parameter prON specifies the probability that a source is activated 
immediately. Parameter prONsecond defines the probability that a source is activated as 
part of a second wave. Parameter prONthird defines the probability that a source is 
activated with the third wave. Remaining sources are activated in a fourth and final wave. 
Sources in the second wave are activated after a random delay, using an exponential 
distribution with a mean 1/3 x lambdaOFF. Sources in the third wave are activated after an 
average random delay of 2/3 x lambdaOFF. The remaining sources are activated after an 
average random delay of lambdaOFF.  

3.2.5 Parameters Specifying Special Long-Lived Flows 
MesoNet allows selected flows to be designated as long-lived flows, which start at a 
specified time and then transmit continuously, subject to congestion control constraints. 
Selected measurements are taken so that the behavior of long-lived flows can be 
monitored individually. Specification of long-lived flows requires the use of six 
configuration parameters. 
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  Parameter maxLongLivedFlows (default value 3) determines the maximum number 
of long-lived flows that can be described, which dimensions the compile-time arrays used 
to hold associated measurements. One may change this parameter if the need arises to 
define more than three long-lived flows. Parameter LL_FLOWS defines the actual number 
of long-lived flows that are specified in a given configuration file. Note that the following 
constraint must hold: LL_FLOWS < maxLongLivedFlows. 

Four parameters describe the characteristics of a long-lived flow. Each of these 
parameters is an array with dimension LL_FLOWS, where a given array index specifies a 
particular long-lived flow and can be used to find the four, associated characteristics. 
Array LL_FLOW_SOURCES contains the access-router identifier under which the source 
of each long-lived flow can be found. Array LL_FLOW_RECEIVERS contains the access-
router identifier under which the receiver of each long-lived flow can be found. Access-
router identifiers are sequentially assigned integers that range between 1 and the number 
of access routers defined in a topology. For the topology defined in Fig. 3-1, access-
router identifiers range over 1 (A1a) to 139 (K2d). For example, suppose 
LL_FLOW_SOURCES = {12, 24, 50} and LL_FLOW_RECEIVERS = {131, 102, 62}. These 
parameters specify three long-lived flows: (a) a flow where a source under access router 
12 (B0a) transmits to a receiver under access router 131 (K0a), (b) a flow where a source 
under access router 24 (C0a) transmits to a receiver under access router 102 (I0a), and (c) 
a flow where a source under access router 50 (E0a) transmits to a receiver under access 
router 62 (F0a). Note that a specific source-receiver pair is created and pre-connected for 
each long-lived flow, so connection establishment procedures are not used.  

Array LLon specifies the proportion of simulation time that must elapse before 
each designated long-lived flow will be activated. For example, given a configuration 
where M = 200 and MI = 7.5 x 103 (i.e., a simulation requiring 1.5 million time steps), then 
a long-lived flow with LLon = 0.4 will start at measurement interval number 3.0 x 103 
(i.e., at time step 60.0 x 104). If the specified LLon value is 0, then the flow begins 
immediately. If the specified LLon value is 1.0 or greater, then the flow will not be 
activated. 

Array SOURCE_TYPE specifies the type of congestion control mechanism to be 
used by the source of each long-lived flow. Acceptable values for the type of congestion 
control mechanism are shown in Table 3-3. Note that any other value for the type of 
congestion control mechanism causes MesoNet to assign a type probabilistically; 
probabilities are as specified in Sec. 3.2.4.     

 
Table 3-3. Specification of Values for Parameter SOURCE_TYPE 

 
SOURCE_TYPE Value Congestion Control Mechanism 

1 TCP Reno 
2 HSTCP 
3 CTCP 
4 Scalable TCP 
5 FAST 
6 HTCP 
7 BIC 
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3.2.6 Parameters for Transport Protocols 
The remaining parameters required to configure MesoNet simulations relate to transport 
protocols. Most of these parameters concern congestion control algorithms, and also have 
recommended values. We defer discussion of these until Chapter 5. Three parameters 
relate to initial slow-start procedures, where MesoNet adopts the same behavior for all 
sources, regardless of congestion control algorithm. 

 Any TCP flow starts without knowledge of the surrounding environment, 
including network-interface speed, access-link speed and congestion on the network path 
to a receiver. For this reason, TCP adopts a probing procedure, known as slow start. 
During initial slow start, a TCP flow transmits relatively few packets. As 
acknowledgments are received successfully, a TCP flow then quickly increases its 
sending rate until a packet loss is signaled. After a packet loss, a TCP flow reduces its 
sending rate. Subsequently, receipt of acknowledgments causes a TCP flow to increase its 
sending rate less quickly than occurred prior to the loss. 

The behavior of initial slow start is dimensioned primarily by two parameters. 
First, the initial congestion window (parameter INITIAL_TCP_CWND) determines the 
number of packets that will be transmitted prior to receiving an acknowledgment. As a 
default, MesoNet sets INITIAL_TCP_CWND = 2, which corresponds to the initial 
congestion window used in several Microsoft Windows™ operating systems [11]. During 
initial slow start, TCP sources increase the congestion window by one packet for each 
acknowledgment received successfully. This amounts to an exponential increase in the 
congestion window (and corresponding sending rate). After the congestion window 
reaches a specified value, known as initial slow-start threshold, further acknowledgments 
increase the congestion window (cwnd) by 1/cwnd, which amounts to a linear increase. 
Thus, a second parameter, INITIAL_TCP_SS_THRESHOLD, defines the value of the 
congestion window after which the increase becomes linear. An appropriate setting for 
this value is not widely agreed upon. Some experts [6] suggest that the threshold should 
be set arbitrarily large in order to quickly discover available bandwidth. Mark Carson 
(personal communication, November 12, 2008) reports that Linux sets the threshold 
based on feedback about the maximum number of packets that can be buffered by the 
receiver. Still others [10] suggest a low threshold might be prudent for its positive 
influence in reducing network-wide congestion. 

Floyd observes [7] that using an arbitrarily large threshold in high-speed networks 
can lead to conditions where a long sequence of packets could be lost on a new flow, 
which results in wasted network capacity and poor user performance. Floyd also observes 
that using a low threshold in high-speed networks can lead to conditions where 
insufficient packets are sent early in a flow, which gives poor bandwidth utilization and 
poor user performance. Given the tradeoffs between an initial slow-start threshold that is 
too small and one that is too large, Floyd recommends using a limited slow start, which 
introduces a third parameter, MAX_SS_THRESHOLD. In limited slow start, a TCP source 
increases the congestion window exponentially with successive acknowledgments up to 
MAX_SS_THRESHOLD. Subsequently, receipt of successive acknowledgments causes the 
congestion window to be increased by 1/cwnd/(0.5xMAX_SS_THRESHOLD) until 
INITIAL_TCP_SS_THRESHOLD. In this second stage of initial slow start the congestion 
window increases logarithmically. After the congestion window reaches 
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INITIAL_TCP_SS_THRESHOLD, the congestion window increases linearly with new 
acknowledgments. Floyd recommends a value of 100 for MAX_SS_THRESHOLD. 

MesoNet adopts limited slow start procedures, as recommended by Floyd. By 
default, the relevant MesoNet parameters are set as follows: MAX_SS_THRESHOLD = 100 
and INITIAL_TCP_SS_THRESHOLD = an arbitrarily large integer. To deactivate limited 
slow start set MAX_SS_THRESHOLD > INITIAL_TCP_SS_THRESHOLD. 

Given the relatively small size of Web objects and high (and increasing) network 
speeds and relatively long propagation delays in networks, initial slow-start procedures 
can have a dominating effect on user throughputs. This is because sources must wait for 
feedback before increasing congestion window size and corresponding sending rate. The 
initial size of the congestion window coupled with the rate of increase can dictate 
observed throughput for small to medium sized files. Thus, observed throughputs could 
be biased by file size on individual flows that use variations in initial slow-start 
procedures. For this reason, MesoNet ensures that all TCP flows use the same initial 
slow-start procedures. 

3.2.7 Parameters Identifying Monitored Links 
The configuration file closes with parameters that may be used to identify links in the 
topology for which MesoNet should count packet transmissions over time. The specific 
meaning of these parameters is given below in Sec. 3.3.7. 

3.2.8 Reporting Parameter Settings 
Prior to commencing a simulation, MesoNet writes the settings of parameter values to a 
text file in the directory in which model measurements will be reported. The file and 
directory naming conventions mirror those used for measurement files (see Sec. 3.3.1 
below). The first blank in the general file naming form is replaced by the token 
“ConfigurationSettingsFor”.  So, for example, parameter settings will be written to a file 
with a name similar to “ConfigurationSettingsForRun0TimeStamp41540.txt”. This file 
also reports the value of various derived parameters, which are computed from 
combinations of parameter settings. 

3.3 Model Measurements 
MesoNet measures many facets of the spatiotemporal behavior of a simulated network. 
This section outlines the measurement approach and details some specific measures taken 
and reported during MesoNet simulations. The measures fall into six general categories. 
Summary measures report selected information that indicates general workload and 
performance during a simulation. Aggregate measures describe the temporal behavior of 
the entire network, as it unfolds during a simulation. Flow-class measures indicate the 
average temporal behavior of each of the six flow classes (recall 3.1.2.3) simulated by 
MesoNet. Long-lived flow measures follow the temporal behavior of any specific long-
lived flows (recall 3.2.5) configured in a particular simulation. Per-router measures 
monitor the temporal behavior of each individual router within a simulated topology. 
Optional, link-level measures report the temporal progression of traffic on selected links 
within a simulated topology. To support the needs of specific experiments, MesoNet can 
also be augmented to provide measures that do not fall into any of the predefined 
categories. Below, we describe selected MesoNet measures reported in each category, as 
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well as how such measures may be augmented. Prior to describing specific measures, we 
discuss the general measurement regime, including file naming conventions, applicable to 
all categories of measures. 

3.3.1 General Measurement Regime 
Most of the measurements taken by MesoNet are reported as time series, where each data 
point in each series relates to a designated measurement interval. Thus, a typical 
measurement file will consist of a list of rows, where each row represents a measurement 
associated with a specific time interval. The first column in each row records the 
measurement interval and the remaining columns denote specific measures taken during 
that interval. Given this approach, one may plot each time series and may also compute 
statistical summaries (such as the average, median and variance) over all or part of each 
time series. With the exception of summary measures, MesoNet does not report column 
headers, so one should consult the descriptions below to understand the contents of each 
measurement file. 

 MesoNet uses a convention to name measurement files. The general file naming 
form is: “_____Run_TimeStamp_____.txt”, where the first blank is replaced by the name 
of the specific measure, the second blank is replaced by the value of exID, and the third 
blank is replaced by a timestamp taken from the real-time clock of the computer 
executing the associated simulation. All measurement files for a specific simulation run 
are placed into a single directory, which is named using the following general form: 
“Run_TimeStamp_____”. For example, if a simulation runs with exID = 0 and a real-time 
clock value of 34168, then the simulation would generate measurement files in directory 
“Run0TimeStamp34168”. One file in the named directory would be labeled as 
“ActiveFlowsRun0TimeStamp34168.txt”. This particular file reports the temporal 
evolution of the number of active flows (as discussed below in Sec. 3.3.3). The named 
directory would also contain additional files reporting other measures, as discussed 
below. 

3.3.2 Summary Measures 
MesoNet emits three files containing summary measures. The file that begins with the 
name “TotalPackets” reports two rows per measurement buffer (recall Sec. 3.2.1). The 
first row is a header that defines the columns in the second row. The six columns, from 
left to right, are: (a) the total number of measurement intervals covered by the row, (b) 
the total number of data packets input to the network, (c) the total number of data packets 
output from the network, (d) the total number of flows started during the simulation, (e) 
the total number of flows completed during the simulation and (f) the average number of 
SYN packets that were required to establish a successful connection. This information 
gives a general idea of the workload to which the simulated network was subjected. 

The file that begins with the name “FlowThroughputsByType” reports two rows 
per measurement buffer. The first row is a header that defines the columns in the second 
row. Each row contains six pairs of columns, where each pair is associated with a flow 
class. The first column in each pair reports the total number of completed flows of the 
class and the second column reports the average throughput for a completed flow of the 
class. Flow classes are given in the following order: DD, DF, DN, FF, FN, and NN. 
These measures give an idea about the general user experience in each flow class. 
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MesoNet measures flow throughputs as the file size (in packets) divided by the number of 
time steps required to send the file and then divided by the basicTimeUnit defined for the 
simulation configuration. 

The file that begins with the name “SYNrateByType” reports two rows per 
measurement buffer. The first row is a header that defines the columns in the second row. 
Each row contains six columns, where each column gives the average number of SYN 
packets that were required to establish a successful connection for each flow class. Flow 
classes are reported in the following order: DD, DF, DN, FF, FN, and NN. These 
measures give a general idea of the congestion faced by each particular flow class.  

3.3.3 Aggregate Measures 
MesoNet reports at least 17 aggregate measures depicting spatiotemporal behavior in a 
simulated network. See Table 3-4 for a summary. Each associated measurement file has 
the same general format: a series of two-column rows. The first column in a row gives 
the measurement interval when the measure was recorded and the second column gives 
the reported measure. Aggregate measurement files contain one row for every 
measurement interval in a simulation run. Below we describe each aggregate measure.  

The file beginning with the name “ActiveFlows” reports the number of flows that 
were in the process of transferring packets in the network at the end of each measurement 
interval. This excludes flows that are attempting to establish connections, which are 
reported in the file starting with “FlowsConnecting”. 

The file beginning with the name “AverageSRTT” reports the average smoothed 
round-trip time5 across all active flows at the end of each measurement interval. The 
average smoothed round-trip time (SRTT) is influenced by the network diameter and link 
propagation delays, as well as by queuing delays within each router on the path of each 
flow. To remove the influence of fixed properties (e.g., network diameter and link 
propagation delays) one could subtract the average round-trip propagation time of the 
simulated topology from the SRTT. Doing so would estimate the average queuing delay 
on network paths. 

The file beginning with the name “ConnectionFailures” reports the total number 
of connection attempts that failed during each measurement interval. One could divide 
the number of connection failures by the number of active connections plus the number 
of connection failures to compute a connection-failure rate for each measurement 
interval. 

The file beginning with the name “FlowCongestionWindowOverTime” reports 
for each measurement interval the average size (in packets) of the congestion window 
across all active flows. In general, a larger congestion window suggests less network 
congestion and higher throughputs on flows. 

The file beginning with the name “FlowsAboveThreshold” reports for each 
measurement interval the number of flows that are operating with congestion control 
regimes different from standard TCP. Most alternate congestion control mechanisms 
prescribe normal TCP congestion control rules until the congestion window passes a 
particular threshold value. Thus, this measure reports the number of flows operating past 
                                                 
5 Smoothed round-trip time (SRTT) is computed continuously for each flow using a weighted average that 
can assign greater emphasis to either recent or older observations. Thus, average SRTT is the average of the 
averages computed for each ongoing flow in a network simulation. 
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the associated threshold. Note that the threshold value is likely to be different for various 
alternate congestion control mechanisms (see Chapter 5). Flows operating under standard 
TCP Reno congestion control procedures are reported in the file beginning with 
“FlowsInNormalCongestionMode”. Flows operating within the initial slow-start phase 
are reported in the file beginning with “FlowsInInitialSlowStart”. 

 
Table 3-4. Summary of Aggregate Measures Reported by MesoNet 

 
Aggregate Measure General Definition 

Active Flows Number of flows that are in the process of transferring data 
packets 

Average SRTT Average smoothed round-trip time across all active flows in 
the network 

Connection Failures Number of connection attempts that failed within a 
measurement interval 

Flow Congestion Window Average congestion-window size across all active flows in 
the network 

Flows Above Threshold Number of active flows operating with alternate congestion 
control procedures 

Flows Completed Number of flows completed within a measurement interval 

Flows Connecting Number of flows that are in the process of connection 
establishment 

Flows in Initial Slow Start Number of active flows that are in the initial slow-start 
phase 

Flows in Normal Congestion Mode Number of active flows operating with standard TCP Reno 
congestion control procedures 

Loss Rate Ratio of (packets input – packets output)/packets input for a 
measurement interval 

NAKs Average number of NAK packets received by each active 
flow in the network 

No Receivers 
Number of instances in a measurement interval where a 
source could not find an available receiver under a chosen 
access router 

Packets In Number of data packets entering the network during a 
measurement interval 

Packets Out Number of data packets exiting the network during a 
measurement interval 

Retransmission Rate 
Ratio of file size to number of data packets transmitted 
averaged over each flow completing during a measurement 
interval 

Timeouts Average number of timeouts recorded by each active flow 
in the network 

Window Increases Average number of window increases recorded by each 
active flow in the network 

 
The file beginning with the name “FlowsCompleted” reports the number of flows 

that were completed during each measurement interval. Since the number of flows 
completed depends to some extent on the number of active flows, one could compute the 
flow-completion rate as the ratio of the number of flows completed over the number of 
active flows plus the number of flows completed. As the flow-completion rate 
approaches 50 % the simulated network is operating without much congestion. As the 
flow-completion rate approaches zero the simulated network is quite congested. 
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The file beginning with the name “LossRate” reports for each measurement 
interval the ratio of data packets input minus data packets output to data packets input. 
This gives a rough approximation of the rate at which a simulated network loses packets. 
The approximation is rough because the network also buffers packets in queues and on 
backbone links, so packets input in one measurement interval might leave the network in 
some future interval. Further, the loss rate considers only data packets, while other packet 
types may also be lost. Over time, the average network loss rate should be reasonably 
accurate as data points in the time series represent a sequence of rough approximations 
oscillating around the average. 

 The file beginning with the name “NAKs” reports the average number of NAK 
packets received by each flow during each measurement interval. Generally, as the NAK 
rate increases, the network is becoming increasingly congested. Of course, a congested 
network may lose an increasing number of NAKs, so severe congestion also exerts 
downward pressure on the NAK rate. Further, a higher number of active flows cause a 
given number of NAKs to be prorated over a larger number of flows. 

The file beginning with the name “NoReceivers” reports for each interval the 
number of times a source found no available receiver under an access router selected as 
the destination for a flow. When a simulation is configured properly and when the 
destination-selection algorithm is working correctly, this time series should consist of all 
zeros. This measurement has no value beyond a check that a model is properly 
configured and uses a reasonable algorithm for selecting destinations. 

 The file beginning with the name “PacketsIn” records for each measurement 
interval the total number of data packets injected into a simulated network topology. This 
measure is also used to compute the loss rate. The number of packets input gives a 
reasonable picture of the network load in terms of packets per time step. Of course, the 
actual network load is double the reported number of packets input because data packets 
stimulate ACK and NAK packets in reply. ACK and NAK packets are not included in the 
count of input packets. So, for example, a simulation reporting an input of one million 
packets per time step is actually experiencing a load of two million packets per time step. 
The file beginning with the name “PacketsOut” records for each measurement interval 
the total number of data packets exiting a simulated network topology. This measure is 
also used to compute the loss rate. As with packets input, packets output does not count 
ACK and NAK packets. One could compute an average network utilization by summing 
the rates of all simulated access routers and multiplying that sum by the measurement 
interval size and then dividing that multiplied sum into twice the number of packets 
output. This should yield a utilization value between zero and one6. For example, assume 
a measurement interval size of 200 time steps. Then, given the topology shown in Fig. 3-
1, and given that the 105 N-class access routers operate at 200 packets per time step 
(ppts), the 28 F-class access routers operate at 400 ppts and the 6 D-class access routers 
operate at 2000 ppts, then the entire network can output at most (105 x 200 + 28 x 400 + 6 
x 2000 =) 44.2 x 103 ppts. (Note that, assuming a basicTimeUnit = 0.001 and a packet size 
of 1500 bytes, this equates to about 5 x 1011 bits per second.) In one measurement interval 
then, the simulated network could output at most (200 x 44.2 x 103 =) 8.84 x 106 packets. 

                                                 
6 Note that since the computation is based on direct average measurement of data packets and an estimate 
for acknowledgment packets (as twice the number of data packets) the resulting utilization estimate is 
somewhat crude and can yield a value above one. 
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Assume that the average number of packets output per measurement interval, computed 
from a time series of packets output, is 8.15 x 105, then the average, aggregate network 
utilization can be estimated as [(8.15 x 105 x 2) / 8.84 x 106 = ] 0.184. 

The file beginning with the name “RetransmissionRate” records the average 
retransmission rate across all flows completing in each measurement interval. The 
retransmission rate for a completed flow is computed as the ratio of the number of data 
packets actually sent on a flow minus the file size (in data packets) to the file size. Data 
packets sent beyond the file size comprise retransmitted packets arising from lost (data or 
ACK or NAK) packets or from timeouts. As a reasonable approximation, the average 
retransmission rate for a network should be somewhere around twice the loss rate 
(because both data and acknowledgment packets may be lost). In general, increased 
network congestion leads to increased losses, which lead to an increased rate of 
retransmissions. A lower rate of retransmissions indicates lower network congestion. 

The file beginning with the name “Timeouts” records the average number of 
timeouts incurred on each active flow in each measurement interval. In MesoNet, 
timeouts arise most commonly when a data or acknowledgment packet is lost at the end 
of a data transfer. This occurs because no additional data is sent on a flow to stimulate 
additional acknowledgments. (Recall that MesoNet does not simulate procedures such as 
keep-alive acknowledgments.) Less frequently, timeouts occur when a path experiences 
unexpectedly large queuing delays. More rarely, timeouts might result when a complete 
congestion window of packets are lost. In general, an increased rate of timeouts suggests 
an increased level of network congestion. 

The file beginning with the name “WindowIncreases” records the average number 
of times each active flow increases its window during a measurement interval. In general, 
a higher rate of window increases suggests lower network congestion. Of course, the rate 
of window increases might also be influenced by network capacity and round-trip times.   

3.3.4 Flow-Class Measures 
MesoNet reports at least 13 flow-class measures depicting the average temporal behavior 
of each flow class7 in a simulated network. See Table 3-5 for a summary. Each associated 
measurement file has the same general format: a series of seven-column rows. The first 
column in a row gives the measurement interval when the measure was recorded and the 
next six columns give the reported measure for each flow class in the following order: 
DD, DF, DN, FF, FN and NN. Flow-class measurement files contain one row for every 
measurement interval in a simulation run. Below we describe each flow-class measure. 

The file beginning with the name “ActiveFlowsByType” records the number of 
flows with data transfers in progress in each flow class. This measure gives a good idea 
of the distribution of flows between various types of access routers across the simulated 
network topology. The measured distribution of flow classes can be compared with the 
computed theoretical distribution of flow classes predicted from the simulation 
configuration. This measure also helps explain the degree of variance observed in 
temporal throughputs for flows of each class because some flow classes have decidedly 
fewer active flows than other flow classes. Further, this measure can be used to identify 
periods during which flows of some particular class were not active. A related file 
                                                 
7 Chapter 8 introduces some other measures associated with different techniques to classify flows based on 
various additional characteristics. 
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(“FlowsConnectingByFlowType”) reports the number of flows trying to connect in each 
class. 

The file beginning with the name “ConnectionFailuresByType” records the 
number of connection attempts that failed for each flow class during each measurement 
interval. This measure can be used to compute a connection-failure rate for each flow 
class and to compare failure rates across flow classes. 

 
Table 3-5. Summary of Flow-Class Measures Reported by MesoNet 

 
Flow-Class Measure General Definition 
Active Flows by Type Number of active flows in each flow class  

Connection Failures by Type Number of connection attempts that failed in 
each flow class 

Flow Congestion Window by Type Average congestion-window size for active 
flows in each class 

Flow Retransmission Rate 

Ratio of file size to number of data packets 
transmitted averaged over each completing 
flow in each class during a measurement 
interval 

Flows Above Threshold by Flow Type 
Number of active flows operating with 
alternate congestion control procedures in 
each flow class 

Flows Completed by Type Number of flows completed in each flow 
class 

Flows Connecting by Flow Type Number of flows of each flow class that are 
trying to connect 

Flows In Initial Slow Start by Flow Type Number of active flows in each flow class 
that are operating within initial slow start 

Flows In Normal Congestion Mode by Flow Type 
Number of active flows in each flow class 
that are operating under standard TCP Reno 
congestion control procedures 

NAKs by Flow Type Average number of NAK packets received by 
each active flow in each flow class 

Temporal Flow Throughputs Average packets per time step output by flow 
class, divided by the basicTimeUnit  

Timeouts by Flow Type Average number of timeouts recorded by 
each active flow in each flow class 

Window Increases by Flow Type 
Average number of window increases 
recorded by each active flow in each flow 
class 

 
The file beginning with the name “FlowCongestionWindowByType” records the 

average congestion window for active flows in each flow class. This measure can be used 
to compare congestion windows across flows of various classes. Congestion window size 
is influenced by a complex collection of factors, and may be an interesting measure to 
study. 

The file beginning with the name “FlowRetransmissionRate” records the average 
retransmission rate for completed flows in each flow class. The measure is computed 
using the same relationships defined for aggregate retransmission rate. 

The file beginning with the name “FlowsAboveThresholdByFlowType” records 
the number of flows in each flow class that are operating with congestion control 
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procedures other than standard TCP. The ratio of this measure to the measure of active 
flows by type reveals the proportion of active flows in each flow class that are operating 
with a congestion window above the threshold defined for the appropriate congestion 
control procedures used for each flow. Related files report the number of active flows in 
each class operating in initial slow-start phase (“FlowsInInitialSlowStartByFlowType”) 
and also operating under standard TCP Reno congestion control procedures 
(“FlowsInNormalCongestionModeByFlowType”). 

The file beginning with the name “FlowsCompletedByType” records the number 
of flows in each flow class that were completed during each measurement interval. This 
measure may be combined with the measure of active flows by type to compute a flow 
completion rate for each flow class. 

The file beginning with the name “NAKsByFlowType” records the average 
number of NAKs received by a flow of each class during each measurement interval. 

The file beginning with the name “TemporalFlowThroughputs” records the 
average instantaneous throughput of flows in each flow class. This measure can be 
divided by the average file size (computed from the simulation configuration) for each 
flow class to estimate the average time taken by each flow class to transfer an average 
size file. For example, if a flow class has an average file size of 50 packets (75 Kbytes) 
and an average throughput of 100 packets (1.2 Mbits) per second, then it would take 
(50/100 =) 1/2 second to transfer an average size file. 

The file beginning with the name “TimeoutsByFlowType” records the average 
number of timeouts that occur for a flow of each class in each measurement interval. 
Similarly, the file beginning with the name “WindowIncreasesByFlowType” records the 
average number of window increases received by a flow of each class in each 
measurement interval. 

3.3.5 Long-Lived Flow Measures 
MesoNet reports up to 8 long-lived flow measures depicting the temporal behavior of 
each long-lived flow configured in a simulated network. See Table 3-6 for a summary. 
Each associated measurement file has the same general format: a series of multicolumn 
rows. The first column in a row gives the measurement interval when the measure was 
recorded and each of the remaining columns report a measure associated with a specific 
long-lived flow. The recording order corresponds to the order in which long-lived flows 
were defined in the simulation configuration. Below we describe each measure recorded 
for long-lived flows. 

The file beginning with the name “LongLivedFlowCongestionMode” records the 
congestion control procedures being used on each long-lived flow at the end of each 
measurement interval. When a long-lived flow is inactive, the measure reports the value 
“NONE”. When a long-lived flow is active but using standard TCP congestion control 
procedures, the measure reports the value “NORMAL”. Otherwise, the measure reports 
the specific congestion control procedure in use on each long-lived flow. Valid values for 
this measure include: “BIC”, “COMPOUND”, “FAST”, “H”, “HS” and “SCALABLE”. 
For long-lived flows operating under FAST congestion control procedures a separate 
measurement file (“LongLivedFlowFASTalpha”) reports the temporal evolution of the 
value of the FAST  parameter (see Chapter 5). 
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The file beginning with the name “LongLivedFlowCWNDs” reports the size of 
the congestion window at the end of each measurement interval for each long-lived flow. 
The file beginning with the name “LongLivedFlowNAKs” records the number of NAKs 
received by each long-lived flow in each measurement interval. The file beginning with 
the name “LongLivedFlowTimeouts” records for each long-lived flow the number 
timeouts experienced in each measurement interval. The file beginning with the name 
“LongLivedFlowWindowIncreases” records for each long-lived flow the number of 
increases in the congestion window that occurred in each measurement interval. The file 
beginning “LongedLivedFlowSRTT” reports the temporal evolution of the smoothed 
round-trip time for each long-lived flow. 

 
Table 3-6. Summary of Long-Lived Flow Measures Reported by MesoNet 

 
Long-Live Flow Measure General Definition 

Congestion Mode Congestion control procedures in use on each long-lived flow at 
the end of each measurement interval 

Congestion Window Size of the current congestion window for each long-lived flow 
at the end of each measurement interval 

FAST Alpha 
Value of the FAST  parameter at the end of each 
measurement interval for each long-lived flow that operates 
under FAST congestion control procedures 

NAKs Number of NAKs received in each measurement interval for 
each long-lived flow 

SRTT Value of the SRTT for each long-lived flow at the end of each 
measurement interval 

Throughputs Average packets per time step output by each long-lived flow, 
divided by the basicTimeUnit

Timeouts Number of timeouts recorded in each measurement interval for 
each long-lived flow 

Window Increases Number of window increases recorded in each measurement 
interval for each long-lived flow 

 
The file beginning with the name “LongLivedFlowThroughputs” reports for each 

long-lived flow the average throughput over each measurement interval. Average 
throughput8 is computed as the number of ACK and NAK packets sent by a flow’s 
receiver in a measurement interval divided by the measurement interval size and then 
divided by the basicTimeUnit configured for the simulation. 

3.3.6 Per-Router Measures 
MesoNet reports measurements associated with each router in the simulated network 
topology. For the topology shown in Fig. 3-1, this would be 172 routers. MesoNet reports 
per-router measures in three classes: (a) backbone routers, (b) POP routers and (c) access 
routers. Six measures are reported for backbone and POP routers, while 12 measures are 
reported for access routers. This section describes the relevant measures and related 
measurement files. The description is divided into two parts: (a) measures common to all 
routers and (b) additional measures recorded only for access routers. 
 

                                                 
8 This measure is often referred to as goodput. 
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3.3.6.1 Measurements Common to All Routers. MesoNet reports six measures for all 
routers. Table 3-7 gives a summary. Two measures (flows completed and packets 
forwarded) are aggregate measures summed over all measurement intervals. The 
remaining measures are time series reported at each measurement interval for each router. 
The measures are described below, beginning with the aggregate measures. 

Files reporting aggregate router measures contain two rows for each measurement 
buffer. The first row is a header identifying the number of measurement intervals over 
which the measures were aggregated and the second row contains an aggregate measure 
for each router. For the topology shown in Fig. 3-1, aggregate measurements for 
backbone routers would contain 11 columns (routers A through K) while aggregate 
measurements for POP routers would contain 22 columns (routers A1 through K2) and 
for access routers would contain 139 columns (routers A1a through K2d). 

 
Table 3-7. Summary of Measures Reported by MesoNet for Each Router 

 
Router Measure General Definition 

Active Flows The number of flows transiting each router at the end of each 
measurement interval 

Flows Completed  The aggregate number of flows carried by each router over all 
measurement intervals 

Losses  The number of packets discarded by each router in each 
measurement interval 

Queue Length For each router, the ratio of packets queued to buffer size at the 
end of each measurement interval 

Packets Forwarded The aggregate number of packets forwarded by each router 
over all measurement intervals 

Utilization The average utilization for each router over each measurement 
interval 

 
The file beginning with the name “BackboneRoutersFlowsCompleted” gives the 

aggregate number of flows that transited each backbone router over all measurement 
intervals. Similar files, beginning with the names “SubnetRoutersFlowsCompleted” and 
“LeafRoutersFlowsCompleted”, give the same measure for each POP9 and access router, 
respectively. The file beginning with the name “BackboneRouterPacketsForwarded” 
records the aggregate number of packets forwarded by each backbone router over all 
measurement intervals. Similar files, beginning with the names 
“SubnetRouterPacketsForwarded” and “LeafRouterPacketsForwarded”, report the same 
measure for each POP and access router. 

Files reporting the spatiotemporal evolution of routers contain a time series with 
one row for each measurement interval. Each row contains multiple columns. The first 
column gives the measurement interval with which the row is associated and the 
remaining columns give a measure for each appropriate router, depending upon category. 
Thus, for the topology shown in Fig. 3-1, time series related to backbone routers would 
contain rows of 12 columns, while time series related to POP routers would contain rows 
of 23 columns. Similarly, any time series related to access routers would contain rows of 
140 columns. 
                                                 
9 MesoNet code refers to second-tier routers as Subnet routers rather than POP routers and refers to third-
tier routers as Leaf routers rather than access routers. 
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The file beginning with the name “BackboneRoutersActiveFlows” records the 
number of active flows transiting each backbone router at the end of each measurement 
interval. Similarly, files beginning with the names “SubnetRoutersActiveFlows” and 
“LeafRoutersActiveFlows” report the number of active flows transiting each POP and 
access router, respectively. The file beginning with the name “BackboneRouterLosses” 
records the number of packets discarded by each backbone router in each measurement 
interval. Similar files beginning with the names “SubnetRouterLosses” and 
“LeafRouterLosses” records drop by each POP and access router. 

  The file beginning with the name “BackboneRoutersQLength” reports the ratio 
of packets queued to buffer size for each backbone router at the end of each measurement 
interval. Similar files, beginning with the names “SubnetRoutersQLength” and 
“LeafRoutersQLength” report the same ratio for each POP and access router. The file 
beginning with the name “BackboneRouterUtil” records the ratio of packets forwarded to 
capacity for each backbone router in each measurement interval. Similar files, beginning 
with the names “SubnetRouterUtil” and “LeafRouterUtil” record the same ratio for each 
POP and access router. 

 
3.3.6.2 Measurements Unique to Access Routers. MesoNet reports six additional 
measures that are recorded only for access routers. These additional measures relate to 
the activity of flows transiting specific access routers. Table 3-8 gives a summary. 

 
Table 3-8. Summary of Added Measures Reported by MesoNet for Access Routers 

 
Access-Router Measure General Definition 

Connection Failures The number of failed connection attempts for flows transiting 
each access router 

NAKs The average number of NAKs on flows transiting each access 
router 

No Receivers The number of instances when no receivers where available 
under each router 

SYN Rate The ratio of SYNs sent to first SYNs sent on flows transiting 
each access router  

Timeouts The average number of timeouts on flows transiting each 
access router 

Window Increases The average number of window increases on flows transiting 
each access router 

 
The file beginning with the name “LeafConnectionFailures” reports the number of 

connection failures during a measurement interval for flows that would have transited 
each access router. This includes flows where either an intended source or receiver was 
subordinate to the access router. The file beginning with the name “LeafNAKs” records 
for each measurement interval the average number of NAKs received on flows transiting 
each access router. Similar files, beginning with the names “LeafTimeouts” and 
“LeafWindowIncreases”, report for each measurement the average number of timeouts 
and congestion-window increases, respectively, on flows transiting each access router. 
The file beginning with the name “LeafNoReceivers” reports for each measurement 
interval the number of times each access router could not accommodate a flow because 
no receiver was available. Finally, the file beginning with the name “LeafSYNrateLeaf” 
records for the ratio of SYNs sent to first SYNs sent during connection establishment 
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procedures involving each access router. This file reports the average SYN rates each 
time a measurement buffer is dumped. Each report is preceded by a header line indicating 
the number of measurement intervals over which the SYN rate was averaged.   

3.3.7 Optional, Link-Level Measures 
MesoNet allows an experimenter to select up to one simulated (unidirectional) link to 
monitor in each router tier. Link selection is controlled by three parameters in the 
configuration file. Parameter BB_LINK_TO_MONITOR identifies which backbone link in 
the topology will be monitored. Backbone links are numbered sequentially for a specified 
topology. For example, given Table 3-1, setting BB_LINK_TO_MONITOR = 1 would 
monitor the link from backbone router A to B, while setting the parameter to 2 would 
monitor the link from backbone router B to A. Similarly, assigning a valid POP-router 
identifier from a topology to POP_LINK_TO_MONITOR will activate monitoring on the 
incoming link from a parent backbone router to the designated POP router. POP routers 
are identified with sequentially increasing integers from one (POP router A1 in Fig. 3-1) 
to the number of POP routers (i.e., the identifier is 22 for POP router K2 in Fig. 3-1). A 
third parameter, ACCESS_LINK_TO_MONITOR, controls monitoring on an incoming link 
from a parent router (either backbone or POP) to an access router. The link is specified 
by assigning ACCESS_LINK_TO_MONITOR a valid access-router identifier. Access routers 
are identified with sequentially increasing integers from one (access router A1a in Fig. 3-
1) to the number of access routers (i.e., the identifier is 139 for access router K2d in Fig. 
3-1). By default all link-selection parameters are set to zero, which means that no links 
are monitored. 

When link monitoring is active, MesoNet records the number of packets transiting 
each monitored link during each measurement interval and writes this information as a 
time series, where each row contains one two-column observation. The first column 
identifies the measurement interval and the second column gives the number of packets 
observed transiting the associated link during the measurement interval. The file 
beginning with the name “MonitoredBBLink” contains the time series for the specified 
backbone link. Similar files, beginning with the names “MonitoredSubnetLink” and 
“MonitoredLeafLink”, hold the time series for the specified POP and access links. Link-
monitoring files will not be produced if link monitoring is inactive. 

3.3.8 Augmenting Measures 
MesoNet can be augmented by an experimenter to make specific measures that are not 
already incorporated. The purpose of this section is to describe the general approach one 
should take to accomplish such augmentation. The approach is illustrated by an example 
involving capturing a traffic-flow matrix. This augmentation is already incorporated into 
MesoNet as a set of comments. Reviewing these comments should provide further 
guidance regarding how to augment the measures recorded by the simulation. 

To extend measurements made by MesoNet, one must add: (a) an array to hold 
the measurement of interest, (b) code to write the measurements to disk, (c) code to clear 
the measurement array and (d) in-line code to make the required measurements at the 
appropriate points in the model. To illustrate how this might be done, we consider an 
example where an experimenter decides to monitor traffic flows from selected 
observation points in a network to each access router. 
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First, one would define an array to hold the measurement of interests. In this case, 
the definition is for a three-dimensional array: 

 
int inBoundPackets[NUMBER_OBSERVATION_POINTS][LEAF_ROUTERS][M_BUFFERS] 

 
used to count packets. The first dimension is the number of observation points; the 
second dimension is the number of access (leaf) routers; the third dimension is the 
number of measurement intervals in one measurement buffer. In this case, the number of 
observation points is defined to equal the number of POP routers plus the number of 
directly connected access routers. The definition of the number of observation points is 
applied automatically, as long as the number of POP routers and the number of directly 
connected access routers is specified in the topology file. 

Next, one adds code to the write_measurements( ) procedure. The added code must 
do four things: (1) define a name for the file in which measurements are recorded, (2) 
open the file, (3) append the measurements to the file and (4) close the file. The 
conventions for naming measurement files are to prefix a directory name (Dname) to the 
file name chosen by the experimenter and to append a time stamp (RTC), followed by the 
extension “.txt”. The values for Dname and RTC are already defined by the program, so 
the experimenter must use them. Here is an example of the code to define the name for 
the file to record a traffic-flow matrix: 

 
write string=Fname(Dname, RTC) ".//_//FlowMatrix_.txt". 

 
This code places the constructed file name into the variable Fname. This must be 
followed by a statement that opens the file for append. Then one provides code to loop 
through the three-dimensional array and write out each measurement. In this case, each 
line written will contain four fields: (1) the number of the observation point where the 
traffic was observed, (2) the number of the access router to which the traffic was bound, 
(3) the measurement interval in which the observation was made and (4) the number of 
packets observed. The measurement-writing code automatically tracks the starting 
(previousEnd) and ending (currentEnd) measurement intervals for the measurement buffer; 
thus, the measurement interval is identified by adding the appropriate loop-control 
variable to the variable previousEnd. (For more details, the reader should see the related 
source code at the end of the write_measurements( ) procedure.)  After writing out the 
buffer, the file must be closed because the file descriptor is reused for each file that is 
written. 

 The experimenter must also provide code in the clear_measurements( ) procedure 
so that the measurement buffer can be cleared after it is written to disk. The exact nature 
of the clear code depends on the construction of the measurement array. At the outermost 
level, the clear procedure loops through the measurement intervals (i) in the buffer. Thus, 
for arrays dimensioned only on time, one can simply add code in this outer loop. The 
clear procedure also loops through various second (j) dimensions (e.g., POP routers, 
access routers, backbone routers, flow types and long-lived flows). Due to this, one can 
add code to clear the flow matrix under the loop through access routers. However, the 
flow matrix has a third (k) dimension (observation points), so one must add a loop over 
the observation points. Inside this innermost loop, one simply sets inBoundPackets[k, j, i] 
equal to zero. 
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All that remains is to add code to record the required measurements. This must 
either be done in-line in elements of the model or in the forever loop within the actions 
clause of the class StateMonitor. Where to add the measurement code depends on the 
nature of the measurements. Sample-oriented measurements, taken periodically, should 
be added to the class StateMonitor, while event-oriented measurements, recorded when 
they occur, should be added in-line within the appropriate model elements. Recording of 
the flow matrix requires event-oriented measurements, so code must be added in-line. In 
this case, we wish to record each packet that successfully reaches an outgoing access 
router when sent from each source or receiver. This means that we must increment the 
inBoundPackets array in both sources and receivers. For a source, this requires 
incrementing the array each time a packet is injected successfully. A source injects 
packets in four places: (a) upon initially attempting to connect (SYN), (b) upon retrying a 
connect attempt (SYN), (c) when initially sending a data (DT) packet after becoming 
connected and (d) when sending each subsequent data (DT) packet. Thus, one must add a 
line of code to increment the array in each of these places. For a receiver, there is only 
one place where packets are injected into the network; thus, one must add a line of code 
at this point to increment the array. (The user can find these five places in the model code 
by searching for inBoundPackets).   

3.4 Tracing Flow Behavior 
To support debugging or to enable monitoring of individual behavior of flows, MesoNet 
provides facilities to print traces associated with selected flows. The model traces only 
one flow at any given time and randomly selects which flows to trace. When the flow 
currently being traced is closed, then tracing also ceases for that flow. When a flow turns 
on and no flow is currently being traced, then the new flow is selected for tracing. (If one 
knows the identity of a specific flow that should be traced, then the tracing variable may 
be set directly in the code to ensure that the desired flow is traced.) 

 In general, the tracing of flow behavior is disabled10 because copious file writes 
occur and the model can be slowed significantly or (for large, long runs) can produce 
massive amounts of trace information. To enable flow tracing, one needs to define a 
symbol TRACE_TCP. This symbol is already defined in the code; however, by default the 
symbol is commented out – thus, to activate tracing, one simply must uncomment this 
symbol. Once tracing is activated, MesoNet will generate two files: (a) one file, whose 
name begins with “TCPstate”, that records the values of flow state variables at the time of 
particular events by the source associated with the flow being traced and (b) a second file, 
whose name begins with “TCPmessages”, that records each packet sent or received by 
the source associated with the flow being traced. 

3.4.1 Tracing Flow States 
For each flow being traced, MesoNet records the values of the variables defining the state 
of the flow’s source. These state variables are recorded each time a significant event 
occurs. Significant events include: (a) initial congestion window (CWND) established, 
(b) CWND increased, (c) CWND decreased and (d) timeout. Additional recording is 

                                                 
10 The user is advised to activate flow tracing only for small, short simulations. Typically, flow tracing is 
used only for purposes of debugging or verification. 
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possible by defining a symbol WINDOW_CHECK. When this symbol is defined, state 
variables will also be recorded each time an ACK is received and a check is made 
regarding whether or not the CWND should be increased. 

 Each state recording consists of a single line in the associated file. The line 
contains 22 state variables. The first variable (Time) gives the time step when the event 
occurred, while the second variable (Event) identifies the stimulating event. The next six 
variables describe the flow, giving the source (Tx) and receiver (Rx), the type of 
congestion control algorithm (Type) used on the flow, the flow class (Flow), the time the 
flow started (OnAt) and the number of packets (MustDeliver) in the flow. Two additional 
variables outline the general progress of the flow, including (UnDelivered) how many 
flow packets remain undelivered (i.e., have not yet been acknowledged by the receiver) 
and (DTsSent) how many flow packets have been sent. The remaining dozen values give 
the detailed state of the flow variables, including (Phase) the phase of the flow (e.g., slow 
start or congestion avoidance), the current size (cwnd) of the congestion window and the 
current value (ssthresh) of the slow-start threshold. These state variables also include 
(unSentDTs) the number of packets that can be sent by the source and (unACKed) the 
number of unacknowledged packets that have been sent. Also provided are the values of 
four sequence numbers: (a) (nexSEQ#) the next sequence number that may be sent by the 
source, (b) (HighestACK) the highest sequence number from the receiver, (c) (lastNAK) 
the value of the source’s next sequence number to be sent when the last NAK was 
processed by the source and (d) (TOseq) the value of the source’s next sequence number 
when the last timeout occurred. The remaining three state variables relate to establishing 
a timeout period. These variables include the next time step (CRTO) when a timeout will 
occur, the number of time steps (RTO) that will be added to the current time to establish 
the time of the next timeout and the latest estimate of the smoothed round-trip time 
(SRTT) measured on the flow.   

3.4.2 Tracing Packets 
MesoNet also traces packets as they are sent and received by the source on each flow that 
is traced. Each packet transmission and reception is recorded on one line of the associated 
trace file. Each line records five variables from the packet. The recorded variables 
include: the time step (Time) when the packet was sent or received, the source (Tx) and 
receiver (Rx) of the flow associated with the packet, the type (Type) of the packet and the 
sequence number (SQ#) of the packet. Note that packets sent by the receiver will be 
recorded only if and when they reach the source. On the other hand, packets sent by the 
source will be recorded when they are sent, regardless of whether or not they reach the 
intended receiver.  

3.5 Notes on Model Construction with SLX 
This subsection provides a brief guide to the model constructed using the SLX [84-85] 
simulation language and development environment. The intent of this section is to guide 
those who wish to review the model source code. This section is not intended to provide a 
detailed description of the code11. MesoNet is constructed from three SLX files: (a) a 

                                                 
11 MesoNet source code is freely available from the authors. Note, however, that executing MesoNet 
requires the SLX run-time environment, which is available commercially from Wolverine Software. 
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configuration file, (b) a topology file and (c) a file defining behavior of model elements. 
Each of these files is described below in a separate subsection. The file descriptions are 
followed by a short discussion of the performance properties of MesoNet. 

3.5.1 Configuration File 
The configuration file (e.g., MesoNetconfigDE.slx) provides the vehicle for defining 
configuration parameters, explained in Sec. 3.2. The configuration-file parameters are 
grouped (using comments) with the same headings as given in the subsections of Sec. 
3.2; the parameter names in the source file conform to the parameter names used in those 
subsections. To support sensitivity analyses and other experiments, the model 
configuration file may be broken into two parts containing: (a) model parameters that 
remain fixed across experiment runs and (b) model parameters that change with each run, 
as guided by an experiment plan. In such cases, the variable portion of the file may be 
constructed by a configuration generator. This approach was used for the experiments 
described in subsequent sections of this report. When reviewing the source code 
associated with these experiments, one will likely find two configuration files for each 
run, where the parameters described in Sec. 3.2 are divided among the two files 
depending upon whether the parameters remain fixed or are varied from run to run. 

3.5.2 Topology File 
The topology file (e.g., MesoNet-AbileneTopologyIIc.slx) defines the layout and 

characteristics of routers and links under which sources and receivers will be deployed. 
The information in the topology file is used at the start of a simulation to construct a 
simulated topology. A topology file begins by defining the number and type of routers 
included in the topology, as well as the number of backbone links. The file also includes 
some type definitions to define the classes of routers that may attach to backbone routers 
and to POP (subnet) routers, as well as the classes of access (leaf) routers included in the 
topology. For each backbone link, the topology file defines (see array LP_DELAY) the 
one-way propagation delay (in time steps). These delays are scaled by the value of the 
deltaX parameter, which may alter the link propagation delays. Since the deltaX parameter 
is defined in the configuration file, the topology file must be included after the 
configuration file. 

 The topology file also contains a 2-D matrix (FORWARDING_LINK) defining the 
backbone link over which packets should be forwarded when bound between two 
backbone routers. The first dimension represents the source backbone router and the 
second dimension represents the destination backbone router. Two auxiliary matrices 
(SOURCE_BACKBONE_ROUTER and SINK_BACKBONE_ROUTER), which are indexed by 
backbone link, define the source and sink backbone router associated with each backbone 
link. This information is used to connect backbone routers and links when generating the 
topology. 

Another 2-D matrix (ROUND_TRIP_DISTANCE) defines the round-trip times used 
to seed initial estimates of the round-trip delay in each direction between any pair of 
backbone routers in the topology. The estimates are computed by summing the one-way 
propagation delays associated with all backbone links transited along the forward and 
reverse path defined for each route between each pair of backbone routers. A variable 
(EB_DELAY) defines an estimated buffer delay (in time steps) that is added to the round-
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trip propagation delay in order to account for some amount of queuing delay that may be 
experienced on a route. The seed estimates from ROUND_TRIP_DISTANCE are used by 
flows as an initial guess for the round-trip time that might be expected on a path. The 
initial guess for the round-trip time is used to set the initial timeout period for a flow.  

Connections of POP and access routers to backbone routers are described by a 2-
D matrix (SUBNET_PER). The first dimension represents the backbone routers in the 
topology. The second dimension represents the class of routers (e.g., POP and directly 
connected access routers) that may connect to the backbone. The information contained 
in this matrix is used to generate POP and directly connected access routers under each 
backbone router in the topology. 

Connections of access routers to POP routers are specified by a three-dimensional 
matrix (LEAF_PER). The first dimension represents a backbone router. The second 
dimension represents the maximum number of POP (subnet) routers that may exist under 
any backbone router. The third dimension represents the class of access routers (e.g., fast 
or normal) that may exist under a POP router. The information contained in this matrix is 
used to generate (fast and normal) access routers under each POP router in the topology. 
Several topology files have been defined for use with MesoNet. 

3.5.3 Model Behavior File 
The main model file defines the behavior of model elements (as discussed previously in 
Sec. 3.1.1) and the overall behavior of the simulation. The main model file also defines 
measurement buffers, parameter mappings, auxiliary procedures and sets into which 
model elements of various types are sorted. Below, we discuss these features of the 
model in the following categories: (a) model elements, (b) simulation control, and (c) 
measurement buffers. We do not discuss parameter mappings or sets, which should be 
obvious from examining the source code. 
 
 3.5.3.1 Model Elements. The primary model elements are defined using SLX “active” 
classes, each of which has an individual behavior defined within an “actions” block. The 
active classes include: (a) LeafRouter, (b) SubnetRouter, (c) BackboneRouter, (d) 
BackboneLink, (e) Source and (f) Receiver. The behavior of each of these classes mirrors 
the description given earlier in Sec. 3.1.1. Each SLX class also includes an “initial” 
block, which is executed when the class is created. The “initial” block acts as a class 
constructor, establishing initial conditions. One active class, Source, also contains two 
methods (state and message) that support flow tracing. (Note that all active classes 
defined in this model are self-activating because the last statement of the “initial” block 
activates the class.) One “passive” class, Packet, encompasses the remaining model 
element. The contents of the Packet class mirror the description given above in Sec. 3.1.3.  
 
3.5.3.2 Simulation Control. The simulation is started and controlled from the SLX “main” 
procedure, which is located at the end of the source file. The “main” procedure is also 
supported by a few auxiliary classes and procedures, which are discussed as the need 
arises. Model execution begins by constructing the timestamp (RTC) and the directory 
name (Dname) used to identify the model output files. If flow tracing is enabled, the 
associated output files are also created and opened at this time. Subsequently, the 
topology is examined, using procedure computeAverageRTT( ), and the associated round-
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trip propagation delays are reported. Then the simulated topology is created, starting from 
the backbone routers downward. Each backbone router creates its own subordinate 
routers and those subordinate routers create their own children. The backbone links are 
constructed after the routers. Once the topology is constructed, the average buffer size is 
computed and reported for each router class (i.e., backbone, POP and access). 

Next, the “main” procedure uses procedure createLongLivedFlows( ) to set up any 
long-lived flows that have been defined in the configuration file. Each long-lived flow is 
scheduled, using procedure scheduleLongLivedFlow( ), which creates a new source and 
receiver for the flow and sets initial conditions so that the flow is already connected and 
ready for data transfer at the desired time. As a final step, the procedure uses the SLX 
anonymous “fork” construct, which splits the processing into two independent “threads”, 
the calling thread and a forked thread. Upon returning from the procedure, the forked 
thread waits until the simulation reaches the time step when the long-lived flow should 
begin and then completes activation of the associated source and receiver. 

The main procedure uses the procedure writeConfiguration( ) to generate a file 
containing the settings of MesoNet parameters for a given run. When adding parameters 
to MesoNet, one should also insert related parameter-reporting code in procedure 
writeConfiguration( ). The inserted reporting code should follow the pattern of existing code 
within the procedure. 

Prior to commencing the simulation, the “main” procedure also creates an 
instance of the StateMonitor class, which periodically makes measurements of the 
simulated system, manages the measurement buffers, writes measurement data to files 
and clears measurement buffers. To accomplish some of these operations, the StateMonitor 
class uses procedures write_measurements( ) and clear_measurments( ). As the last step 
before starting the simulation, “main” reports the date and time when the simulation 
started. The simulation commences when the “main” procedure delays itself, using an 
SLX “advance” statement, for the duration of the configured simulation time. In fact, the 
delay is slightly longer than the required time in order to permit the final measurement 
interval to be taken. Upon completing the simulation, the “main” procedure reports the 
date and time the simulation finished12. If appropriate, the flow-tracing files are closed 
and the “main” procedure terminates. 

3.5.3.3 Measurement Buffers. The measurement buffers defined for the simulation appear 
after the comment line reading “MEASUREMENT INFORMATION”. Note that some of 
the measurement buffers are guarded by #ifdef statements using the symbol SUBNETS. 
Similarly, one will find measurement statements within the source code also guarded by 
the same symbol. This permits these measurements to be skipped when a topology is 
defined without any POP routers.  

3.5.4 Performance Properties of MesoNet 
Performance of MesoNet is largely influenced by the performance of the SLX simulation 
compiler and run-time. As we will show, SLX performance is quite good. On the other 
hand, characteristics of the simulated configuration will also influence both processing 
time and memory requirements. We address these issues using samples from two 
experiments described in later chapters (Chapter 4 and Chapter 6). Table 3-9 provides a 
                                                 
12 Later versions of MesoNet include logic to periodically estimate a projected completion time. 
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summary of characteristic performance for MesoNet when used to conduct the two 
experiments. Both experiments adopt the topology presented earlier (recall Sec. 3.1.2). 

In a sensitivity analysis experiment, MesoNet was used to simulate 20 minutes of 
network evolution with an average of about 30 x 103 sources and 160 x 103 receivers. In 
these simulations, backbone routers operated at either 4.8 Gbps or 9.6 Gbps (depending 
on the configuration). A typical run required simulating about 10 million flows and 
processing around 1.2 billion packets. At any given time, about 10 x 103 flows were 
active and around 65 x 103 packets where in transit across the network. For a simulation 
of this scale, MesoNet required about 5.7 hours of processing time and around 166 
Mbytes of memory. 
 

Table 3-9. Characteristic Performance for MesoNet in Two Experiments 
 

 Experiment 
 Sensitivity-Analysis Comparison-Robustness 
Simulated Minutes 20 25 
Sources (avg.) 28.81 x 103 22.63 x 104 
Receivers (avg.) 160.79 x 103 167.52 x 104 
Total Flows (avg.) 971.557 x 104 874.4 x 105 
Total Packets (avg.) 607.814 x 106 554.833 x 107 
Active Flows (avg.) 9.991 x 103 32.194 x 103 
Packets in Transit (est. avg.) 63.291 x 103 350.949 x 103 
CPU Hours (avg.) 5.7 6.7 x 101 
Memory in Mbytes (avg.) 166 119.2 x 101 

 
In a comparison-robustness experiment, MesoNet was used to simulate 25 

minutes of network operation with an average of about 225 x 103 sources and 1.7 million 
receivers. In these simulations, backbone routers operated at either 96 Gbps or 192 Gbps 
(depending on the configuration). A typical run required simulating over 85 million flows 
and processing aver 11 billion packets. At any given time, about 32 x 103 flows were 
active and around 350 x 103 packets where in transit across the network. For a simulation 
of this scale, MesoNet required about 67 hours of processing time and around 1.2 Gbytes 
of memory.       

The comparison-robustness experiment increased the simulated system size by 
about an order of magnitude and ran the simulation for 25 % more simulated time, as 
compared with the sensitivity-analysis experiment. Thus, one might expect resource 
requirements to grow on the order of 12.5 times. The actual processing requirements 
grew by 11.75 times, which is within range of the estimate. (This nearly linear growth13 
in processing time may be attributed to the excellence of the SLX compiler and run-time 
environment.) The actual memory requirements increased only sevenfold. This increase 
was lower than the expected tenfold increase. The smaller than expected increase may be 
attributed to changes in the measurement strategy adopted between the two simulations. 
Further details about processing requirements and memory requirements are provided 
below. 
                                                 
13 In subsequent experiments (see Chapter 9 vs. Chapter 8), simulating much larger networks with much 
higher router speeds for one hour of network operation, we found a 10-fold increase in network size and 
speed led to a 16-fold increase in processing time. We attribute this to a substantial increase in the size of 
the event lists that SLX needed to manage. 
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Table 3-10. Processing Requirements for MesoNet in Two Experiments 

 
 Experiment 
 Sensitivity-Analysis Comparison-Robustness 
CPU Time (s) per  
simulated flow-minute 0.17 0.49 

CPU Time (us) per  
simulated packet 33 44 

3.5.4.1 Processing Requirements. As shown in Table 3-10, for the sensitivity-analysis 
experiment, MesoNet required an average of 170 milliseconds of CPU (central-
processing unit) time to process a simulated flow-minute, while requiring 490 
milliseconds per flow-minute under the comparison-robustness experiment. Table 3-10 
also shows that the processing time per packet increased (by 33%) from the sensitivity-
analysis experiment to the comparison-robustness experiment. The increase in per-packet 
processing time may be attributed to the increase in the size of simulation state (e.g., 
event lists) that SLX needed to process under the comparison-robustness experiment. The 
increase in processing times exhibited between the two experiments is quite reasonable. 
 

Table 3-11. Memory Requirements (Mbytes) for MesoNet in Two Experiments 
 

 Experiment 
 Sensitivity-Analysis Comparison-Robustness 
Sources 16.8 100.6 
Receivers  20.6 214.4 
Sets and Membership 25.5 256.9 
Simulation Processing State 26.7 251.6 
Measurement Buffers 40.5 10.1 
Other Memory 38.3 299.1 

 
3.5.4.2 Memory Requirements. Table 3-11 shows the average allocation of memory by 
SLX for each of the two experiments. The memory allocated to sources and receivers 
reflects the number of each of these objects in the simulation. Sets and set membership 
includes memory associated with static model categories, as well as packet queues within 
routers, links, sources and receivers. Simulation processing state encompasses memory 
allocated to active objects, as needed to manage time evolution of the simulation. 
Measurement buffers are allocated as directed by the configuration file. The remaining 
memory is associated with the SLX run-time, with routers and links and with packets 
transiting the simulated network.   

As shown in Table 3-11, and as expected, memory requirements generally expand 
by about an order of magnitude across the board. The exception is memory allocated for 
measurement buffers, which decreases for the comparison-robustness experiment to ¼ 
the size required for the sensitivity-analysis experiment. This occurs because the 
sensitivity-analysis experiment allocates measurement buffers to cover 6 x 103 
measurement intervals, while the comparison-robustness experiment allocates memory 
for only 1.5 x 103 measurement intervals. As a tradeoff, the measurement buffers must be 
written to disk five times during each run of the comparison-robustness experiment but 
only once at the end of the sensitivity-analysis experiment. 



Chapter 4 – Sensitivity Analysis of MesoNet  
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4 Sensitivity Analysis of MesoNet 
This section discusses a sensitivity analysis of MesoNet, along with related correlation 
and principal components analyses. Sensitivity analysis [94] varies settings of a model’s 
input parameters and assesses resulting changes in model outputs. Correlation analysis 
[90] examines the way in which two outputs vary with relation to each other when 
exposed to the same conditions. Principal components analysis generates orthogonal 
linear combinations of weighted measures that account for variance in model outputs. 
Here, we conduct a sensitivity analysis to understand the behavior of MesoNet and to 
discover the most significant model inputs that influence model response. To assess 
relationships between model inputs and outputs we use a 10-step graphical analysis 
technique developed at NIST. In addition to allowing analysis of input-output 
relationships, exercising a model over a wide range of its parameter space helps to reveal 
software implementation errors, which can be corrected prior to applying the model in 
particular studies. We use correlation and principal components analyses to identify 
significant aspects of MesoNet behavior. In general, application of correlation and 
principal components analyses can help to reduce the number of responses that must be 
used in subsequent statistical analyses. The results of our analyses serve to validate that 
MesoNet reasonably represents the macroscopic behavior of a network of TCP flows. 
The results of our analyses also help to answer some questions raised in the literature 
regarding the applicability of particular findings from small-scale simulations to a larger 
network. 

The current practice of network modeling omits the use of sensitivity analyses, 
despite the fact that network researchers understand the benefits of such analyses [70, 
72]. Why is this so? Most network simulators [76-83] are quite detailed, involving 
hundreds of parameters with potential settings that can range over many values. Running 
such simulations with large topologies and billions of TCP flows can be a daunting task, 
requiring substantial computational resources. In addition, configuring the parameter 
settings in such simulations can be time-consuming and tedious. Sensitivity analysis 
requires running a simulation through many combinations of settings. Thus, configuring 
and computing the required combinations for a detailed model with a large parameter 
space is infeasible. 

Recently, two groups of researchers developed hybrid models [71, 73] that aim to 
reduce the computational requirements and range of parameters necessary to simulate 
TCP flows in reasonably large topologies. MesoNet was motivated by the same aims: 
establishing a new class of network models that can simulate many flows operating over 
a large network topology, while maintaining reasonable configurability and 
computational requirements. For example, MesoNet has on the order of 20 fundamental 
parameters and, depending on specific parameter settings, can simulate tens of billions of 
flows in days or weeks of processing time on commercial servers using x86-compatiable 
chips with cycle speeds of 2.6 GHz to 3.66 GHz. Thus, it becomes possible to 
contemplate conducting sensitivity analyses for this new class of network models. 

Still, 20 parameters, each with a large possible range (n) of values, can suggest a 
large space of (n20) combinations to consider. To circumvent such a problem, experiment 
designs used in many scientific disciplines have long adopted an approach where the 
range of values for system parameters is limited to a small number, typically two or three, 



Study of Proposed Internet Congestion Control Mechanisms NIST 

Mills, et al. Special Publication 500-282 72 

referred to by experiment designers as levels. As explained previously in Chapter 2, this 
approach, when applied to MesoNet, could limit the number of combinations to 220 (just 
over a million). Still, running a million experiments would prove challenging when each 
experiment requires several days of processing time. Of course, individual combinations 
could be spread across independent processors to reduce the latency before all 
combinations are completed. For example, if 25 (32) processors were available, then 220 
simulations could be reduced to only 215 serial executions. However, if each simulation 
required two days, then these simulations would still take 216 days to complete. No one is 
willing to wait 180 years to collect data for a sensitivity analysis. Adding 32 additional 
processors to conduct the simulations would reduce the latency to around 90 years. Each 
additional 32 processors would cut the time further. Perhaps one day soon computation 
servers will offer 216 processors in an affordable package. Such a computation engine 
would allow us to complete 220 MesoNet simulations in about one month. In the 
meantime, we must adopt another approach to solve the problem. 

Many scientific disciplines face situations where the number of desired 
experiments (even when considering only two levels per parameter) is unaffordable due 
to issues of cost or time. The best available practice in such situations is to use orthogonal 
fractional factorial (OFF) experiment designs [89] tailored to provide the maximum 
possible information from an affordable number of experiments. For example, if we 
could afford to run only 28 (256) MesoNet simulations, then we would use a 220-12 OFF 
experiment design. Such a design would select 256 combinations of parameter settings 
that allow us to probe the parameter space in a balanced and orthogonal form. A balanced 
experiment design means that all combinations of parameter settings will be given an 
equal number of observations. An orthogonal experiment design means that observations 
will be spread equally throughout the space of possible parameter combinations. The 
properties of balance and orthogonality yield significant benefits when conducting 
statistical and graphical analyses of experiment data. In addition, properly selected 
combinations of parameters will limit the amount of confounding that arises when 
analyzing experiment data. When confounding arises a particular observed effect cannot 
be clearly attributed to a single factor or interaction of factors. Sometimes, domain 
knowledge can be used to resolve the uncertainty from confounding; however, one 
should strive to create an experiment design that eliminates confounding among at least 
the main effects1 and as many two-parameter and three-parameter interactions2 as 
possible. OFF experiment designs can be combined to good effect with a 10-step 
graphical analysis technique used in many scientific studies conducted at NIST. This 10-
step technique is explained in Appendix D using detailed examples drawn from this 
sensitivity analysis. 

 The remainder of this chapter is organized into eight sections. Sec. 4.1 outlines 
our method for experiment design and analysis. Sec. 4.2 describes the specific 
experiment design used for the sensitivity analysis of MesoNet. Sec. 4.3 discusses the 
execution of the simulations and the data collection techniques. Sec. 4.4 presents a 
correlation analysis of 22 responses collected from each of the experiment executions. 

                                                 
1 Main effects are changes in model response that can be attributed to changes in individual model 
parameters (or input factors). 
2 Interactions occur when changes in model responses can be attributed to simultaneous changes in multiple 
(e.g., two or three) model parameters. 
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Sec. 4.5 uses principal components analysis (PCA) as an alternate means to investigate 
relationships among the responses. Section 4.6 details the sensitivity analysis of 
MesoNet.  In Sec. 4.7 we consider the effects of buffer sizing on network behavior. We 
conclude in Sec. 4.8.  

4.1 Method 
We use a method that involves five main elements. First, we use 2-level orthogonal 
fractional factorial experiment design (Sec. 4.1.1) to yield maximum information using 
the available computing resources. Second, we select candidate responses (Sec. 4.1.2) to 
analyze. Third, we employ correlation analysis and clustering (Sec. 4.1.3) along with 
principal components analysis (Sec. 4.1.4) to identify significant behaviors represented 
within the candidate responses. Third, we apply a 10-step graphical analysis (Sec. 4.1.5 
and Appendix D) to provide insight into the main input parameters (or factors) driving 
the behavior of the simulation model. In addition, we augment our analyses with various 
exploratory plots (e.g., Sec. 4.1.6) designed to shed light on specific questions of interest. 
Below, we elaborate on these elements. 

4.1.1 Experiment Design 
We consider our model in the form of following equation: [y1, y2, … yM] = f(x1, x2, … xN), 
which represents the model as a function transforming its N inputs (factors) into M 
outputs (responses). Designing an experiment consists of four main steps. First, we 
identify the N factors (model parameters) whose influence on system behavior we would 
like to investigate. Second, we select the number (L) of levels and then the settings (s1, s2, 
… sL) for each level of each factor (x1s1, x1s2, … xNsL). Third, we specify the 
combinations of factor settings that we intend to simulate. Fourth, we identify the M 
responses we are interested in investigating. We discuss each of these steps in turn.  
 
4.1.1.1 Identify Factors. At a maximum, the factors include all parameters associated 
with a model of interest. Of course, this can be quite a large number, so one may wish to 
limit the specific parameters to investigate. Some parameters might specify control 
details, such as the number or granularity of measurement intervals and the seeds of 
random number generators. Typically, these may be fixed to specific values during a 
sensitivity analysis. Fixed parameters are not factors to be investigated in a set of 
experiments. 

If the number of factors is still too large, other reduction steps may be adopted. 
For example, one may fix various factors and conduct sensitivity analyses with a limited 
number of runs. Repeating this process with various groupings of factors may identify 
some parameters as having limited influence on system behavior, at least for the range of 
settings envisioned for a particular experiment. Parameters that appear to have limited 
influence can be fixed during a sensitivity analysis that investigates more significant 
parameters. Domain expertise may also be applied to select various parameters to fix. 
One should exercise care in fixing particular parameters because some important 
elements of system behavior could be missed. Once parameters have been classified as 
fixed or variable for a given set of experiments, the variable parameters become the N 
factors for the experiment.  
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4.1.1.2 Select Number of Levels and Level Settings for Factors. Selecting the number of 
levels for an experiment determines the maximum number of combinations (LN) that will 
be investigated. The most common practice in engineering experiments is to specify 2-
level (L = 2) designs, which yield 2N as the maximum number of combinations. 2N 
designs result in nice properties of balance and orthogonality when OFF designs are used 
to reduce the number of combinations in a particular experiment. For this reason, we 
adopt L = 2 in our sensitivity analysis. 

Given L = 2, one needs to select values for each of the N factors at each of two 
levels. This mapping of levels to factors yields specific parameter values to be used in a 
set of experiment executions. The two levels are typically encoded as a plus (+1) level 
and a minus (-1) level. This form of encoding simplifies many mathematical 
transformations that are applied during experiment design and data analysis. By 
convention, the larger value of a setting is assigned to the +1 level and the smaller value 
is assigned to the -1 level.3 

Selecting the specific settings for the +1 and -1 levels of each factor is a key step 
that relies on domain expertise of an experimenter. Little general guidance exists because 
specific domains of investigation vary widely. In general, settings should be selected so 
as to be both realistic in the domain and also to stimulate the system sufficiently to reveal 
differences in response. When experiments are done using computers, preliminary 
simulations can be used to probe for the effects of varying specific parameters. No matter 
what settings are chosen, the analysis method relies upon an assumption that responses 
vary monotonically over the range of settings investigated. In cases where behaviors are 
non-monotonic, analysis of experiment data could completely miss significant and 
important behaviors. Further, the conclusions from data analysis are limited to (i.e., 
robust over) the range of settings investigated. For this reason, it is often prudent to run a 
second sensitivity analysis using different level settings to confirm conclusions from an 
initial sensitivity analysis. As discussed in Appendix C, we adopt this measure of 
prudence in our sensitivity analysis. Later, we plan to conduct a more complete 
sensitivity analysis with N = 20, covering the entire MesoNet parameter space.  
 
4.1.1.3 Select Specific Combinations to Simulate. Ideally, one would run a full factorial 
experiment that simulates all 2N possible combinations of level settings and factors. 
Often, though, executing 2N runs would be unaffordable. For example, we selected (N =) 
11 factors for our sensitivity analysis. A full factorial experiment would require 211 
(2048) runs. We could spread those runs over 16 processors, but each run requires 
between four and 10 hours of processing. We estimated that running a full-factorial 
experiment would require about 32 days of computing time plus overhead associated with 
managing the process. Such overhead includes configuring and monitoring simulations, 
collecting and summarizing data and recovering from various hardware and software 

                                                 
3 Note that due to an encoding error in the design of our sensitivity analysis we inadvertently encoded 
higher network speed (our factor x2) as the -1 level and slower network speed as the +1 level. 
Unfortunately, this can lead to confusion when viewing some of the related plots. Despite this potential for 
confusion, the encoding approach works fine even when larger values are assigned to the -1 setting and 
smaller values to the +1 setting. Correcting this in our situation would require rerunning the related 
experiments, which would prove too costly.  
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failures that might arise. This illustrates that there may be other justified reasons for 
reducing the number of experiment runs even when one can afford the processing cost. 
 

 
 

Figure 4-1. Encoding Template for a 211-5 Orthogonal Fractional Factorial Experiment Design 
 
After estimating the time requirements for conducting a full-factorial experiment, 

an investigator must decide on the number of affordable runs. In making this decision, 
one should also consider the confounding effects that would arise for a particular choice. 
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For example, suppose we decided to limit the number of affordable runs to 64 instead of 
2048. We would then need to select a subset of (26) combinations from among the 
complete set of 211. Experiment design theory [89] labels such a design as a 211-5 (= 26) 
design. Experiment design theory also specifies which 64 combinations to select and 
reveals the resulting confounding structure for the experiment. 

Fig. 4-1, taken from Dataplot [92], a software package available from NIST, 
shows the +1/-1 encoding of a 211-5 OFF design as a matrix. Each row in the matrix 
represents a specific experiment run. Each cell in a given row specifies the level setting to 
be used for a designated factor (x1 through x11). Thus, having previously assigned +1/-1 
level settings for each factor, an experimenter need only map level settings according to 
this table to create the specific combination of experiment parameters for each run. 

Experiment design theory also specifies the precise confounding structure 
associated with this experiment design. A 211-5 OFF design has no confounding of main 
effects with two-factor interactions, which is a desired property of an experiment design. 
Some main effects are confounded with some three-factor and higher interactions, but 
most systems are not driven by such higher interactions. From this we conclude that a 211-

5 OFF design would yield significant information for our sensitivity analysis. 
A reasoning process such as outlined above should be used when selecting 

specific combinations to simulate. Of course, the reasoning process must be tailored to 
the specific number of factors and affordable runs. Experiment design theory provides 
appropriate algorithms to generate designs and determine associated confounding 
structures for any bounds of interest. The NIST Dataplot software [92] also provides 
encoded experiment designs and confounding structures for a range of typical OFF 
designs, as documented by Hunter and Box [89].   
  
4.1.1.4 Select Responses to Examine. Often simulation models can measure system 
response through tens to hundreds of outputs, which might represent aspects of fewer 
significant underlying model behaviors. Usually, experimenters select a subset of model 
outputs to analyze because considering all available responses proves too time 
consuming, too costly or computationally infeasible. MesoNet, for example, can monitor 
the time-varying average aggregate behavior of the network for about 20 responses, can 
report about 6 time-varying properties for every router in a topology and can measure 
average throughputs experienced by users in six topologically determined flow classes. 
Summarizing and analyzing all of this data would prove time-consuming. 

When choosing a subset of simulation outputs, experimenters may select outputs 
in a fashion that overemphasizes particular behaviors. These mistakes become 
particularly salient during careful exploration of a model’s parameter space, where 
experimenters seek to understand the response of a model to changes in input parameters. 
Overweighting significant model behaviors can yield misleading conclusions, thus some 
method is required to identify precisely the model outputs that correspond to each 
significant behavior. Fodor [93] describes this mathematically as a dimension reduction 
problem: “given the p-dimensional random variable x = (x1,…, xp)T, find a lower 
dimensional representation, s = (s1,…, sk)T with k < p, that captures the content in the 
original data, according to some criterion.” Fodor goes on to survey numerous linear and 
non-linear techniques that may be applied to reduce the dimension of high-dimensional 
data sets. Adopting any of these techniques would provide a principled approach that 



Study of Proposed Internet Congestion Control Mechanisms NIST 

Mills, et al. Special Publication 500-282 77 

experimenters could use to identify significant model behaviors from a large collection of 
model output data. Of course, one wonders whether some techniques are superior to 
others. Fodor identifies principal components analysis (PCA) as the best (in terms of 
mean-square error) linear dimension reduction technique. In our analysis we use two 
techniques to reduce dimension in MesoNet response data. We use PCA and we also 
combine correlation analysis and clustering (CAC). Applying both techniques allows us 
to compare and contrast their findings, which provides additional information about 
MesoNet behavior. 

4.1.2 Candidate Responses 
We chose to examine a set of 22 MesoNet responses to which we applied PCA and CAC 
to identify lower dimensional response spaces representing the most significant model 
behaviors. This information could help us validate our model and could also help us to 
reduce the number of responses to analyze in subsequent experiments. We selected our 
22 candidate responses from among the measurements (see Sec. 3.3) provided by 
MesoNet. We selected responses in two classes: (a) responses that depict macroscopic 
behavior of the network and (b) responses that indicate user experience for various flow 
classes. We discuss these response classes in turn. 
 
4.1.2.1 Responses Characterizing Macroscopic Network Behavior. We chose 12 
fundamental responses to characterize macroscopic network behavior and we augmented 
those with four derived responses in order to investigate how well the fundamental 
responses represented the intended information. Table 4-1 lists the responses we used to 
characterize macroscopic behavior. MesoNet records each response as a value associated 
with each measurement interval, providing a time series for each response. To compute 
the fundamental responses that we analyzed, we discarded data from the first 3000 of 
6000 measurement intervals recorded. We then averaged the remaining data (from the 
second 3000 intervals) to obtain a mean value for each response. To compute a derived 
response, we mathematically manipulated some combination of fundamental responses, 
sometimes including a factor setting. The details are given as appropriate in Table 4-1. 

We tracked the number of active flows (y1) over time and used that number to 
indicate the general amount of user activity in the network. Because more potential 
sources might lead to more active flows, we chose also to consider (y2) what proportions 
of potential flows were represented by the active flows. In this way, we could investigate 
whether the number of possible flows was a key determinant in the number of active 
flows, or whether the number of active flows was driven primarily by other factors. We 
measured separately the number of data packets entering (y3) and leaving (y4) the 
network because we wanted to understand what relationship, if any, exists between the 
rate at which packets are injected into the network and the number of active flows. Given 
the rate of packets entering and leaving the network, we could also measure the loss rate 
(y5), which should give us some rough indication of the amount of network congestion. 

While the rate of data packets leaving the network gives us some idea of 
aggregate throughput, we were also interested in investigating the ability of the network 
to complete flows (y6), which could be combined with the number of active flows to 
yield a flow-completion rate (y7). Since we implemented TCP connection establishment 
(explained in Chapter 5) procedures, congestion could lead connection establishment to 
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fail. We measured the number of connection failures (y8) and also related the failures to 
the number of active flows (y1) to create a connection-failure rate (y9). 
 

Table 4-1. Responses Characterizing Macroscopic Network Behavior 
 
Response Definition 

y1 Active Flows – flows attempting to transfer data 
y2 Proportion of potential flows that were active: Active Flows/All Sources 
y3 Data packets entering the network per measurement interval 
y4 Data packets leaving the network per measurement interval 
y5 Loss Rate: y4/(y3+y4) 
y6 Flows Completed per measurement interval 
y7 Flow-Completion Rate: y6/(y6+y1) 
y8 Connection Failures per measurement interval 
y9 Connection-Failure Rate: y8/(y8+y1) 
y10 Retransmission Rate 
y11 Congestion Window per Flow 
y12 Window Increases per Flow per measurement interval 
y13 Negative Acknowledgments per Flow per measurement interval 
y14 Timeouts per Flow per measurement interval 
y15 Smoothed Round-Trip Time 
y16 Relative queuing delay: y15/(x1x41) 

 
For active flows, we were interested in understanding the average level of 

congestion. We suspected that several measures of flow congestion should be correlated. 
We measured the average retransmission rate (y10) for flows, which we postulated 
should be about twice the loss rate. We also measured the average congestion window 
per flow (y11) – larger congestion windows indicate that flows should be receiving better 
throughputs. In addition to the congestion window size, we chose to measure the average 
number of window increases (y12) received per flow during each measurement interval. 
To determine to what extent retransmissions arose from indicated losses vs. timeouts, we 
measured the number of negative acknowledgments (y13) and number of timeouts (y14) 
per flow. 

Finally, we were interested in monitoring smoothed round-trip time (y15), which 
might provide some indication of congestion. We also wanted to see how changing buffer 
sizes influenced round-trip time. We computed a relative queuing delay (y16) by 
factoring out propagation delay from the smoothed round-trip time. We computed y16 
because we wished to discover if there would be any differences in the pattern between 
smoothed round-trip time and queuing delay. 

 
4.1.2.2 Responses Characterizing User Experience. Aside from aggregate network 
behavior, we were interested in exploring the throughputs received for the six possible 
flow classes allowed by MesoNet. This required monitoring six additional responses, as 
shown in Table 4-2. Here, the measure gives average instantaneous throughput for a flow 
in each class, so the metric captures the throughput for active flows rather than flows that 
have finished. As with the aggregate measures, we computed the average value for each 
flow class over the final 3000 measurement intervals of each simulation run. 
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Table 4-2. Responses Characterizing Instantaneous Throughput for Active Flows by Flow Class 
 

Response Definition 
y17 Average Throughput for Active DD Flows 
y18 Average Throughput for Active DF Flows 
y19 Average Throughput for Active DN Flows 
y20 Average Throughput for Active FF Flows 
y21 Average Throughput for Active FN Flows 
y22 Average Throughput for Active NN Flows 

 
We chose to examine the throughput of the various flow classes in order to 

determine whether or not different factors affect the throughput of flows transiting 
different types of access routers. We collected separate throughput data for flows that 
completed and for flows that completed in each flow class. For purposes of our 
sensitivity analysis, we decided not to analyze the throughput data for completed flows. 

4.1.3 Correlation Analysis and Clustering 
As part of our analysis we wish to investigate the sensitivity of various model responses 
to model inputs. Of course, we are also interested in learning relationships among the 
responses. A reasonable hypothesis might be that correlated responses are influenced by 
the same model inputs. Further, clustering correlated responses into significant model 
behaviors might allow us to reduce the number of responses analyzed in future 
experiments. To determine relationships among responses we conduct a correlation 
analysis using the techniques described in this section. First, we generate scatter plots 
among all response pairs. Second, we compute correlations among each pair of 
responses. Third, we combine the selected scatter plots and correlation values into a 
single visualization. The combined visual can be ordered using several techniques to 
reveal correlation groupings. Finally, we select a correlation threshold above which we 
wish to consider correlations, and then generate an ordered index-index plot to highlight 
correlation groups and to help select specific responses for further study. We explain 
these four steps below. To aid our explanation, we use designators for various responses. 
The designators are yN, where y denotes a response and N denotes the number of the 
response. Here, N may range from 1 to 22 to correspond with the 22 candidate responses 
described in Sec. 4.1.2. 
 
4.1.3.1 Y-Y Scatter Plots. Scatter plots of each pair of responses can visually reveal linear 
correlations and can also suggest structure beyond correlation. Fig. 4-2 shows a sample 
scatter plot between two responses from our sensitivity analysis. The abscissa gives 
values for response y22 (average instantaneous throughput among typical flows) and the 
ordinate gives values for response y7 (flow-completion rate). Perhaps unsurprisingly, the 
scatter plot reveals a positive linear correlation among the two responses. Higher 
throughput for typical flows, which are most numerous, leads to higher flow-completion 
rate. Perhaps surprisingly, the scatter plot also reveals a bifurcation in correlation 
structure. Attributable to the properties of our OFF experiment design, the scatter plot can 
be augmented to reveal the cause underlying this bifurcation. We discuss the use of other 
exploratory plots and analyses below in Sec. 4.1.6. 
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Figure 4-2. Enlargement of Sample Scatter Plot of Response y7 vs. y2 – y axis gives the flow 
completion rate (y7) as a proportion (ranging from 0 to 0.5, where each tick mark represents 0.05) and x 
axis gives average goodput of NN flows (y22) in packets per second (ranging from 0 to 300, where each 
tick mark represents 25 packets/second) 
 
4.1.3.2 Correlation Computations. We also compute correlations among all pairs of 
responses generated from our sensitivity analysis. We compute the signed values, which 
separate positive and negative correlations, and the absolute values, which allow us to 
order correlations by magnitude. Fig. 4-3 provides a sample table of correlations, ordered 
by magnitude, where magnitude > 0.9. The table consists of four columns: (a) absolute 
value of the correlation between a pair of responses (Yi and Yj), (b) the signed value of 
the correlation, (c) the identifier (i) of the first response in the pair and (d) the identifier 
(j) of the second response in the pair. Here, two subgroups are shown: (1) correlations > 
0.95 and (2) correlations > 0.9 and < 0.95. In this particular sample, all correlations are 
positive. 
 

 
 

Figure 4-3. Sample (and Partial) Table of Correlations among Response Pairs 
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We also plot a histogram (see Figure 4-4) of the absolute values of all pairs of 
correlations. This gives a concise view of the distribution of correlations. The histogram 
can help us select a threshold above which to consider the correlations. Fig. 4-4, for 
example, suggests that correlations greater than about 0.65 should be considered because 
there is a notable change above that value, appearing as a separate sub-distribution 
centered on a different mode. This sub-distribution includes around 40 of the 231 
correlation pairs computed.  

 

 
Figure 4-4. Sample Histogram of Correlation Magnitudes among Response Pairs (x axis  depicts 
correlation strength divided into 13 bins, where each bin spans a range of size ~0.075 and y axis gives the 
count, or frequency, of correlation pairs appearing in each bin)  
 
4.1.3.3 Combined Matrix Visualization. We can combine the response scatter plots and 
computed correlation values into a matrix visualization providing a concise view of all 
relevant information. Further, we can use color to highlight various correlation groupings. 
Fig. 4-5 gives a 6-x-6 subset taken from our complete matrix for all 22 responses. 

The diagonal of the matrix identifies a particular response associated with each 
column and row. The scatter plots are displayed to the right and above the diagonal and 
the associated correlation values (multiplied by 100, rounded and truncated) are displayed 
to the left and below. For example, consider the response y3 (data packets input per time 
unit), which is third on the diagonal in Fig. 4-5. The scatter plot in the cell directly to the 
right of y3 and above y4 (data packets output per time unit) depicts the linear correlation 
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between y3 and y4. The cell directly below y3 and to the left of y4 reads 99, which is the 
associated correlation value. Not surprisingly, the correlation is positive and quite high. 
Similarly, the scatter plot related to y2 (proportion of flows that are active) vs. y3 is 
shown in the cell directly above y3 and to the right of y2. The related correlation value 
(37) is given in the cell immediately below y2 and to the left of y3. Perhaps the weakness 
of this correlation is surprising. Other scatter plots and correlation values may be located 
similarly. For example, the scatter plot in the cell in the upper right-hand corner depicts 
y1 (number of active flows) vs. y6 (flows completed per time unit) and the related 
correlation value (-6) appears in the cell in the lower left-hand corner of the matrix. 
While the negative direction of the y1-y6 correlation is not surprising, the lack of 
correlation might be unexpected. 
 
 

 
 

Figure 4-5. Sample 6-x-6 Subset from a Combined Matrix of Scatter Plots and Correlation Values 
 

Thresholds may be selected for coloring the scatter plots and correlation values in 
the combined matrix visualization. In Fig. 4-5 we chose three colors, based on the 
magnitude of the correlation values. For correlation magnitudes 80 and above, we colored 
the related cells red. We colored cells blue for correlation magnitudes below 80 and 
greater than or equal to 30. The green cells represent correlation magnitudes below 30. 
After coloring, one can scan the matrix to visually group correlations by their strengths. 
The diagonal of the colored matrix may also be reordered, along with the related scatter 
plots and correlation values. Such reordering may readily indentify correlation groupings. 
For example, Fig. 4-5 could be reordered by descending mean, median or maximum 
correlation of each given response with all other responses. Later, in Sec. 4.3, we order 
our matrix by descending mean correlation, which nicely groups correlations among 
response pairs.    
 
4.1.3.4 Index-Index Plot. Fig. 4-6 shows an index-index plot involving all 22 responses 
from our sensitivity analysis. Guided by Fig. 4-4, we display only correlations with 
magnitudes above 0.65. The x and y axes in Fig. 4-6 both list all 22 responses in order of 
numerically increasing designator (N = 1 to 22). Then a grid is formed. A point is placed 
at each grid intersection when the magnitude of the correlation between the related pair of 
responses exceeds 0.65. In Sec. 4.3, we use this index-index plot but we reorder the axes 
in a different form. The resulting correlation groups, not obvious in Fig. 4-6, become 
quite apparent after the axes are reordered (for example, see Fig. 4-22).  
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Figure 4-6. Index-Index Plot Identifying Response Pairs with Correlation Magnitude above 0.65 

4.1.4 Principal Components Analysis 
Principal Components Analysis (PCA) provides another approach to identify significant 
behaviors in model response data. PCA aims to reduce the dimensionality of model 
responses by finding orthogonal linear combinations (i.e., principal components, or PCs) 
of the responses that account for the largest variance. In essence, PCA identifies as many 
PCs as there are responses, with each PC being orthogonal to the others and with PC1 
accounting for the largest variance in the data and PC2 second largest and so on to PCn, 
where n is the total number of responses. For many sets of responses, the first several PCs 
account for most of the variance in the data, and thus those PCs represent the most 
significant model behaviors. 

 In our case we have 64 samples (recall Fig. 4-1) for each of 22 response variables 
(recall Tables 4-1 and 4-2). Since variance depends upon the scale of each response, we 
must first normalize each response to have a mean of zero and a standard deviation of 
one. This can be done for a given response by subtracting the mean of the 64 samples 
from the response and then dividing by the standard deviation of the 64 samples. Such 
normalization will place all responses into comparable units. 

In our application, each PC consists of a 22 dimensional weight vector 
representing the linear weighted combination of response variables necessary to generate 
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the PC. For example, Fig. 4-7 depicts a graphical representation of the weight vector for 
the first PC (PC1) from one of our PCAs. The figure depicts the 22 response variables on 
the x axis, while the y axis gives the (positive or negative) weighting. A horizontal line 
denotes zero weight. Given a weight vector for a PC, it is often customary in heuristic 
interpretation to suppress consideration of the low-weighted variables. In Fig. 4-7 for 
example, we might choose to suppress the following variables: y3, y4, y6, y15, y16, y17, 
y18 and y20. It is also customary to differentiate between “average” weights and 
“contrasting” weights, though such differentiation is not warranted in Fig. 4-7. 
 

 
Figure 4-7. Enlargement of a Sample Weight Vector for First Principal Component (x axis identifies 
the response variable, ranging from 1 to 22 and y axis identifies weight, ranging from -1 to +1) 
 

For each PC we can plot a histogram of the 64 values using appropriate 
components to represent the variance accounted for by the PC. For example, Fig. 4-8 
gives the histogram corresponding to PC1. The x axis divides the standard deviation over 
the 64 values into appropriately sized bins and the y axis gives the count of values that 
fall into each bin. Above the plot we give the standard deviation accounted for by the PC. 
Given an entire set of such histograms, we can determine the relative variance accounted 
for by each PC by summing the standard deviations and then dividing each by that sum. 
For example, Fig. 4-23 recounts the 22 histograms representing each PC in one of our 
PCAs. In that case, the first four PCs account for about 86 % of the variance in the data. 

4.1.5 10-Step Graphical Analysis of Selected Responses 
Once we select the specific responses to examine, we can subject them to a 10-step 
graphical analysis regime developed at NIST. Each analysis step produces a different 
type of plot intended to reveal information about model responses. In this section we 
simply introduce the intent of each plot type, as shown in Table 4-3, which lists each of 
the ten plots and provides a summary of the purpose of each plot. In Appendix D we give 
detailed examples and explanation of each plot type. Here we introduce in detail only the 
main effects plot, which proved most insightful for purposes of our sensitivity analysis. 
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Figure 4-8. Enlargement of a Sample Histogram for First Principal Component (x axis identifies bins 
of normalized component values ranging from -20 to +20 and y axis the count of values within each bin). 
Above the plot is the standard deviation in the data accounted for by the Principal Component. 
 

We illustrate the main effects plot using response variable y11, average 
congestion window (CWND) size. The transmission control protocol (TCP) manages a 
congestion window variable that represents the number of packets that can be sent prior 
to receipt of an acknowledgment. The larger the congestion window, the more packets 
that can be sent per unit time and thus the greater will be the transmission rate. For that 
reason, a network with a high average congestion window (y11) will be able to transmit 
more packets than a network with a lower average congestion window. In general, a 
congestion window is reduced when packets are lost, usually due to congestion. 
Lowering the congestion window slows the rate of packet transmissions in the network 
and thus should reduce congestion. Subsequent to a reduction, TCP allows the congestion 
window to increase linearly and so the rate of packet transmissions in the network should 
also increase. Once the transmission rate becomes too high, packets are lost and 
congestion windows are reduced and the rate of transmission slows and so on. Thus the 
average congestion window size might be used to represent the level of congestion in a 
network. 

Fig. 4-9 gives a sample main effects plot, which is the most essential plot to 
identify the factors and settings driving a system’s response. The x axis identifies each of 
11 MesoNet parameters and the y axis gives the mean response. For each parameter the 
plot gives two means: (1) when the parameter is set to -1 value and (2) when set to the +1 
value. Fig. 4-9 shows that the mean CWND size was about under 8.5 packets when 
network speed (X1) was high (-) and was about 4 packets under low network speed (+). 
For each parameter, a line connects the two means to indicate direction and magnitude of 
the effect when changing the parameter from its -1 to +1 value. Two numbers are 
reported just above each parameter label. The top number gives the effect in raw terms 
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(e.g., CWND size of 4.33 fewer packets under lower network speed) and the bottom 
number gives the change relative to (i.e., as a % of) the mean response, which is about 
6.2 packets in Fig. 4-9 (i.e., the 4.33 packet change in CWND size is 70 % of the mean, 
which is called the relative effect). The plot also gives the number of parameters (k = 11) 
and observations (n = 64). 
 

Table 4-3. Identity and Purpose of 10 Plots in the 10-Step Graphical Analysis  
(For sample and explanation of each plot see Appendix D) 

 
Plot Purpose 

Ordered Data Plot Reveal how combinations of parameter 
settings influence response 

Multi-factor Scatter Plot Reveal influence of individual parameter 
levels on response distribution 

Main Effects Plot (see Fig. 4-8) Reveal individual parameters having 
greatest influence on response 

Interaction Effects Matrix Reveal degree of influence of parameter 
pairs on response 

Block Plot 
Test robustness of statistically significant 
parameters in light of secondary or 
nuisance factors 

Youden Plot Reveal parameters and parameter pairs 
with greatest influence on response 

|Effects| Plot 
Reveal magnitude of a change in response 
due to specific parameters and parameter 
interactions 

Half-Normal Probability Plot of |Effects| 
Separate influential parameters and 
parameter interactions from those that are 
not influential 

Cumulative Residual SD Plot Provide information sufficient to construct 
a linear model to represent response data 

Contour Plot 
Suggest how alterations in parameter 
settings could influence system response in 
predictable directions. 

 
Fig. 4-9 reveals that the most influential factor in determining CWND is network 

speed (70 % of mean) followed by three closely grouped factors: buffer-sizing algorithm 
(54 %), initial slow-start threshold and think time (53 % each). The distribution of 
sources also has a significant (50 %) influence. Notice that the plot reveals a smaller 
number of sources and receivers (x8 = -) leads to a (1.7 packet) larger average CWND 
than a larger number. A domain expert will understand that fewer sources sharing the 
same network mean that each source may transmit faster, which is reflected in a larger 
CWND. Thus, the main effects plot clearly reveals the nature of the influence of the 
factors and settings on the response. 

In thinking about the main effects, an experimenter with domain knowledge might 
be quite pleased with the meaning of these results regarding the validity of the model. 
Fewer, simultaneously active, flows (x5 = +, x8 = - and x9 = -), higher network speeds 
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(x2 = -) together with more buffers (x3 = +) should permit higher CWND. Under these 
circumstances, the ability to increase the CWND to a higher threshold via initial slow-
start (x11 = +) should also lead to higher CWND, because CWND increases faster during 
initial slow start. 
 

 
 
Figure 4-9. Sample Main Effects Plot for Response y11, average congestion window size, x axis lists 
11 model parameters with a – and + value for each parameter, y axis gives average congestion window 
(CWND) size in packets, two average CWND sizes are given for each parameter, one size when the 
parameter is set to its – level and one size when the parameter is set to its + level, and a line connects the 
pair of average sizes for each parameter. Dashed line is the overall average CWND size (about 6.2 packets) 
 

In Appendix D we illustrate the application of the entire 10-step graphical 
analysis technique to analyze model parameters influencing CWND size. An 
experimenter might also apply the 10-step graphical analysis technique to examine 
influences on principal components. We give an example of this technique in Sec. 4.6.2. 

4.1.6 Other Exploratory Plots and Analyses 
Using an orthogonal fractional factorial (OFF) design opens the possibility for a range of 
exploratory plots and analyses to supplement the correlation and clustering analysis, the 
principal components analysis and the 10-step graphical analysis presented so far. For 
example, bifurcations in response-response scatter plots can be explored by altering the 
scatter plot symbols to reflect factor settings. As a sample, recall Fig. 4-2, a scatter plot of 
y7 vs. y22, which revealed a bifurcation. One means to explore the underlying reason for 
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the bifurcation is to plot points using symbols, e.g., - when associated with minus settings 
for each factor, and as +, when associated with plus settings. Fig. 4-10 illustrates twelve 
scatter-plots for y7 vs. y22. The first plot, upper left-hand corner, repeats the scatter plot 
from Fig. 4-2. The remaining plots encode the plus (in blue) and minus (in red) settings 
responsible for the responses given each of the 11 factors (x1 through x11). 

 

 
 
Figure 4-10. Sample Y-Y-X plot for Responses y7 and y22 – configuration of each plot is as explained 
for Fig. 4-2 – x axis is goodput in packets/second on NN flows ranging from 0 to 300 and y axis is flow 
completion rate ranging from 0 to 0.5 

 
Examining Fig. 4-10, one can appreciate that factor x4 (average file size) is 

responsible for the bifurcation. Shorter file sizes result in higher completion rates (y7) 
and yet lead to lower average throughputs for typical flows (y22). Thinking this through 
reveals a sensible explanation. Shorter files spend a higher percentage of their transfer in 
TCP slow start, during which throughputs are lower. On the other hand, shorter files are 
generally transferred more quickly because they involve fewer packets. Since shorter files 
are transferred more quickly, more flows are completed per unit of time, so the flow 
completion rate is higher. Longer files spend a higher percentage of their transfer beyond 
TCP slow start, during which throughputs are higher. On the other hand, longer files 
require transferring more packets. Since it takes longer to transfer more packets, fewer 
flows are completed per unit time. Thus, the explanation for the bifurcation, as revealed 
in the y7-y22-x4 plot in Fig. 4-10, matches an explanation that appears reasonable to a 
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domain expert. Such analysis and reasoning can help to verify a model’s correctness, or 
to reveal flaws.   

Additional exploratory plots and analyses are also possible. For example, one can 
combine factor settings to create additional conditions and then compare the relative 
effects of varying each of the combined factor settings on the ordering of selected 
responses. More specifically, one could combine the 2-level settings for factors x1 
through x3 (propagation delay, network speed and buffer size) to create 23 = 8 conditions, 
and then examine the relative influence of varying each of the factors on selected 
responses. We use such an approach in Sec. 4.7 to explore the relative effects on system 
response due to changing network speed, propagation delay and buffer size. We defer a 
more detailed explanation of the technique to Sec. 4.7. 

4.2 Experiment Design for MesoNet Sensitivity Analysis   
This section outlines the experiment design used for the MesoNet sensitivity analysis, 
and explains the rationale underlying the design. The design consists of a 211-5 orthogonal 
fractional factorial (OFF) design, which requires 64 simulation runs. We compared the 
results of the simulation runs across 22 responses (described in Sec. 4.1.2). Below, we 
summarize MesoNet parameters and we identify the 11 parameters chosen as factors in 
our OFF design. We then explain the levels, and related settings, chosen for each factor. 
We summarize the 64 specific combinations simulated.  

4.2.1 MesoNet Factors 
For this sensitivity analysis, MesoNet parameters may be divided into six general 
categories: (1) simulation-control parameters, (2) parameters controlling user behavior, 
(3) parameters adapting the characteristics of the network, (4) parameters altering the 
properties of sources and receivers, (5) parameters controlling the startup pattern of 
sources and (6) parameters related to TCP operation. We describe the specific parameters 
in each category. Parameter descriptions may identify a parameter’s type as an integer or 
a float. In such cases, one should assume that an integer may take on values between -231 
and +231. A float may take on values in the range of 1.797-308 to 1.797+308. The range of 
values for any other parameter types will be given explicitly. For more detail on these 
parameters see Sec. 3.2. 

As we discuss the MesoNet parameters, we identify (highlighted in blue bold) 
which were chosen as factors for our sensitivity analysis and we give our reasoning. In 
each table, we also give (highlighted in red) the fixed values assigned to the excluded 
parameters. At the end of the section, we recap the parameters included as factors in the 
sensitivity analysis.  
 
4.2.1.1 Simulation Control Parameters. Simulation control is affected by six parameters, 
as defined in Table 4-4. The sensitivity analysis will not consider the response of 
MesoNet to variations in simulation-control parameters. Thus, five of these parameters 
will simply be fixed (to the values shown in Table 4-4) across all experiment runs. The 
maximum propagation delay in our experiments will be around 200 time steps, which we 
select for our basic measurement interval duration. We set our fundamental time-step 
duration to 1 millisecond, so each measurement interval captures about 200 milliseconds 
(i.e., five measurement intervals cover one second). We run each simulation for 6000 
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measurement intervals, which is (6000/5 =) 1200 seconds (20 minutes). We set our 
random number seed to a fixed value for all simulations because we are interested in 
capturing changes due to parameter variations, and not variations due to randomness. We 
vary the run number from 1 to 64 to identify the particular configuration of factors used 
in specific experiments.  
 

Table 4-4. Simulation-Control Parameters 
 
Parameter Definition Type 

P1 Number of time steps in a measurement interval (200) Integer 
P2 Number of measurement intervals (6000) Integer 
P3 Number of measurement intervals in a measurement buffer (6000) Integer 
P4 Run number (1 to 64, signifying a combination of factors) Integer 
P5 Random number seed (200000) Integer 
P6 Duration of each time step (0.001 s) Float 

 
 
4.2.1.2 Parameters Controlling User Behavior. Eight parameters, shown in Table 4-5, 
determine how individual users (sources) behave over the course of a simulation. The 
MesoNet sensitivity analysis considers only typical Web traffic, so parameters (P12-P14) 
dealing with jumbo file transfers will be assigned fixed values (see Table 4-5) that cause 
them to be deactivated. The five remaining parameters (P7-P11) are candidates to include 
as factors in the experiments. 
 

Table 4-5. Parameters Controlling User Behavior 
 
Parameter Definition Type 

P7 Shape parameter for the distribution of web-object sizes (1.5) Float 
P8 Average size (in packets) of web objects Integer 
P9 Average think time (in time steps) between web clicks Integer 
P10 Probability a user decides to download a larger document Float 

P11 Factor by which web-object size is multiplied if it is a larger 
document  (10) Integer 

P12 Proportion of simulation time that elapses before jumbo file transfers 
begin (1.0) Float 

P13 Proportion of simulation time that elapses before jumbo file transfers 
end (1.0) Float 

P14 Factor by which web-object size is multiplied if it is a jumbo file (100) Integer 
 

We decided to fix the value of parameters P7 and P11, so we selected only three 
parameters to control user behavior during the sensitivity analysis. We chose to fix P7 (= 
1.5) because experiments with P7 set to 1.2 and 1.5 revealed little difference in results. 
We chose to fix P11 (= 10) because varying the size of Web objects (P8) will also 
implicitly vary the size of larger documents. Further, preliminary sensitivity analyses 
with P11 set to either 5 or 10 showed little influence on the results. 
 
4.2.1.3 Parameters Adapting Network Characteristics. Nine parameters, shown in Table 
4-6, may be varied to adapt characteristics of a network topology defined for a MesoNet 
simulation. We decided to vary only three of these parameters during the sensitivity 
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analysis. We wanted to be able to vary propagation delay, network speed and buffer 
sizes. Parameter P15 can alter the base propagation delays defined in a network topology. 
Network speed can be influenced by six parameters (P16-P21). We chose only to vary the 
backbone speed (P17), which has the effect of varying the speeds of the other routers 
because their speeds are expressed in terms of backbone-router speed. Thus, even though 
we fix parameters P18-P21 to the values given in Table 4-6, the speeds of the associated 
routers vary as we vary P17. We chose not to vary the speedup of backbone routers (P16 
is fixed to 1) because our anticipated scenario of simulated Web traffic was unlikely to 
overwhelm the backbone routers with traffic. 
 

Table 4-6. Parameters Adapting Network Characteristics 
 
Parameter Definition Type 

P15 Factor by which to multiply basic propagation delays defined 
within a simulated topology Float 

P16 Multiplier used to speed up backbone routers (1) Integer 
P17 Backbone router speed (in packets per time step) Integer 
P18 Divisor used to reduce the speed of POP routers relative to 

backbone routers (4) Integer 

P19 Divisor used to reduce the speed of access routers relative to POP 
routers (10) Integer 

P20 Multiplier used to increase the speed of directly connected access 
routers over typical access routers (10) Integer 

P21 Multiplier used to increase the speed of fast access routers over 
typical access routers (2) Integer 

P22 Identification of a specific buffer-sizing algorithm to adopt Integer 
(1 to 3) 

P23 Multiplier used to increase or reduce buffer sizes as computed by 
the algorithm selected by parameter P22 (1.0) Float 

 
Buffer sizes can be varied by choosing among several algorithms to calculate 

buffers in each router. This choice is controlled by P22, which we varied for our 
sensitivity analysis. Another parameter, P23, may be used to refine buffer sizing, either 
increasing or decreasing the basic buffer sizes computed by a chosen algorithm. For our 
sensitivity analysis, we decided to stick with the choice among alternate algorithms, so 
we fixed the value of P23 to 1.0. 
 
4.2.1.4 Parameters Altering Properties of Sources and Receivers. Nine parameters, 
shown in Table 4-7, control the properties of sources and receivers within the model. 
Controllable properties include: the network interface speeds of hosts on which sources 
and receivers operate, the relative number of sources and receivers and the distribution of 
sources and receivers within the network topology. 

In our sensitivity analysis, we are interested in examining the effects on responses 
as the number and speeds of sources and receivers is changed and as the distribution of 
sources and receivers is altered in the topology. This requires varying the six parameters 
(P26, P28-P32) highlighted in Table 4-7. We decided there is no need to vary the speeds 
of either basic or fast hosts, so we simply fix the speed of each (P24 = 1 and P25 = 8). 
Varying the probability a host is fast and the number of sources and receivers in the 
network should provide sufficient variation in the number of fast and slow hosts in the 
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network. Similarly, we decided not to vary the base number of sources (P27 = 100) under 
an access router because the number of sources and receivers are determined by 
multiplying the base number by a scaling factor (P28). Thus, varying P28 achieves 
sufficient variability among the number of sources and receivers in a topology. 
 

Table 4-7. Parameters Altering Properties of Sources and Receivers 
 
Parameter Definition Type 

P24 Speed (packets per time step) of basic host (1) Integer 
P25 Speed (packets per time step) of fast host (8) Integer 
P26 Probability a host is fast Float 
P27 Base number of sources under an access router (100) Integer 
P28 Multiplier by which to scale the base number of sources Float 
P29 Probability source is located under a typical access router  Float 
P30 Probability source is located under a fast access router Float 
P31 Probability receiver is located under a typical access router  Float 
P32 Probability receiver is located under a fast access router Float 

 
MesoNet permits the distribution of sources and receivers to be varied by 

reallocating some sources and receivers among the three classes of access router (normal, 
fast and directly connected). Two parameters (P29 and P30) control the allocation of 
sources (note that the probability a source is allocated to a directly connected access 
router is equal to 1 – P29 – P30). Similarly, two parameters (P31 and P32) control the 
allocation of receivers. We chose to combine the three probabilities associated with 
sources into a single factor and also to combine the three probabilities associated with 
receivers into a single factor. Thus, the six highlighted parameters in Table 4-7 will 
comprise only four factors in our sensitivity analysis. 
 
4.2.1.5 Parameters Controlling Source Startup Pattern. Sources are started randomly in 
stages: some portion start in the ON state, some portion enter the ON state after about 1/3 
of the average think time, some portion enter the ON state after about 2/3 of the average 
think time and the remaining sources enter the ON state after about the average think 
time. This startup pattern is controlled by three parameters (P33-P35) as shown in Table 
4-8. Subtracting the value of these three parameters from one reveals that half of the 
sources start after about the average think time: 1 – 0.25 – 0.08 – 0.17 = 0.50. 
 

Table 4-8. Parameters Controlling Source Startup Pattern 
 
Parameter Definition Type 

P33 Portion of sources that start ON (0.25) Float 

P34 Portion of sources that come ON after about 1/3 average think time 
(0.08) Float 

P35 Portion of sources that come ON after about 2/3 average think time 
(0.17) Float 

 
For two reasons, we decided not to vary parameters controlling source startup 

pattern. First, we discard the first half of our observations and consider only the second 
half. Thus, the influence of startup pattern should not be evident in the data. Second, we 
conducted preliminary sensitivity analyses where we varied the startup pattern, along 
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with other parameters, and found that such variations had no influence on the long-term 
results. 
 
4.2.1.6 Parameters Related to TCP Operation. MesoNet includes only three parameters, 
given in Table 4-9, controlling the operation of standard TCP. Given lack of widespread 
agreement on the choice of initial slow-start threshold for TCP, we were interested in 
exploring the influence of the threshold on network performance. We decided to fix the 
other two parameters: initial congestion window (P36 = 2) and threshold (P38 = 100) for 
switching from exponential slow-start increase to logarithmic increase. 
 

Table 4-9. Parameters Related to TCP Operation 
 
Parameter Definition Type 

P36 Initial TCP congestion window (2) Integer 
P37 Initial slow-start threshold Integer 

P38 Threshold for switching from exponential to logarithm slow-start 
(100) Integer 

 
Parameter P38 influences slow-start operation only if the value of the initial slow-

start threshold (P37) exceeds the value of P38. Assuming this condition, the congestion 
window begins at the value of P36 and then increases exponentially with each round-trip 
time until reaching the value of P38, after which the congestion window increases 
logarithmically until reaching P37 and then linearly. Assuming that P37 < P38, the 
congestion window increases exponentially until reaching P37 and then linearly. Of 
course, under either assumption, whenever a loss is encountered, slow-start is abandoned 
and the congestion window increases linearly when standard TCP is being simulated. 

 
4.2.1.7 Summary of Factors Selected for Sensitivity Analysis. Table 4-10 recaps the 
eleven factors selected for the sensitivity analysis and the relationship of those factors to 
MesoNet parameters. Parameters not included in Table 4-10 are assigned fixed values, as 
indicated in Tables 4-4 through 4-9. 
 

Table 4-10. Recap of Sensitivity Analysis Factors and Mapping to MesoNet Parameters 
 
 Factor Definition MesoNet 

Parameter(s) 

Network 
Factors 

x1 Propagation delay P15 
x2 Network speed P17 
x3 Buffer sizing P22 

User 
Factors 

x4 Average file size for web pages P8 
x5 Average think time between web clicks P9 
x6 Probability a user opts to transfer a larger file P10 

Source & 
Receiver 
Factors 

x7 Probability a source or receiver is on a fast host P26 
x8 Scaling factor for number of sources & receivers P28 
x9 Distribution of sources P29 & P30 

x10 Distribution of receivers P31 & P32 
Protocol 
Factors x11 Initial TCP slow-start threshold P37 
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As Table 4-10 demonstrates, the sensitivity analysis is designed to consider the 
influence of four main classes of factors: (1) network factors, (2) user factors, (3) factors 
affecting sources and receivers and (4) protocol factors. The factors are fairly balanced 
with three or four in each category, except for a single protocol factor. In general, the 
three protocol-related factors might have been fixed, but the inclusion of the initial slow-
start threshold as a factor was driven by a specific question, about which the related 
literature [6, 7, 10] indicates there is no widespread agreement. Now that values have 
been assigned to 25 fixed parameters, it remains to select the number of levels and 
settings for the 11 factors identified in Table 4-10. We address that topic next. 

4.2.2 Number of Levels and Settings for MesoNet Factors 
Adopting the convention of a two-level experiment allows us to produce the kind of OFF 
designs often used in engineering studies [88, 89, 95] and to benefit from the positive 
effects such designs have on related analysis techniques. For this reason, we decided to 
choose two levels for each factor in our sensitivity analysis. Of course, doing so limits 
our conclusions to the range of settings chosen for our (robustness) factors. Even here we 
are assuming that the system behaves monotonically in the range between any two 
settings. If we have reason to believe that behavior is non-monotonic between particular 
settings, then we should not select such settings for our sensitivity analysis. To extend 
confidence in the findings produced by our sensitivity analysis, we should explore 
different specific values for our settings and see whether or not our conclusions also hold. 
We adopted this supplementary exploration. Here, we focus on our initial sensitivity 
analysis. We present our supplementary sensitivity analysis in Appendix C. 

In choosing specific settings for our two levels (plus and minus) of each factor, 
we were guided by a desire to complete our 64 experiment runs within a week or so of 
computing time. We had already determined that computation time in our model was 
influenced by the number of packets that need to be processed during a simulation. Given 
that we had decided to fix our simulation to a 20-minute period of network operation, this 
meant that the computational requirements of our model would be driven largely by the 
number of sources and the network speed. For this reason, we chose to restrict our 
simulated network to a few tens of thousands of potential sources and to restrict our 
network speed to about 10 Gbps in the backbone. Increasing the number of potential 
sources and the network speed would increase our computational requirements. We 
decided that increasing the number of sources and the network speed would not be 
necessary for our sensitivity analysis. Of course, we verified this decision by using more 
sources and higher backbone speeds in Appendix C. 
 
4.2.2.1 Two-Level Factor Settings. Table 4-11 presents settings chosen for the plus and 
minus levels for all eleven factors in the sensitivity analysis. Next, we discuss the reasons 
underlying our choices and the ramifications for the related simulations.  
 
4.2.2.2 Rationale for (and Ramifications of) Network Factor Settings. The topology used 
in our experiments (recall Fig. 3-1) has defined link propagation delays (recall Table 3-1) 
that lead to specified minimum round-trip times on designated routes (see Table 3-2). We 
decided to assign one setting (x1 = 1) to indicate the propagation delays defined in this 
topology and a second setting (x1 = 2) that doubles those propagation delays. With the 
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minus setting, paths in the topology average a round-trip propagation delay of 41 time 
steps and a maximum round-trip propagation delay of 100 time steps. This is consistent 
with a network spanning the United States. When the plus setting is used, average and 
maximum propagation delays increase to 81 and 200 time steps, respectively. The 
increased propagation delays are consistent with a network that spans from the west coast 
of Asia across the United States and into Europe. Note that the setting for propagation 
delay also influences buffer sizes because the average round-trip propagation delay 
makes up the RTT component of the buffer-sizing algorithms. 
 

Table 4-11. Two-Level Settings for Each of 11 Factors in Sensitivity Analysis 
 
 Factor Plus Minus Parameter Mapping 

Network 
Factors 

x1 2 1 +(P15 = 2) or –(P15 = 1) 
x24 400 p/ms 800 p/ms +(P17 = 400) or –(P17 = 800) 
x3 RTTxC RTTxC/SQRT(n) +(P22 = 1) or +(P22 = 2) 

User 
Factors 

x4 100 packets 50 packets +(P8 = 100) or –(P8 = 50) 
x5 5000 ms 2000 ms +(P9 = 5000) or –(P9 = 2000) 
x65 0.01 0.02 +(P10 = 0.01) or –(P10 = 0.02) 

Source & 
Receiver 
Factors 

x76 0.2 0.4 +(P26 = 0.2) or –(P26 = 0.4) 
x8 3 2 +(P28 = 3) or –(P28 = 2) 

x9 P2P WEB +(P29 = 0.33 and P30 = 0.33) or 
–(P29 = 0.13 and P30 = 0.53) 

x10 P2P WEB +(P31 = 0.33 and P32 = 0.33) or 
–(P31 = 0.5 and P32 = 0.25) 

Protocol 
Factors x11 1.07x109 

packets 43 packets +(P37 = 1.07x109) or –(P37 = 43) 

 
 For network speed, we chose to consider a backbone operating near 10 Gbps. 

Thus, we chose 800 p/ms (packets per millisecond – 8 x 105 packets per second) as the 
top speed of our backbone routers. (8 x 105 packets per second x 12 x 103 bits per packet 
= 9.6 Gbps). Of course, modern backbone routers operate at many times this speed; 
however, we were interested in keeping our simulation time within reason, while still 
providing some level of load to the simulated network. We chose to define our slower 
network speed as half our higher speed; thus, we chose 400 packets per millisecond, 
which equates to a 4.8 Gbps backbone. Note that the choice of backbone router speed 
determines the choice of router speeds for the other five router types, as shown in Table 
4-12. In addition, router speeds influence buffer size because router speed equates to the 
capacity (C) component of the buffer-sizing algorithm. 

For buffer sizes, we chose two algorithms. One algorithm, RTTxC, instantiates the 
conventional wisdom [40] regarding how to select buffer sizes to match the expected 
round-trip time of routes transiting the router and also the capacity of links attached to the 
router. The second algorithm, RTTxC/SQRT(n), incorporates an alternate proposal 
suggesting that one can reduce buffer capacity proportional to the square root of the 
expected number of flows transiting a router. In the paper proposing the second algorithm 
                                                 
4 Unfortunately, we coded an increased network speed under the minus setting (and a lower network speed 
under the plus setting). The reader should bear this in mind when interpreting the results in following 
sections. Changing this coding would necessitate rerunning the experiment, which would be rather costly. 
5 We also coded this setting incorrectly. Fortunately, this factor doesn’t have a large influence on model 
response, so it does not become confusing in the discussion. 
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[37], it was left as future work to assess the influence of this algorithm in a large network. 
This open research question motivated us to include the second buffer-sizing algorithm as 
an alternative to the typical algorithm. 
 
Table 4-12. Relationship among the Speed of Backbone Routers and Other Router Types (all values 
given in packets per millisecond) 
 

Router Type Plus Minus 
Backbone 400 800 
POP 100 200 
Typical Access 10 20 
Fast Access 20 40 
Directly Connected Access 100 200 

 
4.2.2.3 Rationale for (and Ramifications of) User Factor Settings. Defining user behavior 
required selecting three parameters: average file size, average think time and likelihood 
of downloading a larger file. These parameters are meant to characterize Web users who 
click from Web page to Web page and occasionally download a picture or a paper or a 
music file. Previous research [33-36] has established that Internet file sizes exhibit a 
long-tailed distribution that can be approximated with a Pareto distribution with a shape 
parameter below 2. We adopted this approach. On the other hand, we need to select an 
average for the distribution (factor x4). We chose 100 packets (100 packets x 1500 bytes 
per packet = 1.5 x 105 bytes per Web page) as a reasonable size for typical Web pages. 
We decided to also consider Web pages at half that size: 50 packets (7.5 x 104 bytes). 

The think time (x5) between Web clicks could be chosen in two different ways. 
One way is to imagine how long a user typically dwells on a page, while perusing it. 
Another way is to choose times to obtain a desired load of active users on the network. 
We took this second approach. A more heavily loaded network would be represented by 
sources that clicked on a Web link every 2000 milliseconds (x5 = 2 seconds), while we 
modeled a more lightly loaded network through sources that clicked on a Web link every 
5000 milliseconds (x5 = 5 seconds). Of course, this factor interacts with the number of 
potential users. Many potential users clicking very often create a heavier load and fewer 
potential users clicking less often create a lighter load. And combinations would fall in 
between. Note that a heavily loaded network would require users to take longer to 
transfer their files and thus would mean that users might not be able to arrive for 
additional transfers quickly because they are slower with ongoing transfers. This implies 
that there is some dependency-based feedback inherent in the model. Such feedback is 
probably congruent with the same type of feedback inherent in real networks. The overall 
effect of this technique for modeling network traffic is not clear, but one must bound the 
number of simulated users in some fashion. 

The probability for a user to decide to download a larger document (x6) 
represents the possibility that, after looking at a Web page, the user decides to download 
a paper or a photo or some other document that is larger than a typical Web page. Since 
we set that file size multiplier to a fixed value (10), a user will download files with an 
average size of 1.5 Mbytes (x4 = 100) or 750 Kbytes (x4 = 50). As with normal Web 
objects, these larger documents will be distributed according to a Pareto distribution, 
which gives a long tail. Lacking concrete measurements, we chose to imagine that a user 
might download a larger document once in every 100 clicks, so we could set x6 = 0.01. 
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We also decided to consider the situation where a user downloads a document twice as 
often (x6 = 0.02), or twice in every 100 clicks. 
 
4.2.2.4 Rationale for (and Ramifications of) Source & Receiver Factor Settings. Defining 
parameters for sources and receivers required deciding how fast each source or receiver 
could operate, determining how many sources and receivers existed in the topology, and 
also indicating the distribution of sources and receivers. These decisions influenced the 
number of potential active flows and the probability of flows between various classes of 
access router. We begin by noting that computers connected to the Internet are in 
transition from slower speed connections (e.g., 100 Mbps) to higher speed connections 
(e.g., 1 Gbps), so sources and receivers operate on computers with different network-
connection speeds. To reflect this, we decided to experiment with two different mixes of 
computer speeds: 20 % fast computers (x7 = 0.20) and 40 % fast computers (x7 = 0.40). 

We began by fixing the base number of sources (P27) under each access router to 
100. Since each router has on average four times as many receivers as sources, the base 
number of receivers becomes 400. We decided to investigate two scaling factors for the 
number of sources and receivers; we set the scaling factor to either two (x8 = 2) or three 
(x8 = 3). A scaling factor of two implies that each access router will have around 200 
sources and 800 receivers, while a scaling factor of three implies that each access router 
will have about 300 sources and 1200 receivers. Thus, the total number of potential 
sources in the network will vary from around 18.56 x 103 to 41.7 x 103 and the total 
number of potential receivers will vary from around 111.2 x 103 to 219.6 x 103. 

The average number of sources and receivers under each access router (and also 
total sources and receivers in the network) will be further adjusted through the 
distribution pattern assigned to sources (x9) and receivers (x10). The combination of 
distribution patterns will also affect the number of sources and receivers under each 
access router and throughout the network. (Sec. 3.2.4 explains the specific relationships 
that determine the resulting distribution of sources and receivers.) 

To recap, given a specified base number of sources and receivers, a scaling factor 
and a distributional pattern for sources and for receivers, MesoNet populates the network 
topology with a specified number of sources and receivers and distributes those sources 
and receivers in the required proportion under each class of access router: normal (N-
class6) routers, fast (F-class) routers and directly connected (D-class) routers. Table 4-13 
shows the resulting distribution of sources for each combination of relevant factors (x8, 
x9 and x10) used in our sensitivity analysis. Table 4-14 shows the resulting distribution 
of receivers. A given distribution of sources and receivers also leads to a particular 
apportioning of flows among the three classes of access router, as shown in Table 4-15. 

As the tables indicate, the distributional factors (x9 and x10) control the 
probability that flows go between specific combinations of access router classes: directly 
connected to directly connected (DD), directly connected to fast (DF), directly connected 
to normal (DN), fast to fast (FF), fast to normal (FN) and normal to normal (NN). The 
scale factor (x8) coupled with the fixed base sources parameter (P27) determines the 
number of potential active flows (which is also the number of sources). 

 
                                                 
6 We continue our convention of color coding designators for access-router classes to match the colors used 
in Fig. 3-1. 
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Table 4-13. Relation between Factors and Number and Distribution of Sources 

 
x8 x9 x10 Total 

Sources 
% under 

D Routers 
% under 

F Routers 
% under 

N Routers 
2 P2P P2P 27.8 x 103 4.32 20.14 75.54 
3 P2P P2P 41.7 x 103 4.32 20.14 75.54 
2 WEB WEB 18.56 x 103 6.46 48.27 45.25 
3 WEB WEB 27.84 x 103 6.46 48.27 45.25 
2 P2P WEB 27.8 x 103 4.32 20.14 75.54 
3 P2P WEB 41.7 x 103 4.32 20.14 75.54 
2 WEB P2P 18.56 x 103 6.46 48.27 45.25 
3 WEB P2P 27.84 x 103 6.46 48.27 45.25 

 
 

Table 4-14. Relation between Factors and Number and Distribution of Receivers 
 

x8 x9 x10 Total 
Receivers 

% under 
D Routers 

% under 
F Routers 

% under 
N Routers 

2 P2P P2P 111.2 x 103 4.32 20.14 75.54 
3 P2P P2P 166.8 x 103 4.32 20.14 75.54 
2 WEB WEB 146.4 x 103 2.45 11.47 86.06 
3 WEB WEB 219.6 x 103 2.45 11.47 86.06 
2 P2P WEB 146.4 x 103 2.45 11.47 86.06 
3 P2P WEB 219.6 x 103 2.45 11.47 86.06 
2 WEB P2P 111.2 x 103 4.32 20.14 75.54 
3 WEB P2P 166.8 x 103 4.32 20.14 75.54 

 
 

Table 4-15. Relation between Factors and Distribution of Flow Classes 
 

x8 x9 x10 % DD 
Flows 

% DF 
Flows 

% DN 
Flows 

% FF 
Flows 

% FN 
Flows 

% NN 
Flows 

2 P2P P2P 0.186 1.74 6.52 4.05 30.43 57.06 
3 P2P P2P 0.186 1.74 6.52 4.05 30.43 57.06 
2 WEB WEB 0.159 1.92 6.67 5.53 46.74 38.95 
3 WEB WEB 0.159 1.92 6.67 5.53 46.74 38.95 
2 P2P WEB 0.106 0.99 5.57 2.31 26.00 65.01 
3 P2P WEB 0.106 0.99 5.57 2.31 26.00 65.01 
2 WEB P2P 0.279 3.38 6.83 9.72 45.58 34.18 
3 WEB P2P 0.279 3.38 6.83 9.72 45.58 34.18 
 
One final note: the number and distribution of sources and receivers also 

influences the determination of router buffer sizes when using the RTTxC/SQRT(n) 
algorithm. The RTTxC algorithm computes buffer sizes based on multiplying the average 
round-trip propagation delay in the network by the capacity of each router. Table 4-16 
shows the results for this algorithm when using the factor values adopted in this 
sensitivity analysis. When switching to the RTTxC/SQRT(n) algorithm, the values in 
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Table 4-16 are divided by the estimated average number of active flows expected to 
transit each router. This estimate depends on the number and distribution of sources and 
receivers throughout the topology. In general, using the RTTxC/SQRT(n) algorithm 
reduces buffers within routers by one or two orders of magnitude. 
 

Table 4-16. Buffers for Combinations of Round-Trip Propagation Delay (x1) and Capacity (x2) 
 

x1 x2 Backbone Router 
Buffers (avg.) 

POP Router 
Buffers (avg.) 

Access Router 
Buffers (avg.) 

1 400 16.277 x 103 4.070 x 103 647 
2 400 32.553 x 103 8.139 x 103 1.294 x 103 
1 800 32.553 x 103 8.139 x 103 1.294 x 103 
2 800 65.106 x 103 16.277 x 103 2.588 x 103 

 
 
4.2.2.5 Rationale for (and Ramifications of) Protocol Factor Settings. After investigating 
the literature, we came to the realization that there is no consensus value to use for the 
initial TCP slow-start threshold. Some authors [4] suggest using the receive window 
provided by a corresponding TCP entity. Some authors [10] suggest picking a small 
value. Some authors [6] suggest picking a very large number. A colleague, Mark Carson 
(personal communication, November 12, 2008) indicated that some operating systems 
select this value based upon characteristics of the local network card. Given this general 
lack of consensus, we decided to include the initial TCP slow-start threshold as a factor 
(x11) in our sensitivity analysis. We decided there were two main schools of thought 
about choosing a value: choose a small value and choose a large value. To represent the 
small-value school of thought, we chose (x11 =) 43 packets, which was recommended by 
Stevens [10]. To represent the large-value school of thought, we chose an arbitrarily large 
value of (x11 =) 1.07x109 packets, as suggested by Fall [6]. We also adopted the 
recommendation of Floyd [7], where a flow increases its sending rate exponentially up to 
a congestion window of 100 and then logarithmically until a higher threshold is reached 
or loss encountered. The rationale for choosing a large value derives from the purpose of 
initial slow-start: to quickly determine how fast a source may send on a given path. 
Choosing a small value could lead a flow to switch to a linear increase prior to achieving 
its maximum transmission rate, so a flow might end before maximum rate is achieved. 
We decided to see what difference the choice of initial TCP slow-start threshold would 
make given our other factors and parameter settings. 

4.2.3 Specific Combinations Simulated 
Given 11 factors, each with two possible levels, a full factorial experiment would require 
(211 =) 2048 simulation runs. Assuming an average run takes about 8.5 processor hours, 
conducting all these simulation runs would require 17.408 x 103 processor hours. If we 
split these among 24 processors, we could complete the work in about 725 hours – or 30 
days. We preferred to be able to complete our simulations within a week, so we adopted a 
211-5 orthogonal fractional factorial (OFF) design that required only 64 simulation runs. 
The design can be found in Fig. 4-1. To generate our parameterized runs, we set our fixed 
factors to the values indicated in Tables 4-8 through 4-9 and then we generated 64 
configuration files that varied the factors (x1 to x11) as instructed by Fig. 4-1 – taking 
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from Table 4-11 the PLUS values to substitute for the +1 designators in Fig. 4-1and the 
MINUS values to substitute for the -1 designators in Fig. 4-1. 

4.3 Experiment Execution   
The experiment plan required 64 simulation runs, each simulating a different combination 
of factor settings (recall Fig. 4-1). We had 28 physical processors7 on which we could run 
our experiments, so we could conduct simulations in parallel. However, we were sharing 
these processors with other projects, so we could not always use all of the available 
processors. Below, we give a brief discussion of the resource requirements for the 
simulations and then we recount our approach to data collection and summarization. 

4.3.1 Resource Requirements for Simulations 
Table 4-17 reports the characteristics of the 28 processors available for our sensitivity 
analysis. Since MesoNet is implemented in SLX, each of the processors had access to an 
SLX simulation environment. SLX comes in two varieties: one configured to run in a 32-
bit address space and one configured to run in a 64-bit address space. Some of the 
available processors were configured with a 64-bit operating system, which could support 
both the 32-bit and 64-bit versions of SLX. We chose to run all our simulations using the 
32-bit version of SLX. We made this choice because our simulations could easily fit 
within a 32-bit address space and 32-bit simulation runs faster than 64-bit simulation. 
This is true largely because 64-bit simulation requires the use of 64-bit arithmetic when 
manipulating pointers that address simulation objects. Also 64-bit simulation requires 
more memory than 32-bit simulation because of the doubling of size for address pointers. 
For these reasons, 64-bit simulation should be reserved for situations where the size of 
the simulation cannot be contained within a 32-bit address space. 
 

Table 4-17. Characteristics of Processors Executing Simulation Runs 
 
Node Physical 

Processors 
Speed 
(GHz) Hyperthreaded Memory 

(GB) 
Operating 
System 

ws7 4 3.66 Yes 20 Windows Server 2003 R2 x64 
Edition SP2 

ws8 4 3.66 Yes 20 Windows Server 2003 R2 x64 
Edition SP2 

ws9 8 2.6 No 32 Windows Server 2003 R2 x64 
Edition SP2 

ws10 8 2.6 No 32 Windows Server 2003 R2 x64 
Edition SP2 

DT 4 3.2 No 3 Windows XP SP2 
 
We executed the simulations in three rounds (runs 1-35, runs 36-50 and runs 51-

64) over about one week. All simulation runs required a similar amount of memory: on 
the order of 120 Mbytes. On the other hand, simulation runs required varying amounts of 
                                                 
7 HyperthreadingTM was enabled on 8 of these physical processors. Hyperthreading creates two independent 
logical threads on a single physical processor. With hyperthreading the number of available logical 
processors totaled (28 + 4 x 2 =) 36. On hyperthreaded processors, our simulations ran at (or below) half 
the speed that was possible without using hyperthreading. The reader should take this into account when 
interpreting the execution time requirements given in Table 4-18. 
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processor time, depending on the specific combination of factors and on the specific node 
used to execute the simulation. Table 4-18 recounts the execution time used for each 
simulation run. Executing all 64 runs required a total of 537.6 hours of processing time, 
which amounts to 8.4 hours on average per run. However, due to the fact that ws7 and 
ws8 used hyperthreading, this figure is somewhat misleading. 
 

Table 4-18. Execution Time (Hours) Required for Each Simulation Run 
 
Run Node Time Run Node Time Run Node Time Run Node Time 

1 ws9 7.7 17 ws7 13.8 33 DT 10.7 49 DT 6.8 
2 ws9 6.2 18 ws7 12.2 34 DT 6.5 50 DT 2.4 
3 ws9 3.8 19 ws7 11.5 35 DT 5.2 51 ws9 2 
4 ws9 4.3 20 ws7 12.9 36 ws9 4.5 52 ws9 3.6 
5 ws9 4.9 21 ws7 8.8 37 ws9 7.3 53 ws9 2.8 
6 ws9 9.2 22 ws7 15.6 38 ws9 6.9 54 ws9 3.1 
7 ws9 5.1 23 ws7 15.4 39 ws10 5.7 55 ws9 3 
8 ws9 4.1 24 ws7 8.4 40 ws9 4.9 56 ws9 3.2 
9 ws10 7.5 25 ws8 16.7 41 ws9 8.2 57 ws9 5.7 
10 ws10 8.8 26 ws8 24.6 42 ws10 8.3 58 ws10 5.6 
11 ws10 6.1 27 ws8 19.1 43 ws10 4.9 59 ws10 5 
12 ws10 4.3 28 ws8 16.4 44 ws9 4.8 60 ws10 4.1 
13 ws10 10.2 29 ws8 24.7 45 ws10 9.2 61 ws10 7.5 
14 ws10 8.5 30 ws8 22.5 46 ws9 8.2 62 ws10 4 
15 ws10 5.6 31 ws8 19 47 ws10 5.1 63 ws10 3.8 
16 ws10 5.1 32 ws8 19.9 48 DT 6.8 64 ws10 4.9 

 
Considering the processing time required for runs on individual nodes, runs on 

ws9 averaged 5.2 hours, runs on ws10 averaged 6.2 hours, runs on DT averaged 6.4 
hours, runs on ws7 averaged 12.3 hours and runs on ws8 averaged 20.4 hours. Grouping 
nodes into those that were not hyperthreaded (ws9, ws10 and DT) and those that were 
hyperthreaded (ws7 and ws8), we found that the hyperthreaded nodes required an average 
of 16.3 hours per run, while the non-hyperthreaded nodes required an average of 5.8 
hours per run. Thus, the hyperthreaded nodes took an average of 2.8 times longer than the 
non-hyperthreaded nodes to execute a simulation run. This suggests that the 
hyperthreaded processors ran at about 36 % the speed of the non-hyperthreaded 
processors. Of course, to gauge the effects due to hyperthreading alone, one must account 
for the fact that the processor speeds of the hyperthreaded nodes were different than the 
processor speeds of the non-hyperthreaded nodes. 

Given that the processor speed of ws7 (and ws8) is 3.66 GHz, one would expect 
hyperthreading to provide half the processing speed, or (3.66/2 =) 1.83 GHz, to each 
logical thread. Thus, one might expect that it would take (2.6/1.83 =) 1.42 times longer to 
run simulations on ws7 (and ws8) than on ws9 (and ws10). We found that on average it 
took 2.8 times longer to run simulations on the hyperthreaded nodes. These findings do 
not provide a complete characterization of differences between hyperthreaded and non-
hyperthreaded operations. First, we did not run the same workload on both types of 
processors, as we split various experiment configurations among the processors. Second, 
the hyperthreaded processors employed chip architectures (Intel Xenon MP) different 
from some of the non-hyperthreaded processors (ws9 and ws10 used AMD Opteron 8218 
and DT used Intel Xenon). 
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4.3.2 Data Collection and Summarization 
MesoNet records response data as time series. This allows monitoring response changes 
over time. For example, Fig. 4-11 shows the time series for the number of active flows 
(response y1) during run 64 of our sensitivity analysis. As shown, the time series reports 
the number of active flows (y axis) at the end of each of measurement interval for each of 
6000 measurement intervals (x axis) recorded during the simulation run. To facilitate our 
analyses, we summarize each response to an average value for each run. As illustrated in 
Fig. 4-11, we do this by discarding the first half of the data (measurement intervals 1 to 
3000) and then computing the average value for the remaining data (measurement 
intervals 3001-6000). As illustrated in Fig. 4-11, discarding the first 3000 measurement 
intervals eliminates transient startup effects and enables us to retain behavior 
representative of the model operating in steady-state. In this case, for run 64, the mean 
value of y1 over measurement intervals 3001-6000 is 214.676 x 102 flows.    
 

 
Figure 4-11. Example Illustrating the Technique used to Summarize System Responses (x axis gives 
the number of active flows and y axis gives time in 200 ms intervals) 
 
 

We conduct such a summarization for all 22 responses under each of the 64 
conditions and collect the summarizations into a table, as shown in Fig. 4-12. For 
example, the value placed in the cell for response y1 and run 64 in Fig. 4-12 is the value 
we computed in Fig. 4-11. The summarization table forms the basis for all of our 
analyses. 
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Run y1 y2 … y21 y22 

1 4680.619 0.168126 … 92.034 89.785 

2 6654.512 0.239371 … 72.596 57.738 

3 9431.405 0.339259 … 29.569 13.963 

4 11565.81 0.415439 … 23.427 19.882 

… … … … … … 

61 10319.55 0.247471 … 87.969 41.573 

62 1738.469 0.093668 … 159.298 161.602 

63 1783.509 0.096094 … 148.395 161.36 

64 21467.6 0.514811 … 26.159 9.981 
 

Figure 4-12. Sample Data Summarization: 22 Responses for each of 64 Simulation Runs 
 
 

 
 

Figure 4-13. Combined Matrix of Scatter Plots and Correlation Values for 22 Responses 
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4.4 Correlation Analysis and Clustering   
Given 64 average values (one per run) for 22 responses, correlation analysis investigates 
the degree to which pairs of responses are correlated. Recall that Tables 4-1 and 4-2 
identify the 22 responses. We begin by generating a scatter plot and computing the 
correlation for each pair of responses. Then we plot (in Fig. 4-13) the results as a 
combined matrix of scatter plots and correlation values. We order the diagonal by 
decreasing average correlation for each response with the 21 other responses. The highest 
average correlation is for response y7 and the lowest is for response y6. Correlations of .8 
and above are colored red, correlations between .3 and .79 are colored blue and 
correlations below .3 are colored green. 

Fig. 4-13 reveals some correlation groupings. For example, responses y7, y21, 
y22, y19, y12, y11, y1 and y2 show mutual correlations. Responses y5, y10, y14, y8 and 
y9 also exhibit mutual correlations. Strong correlations appear between selected pairs of 
responses: y21 and y22; y22 and y19; y5 and y10; y1 and y2; y8 and y9; y13 and y14; 
y18 and y20; y3 and y4. These mutual correlations suggest that it should prove feasible to 
reduce the number of responses examined from 22 to some lower dimension. On the 
other hand, a few responses (e.g., y6 and y17) appear largely uncorrelated with other 
responses. 
 

 
Figure 4-14. Frequency Distribution of the Absolute Value of Correlations for All Pairs of Responses 
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To identify particular correlation groups, we need to select a threshold for the 
absolute value of correlations such that above that threshold we will consider correlations 
sufficiently strong to warrant inclusion in further analyses, while we will discard 
correlations below that threshold. To help identify a reasonable threshold, we plot (in Fig. 
4-14) a frequency distribution of the absolute values of all correlation pairs. 

In Fig. 4-14, we emphasize (in red) the range of correlations that appear most 
significant because there is a notable change above that value, appearing as a separate 
sub-distribution centered on a different mode. The range of correlations emphasized in 
Fig. 4-14 run from about 0.65 to 1.0, so we decided to use correlations whose absolute 
value exceeds 0.65. We discard correlations with lower absolute values. For the 
correlations retained, we produced an index-index plot (recall Fig. 4-6). In Fig. 4-15 we 
reorder the indices from Fig. 4-6 (on both the ordinate and abscissa) by increasing total 
number of variables exhibiting above threshold correlation with the designated variable. 
Where the count of mutual correlations is the same, our order is arbitrary. We begin with 
responses y6 and y17, which have no retained correlations. For those responses, we order 
y17 first because it has only one mutual correlation > 0.5, while y6 has two such 
correlations – thus, y17 is somewhat less correlated with other responses than is y6. 
 

 
 

Figure 4-15. Index-Index Plot for Correlation Pairs where |Correlation (Yi, Yj)| > 0.65 
 

Fig. 4-15 identifies seven clear correlation groups: y17 (no correlations); y6 (no 
correlations); y3 and y4 (pair-wise correlation); y15 and y16 (pair-wise correlation); y18 
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and y20 (pair-wise correlation); y8, y13, y5, y10, y14 and y9 (28 mutual correlations); 
y11, y1, y7, y2, y19, y21, y22 and y12 (50 mutual correlations). This suggests that we 
can characterize system response through seven, rather than 22, responses. Next, we 
address the issue of whether or not the seven correlation groupings make sense from the 
perspective of the network simulation model. We also discuss what information may be 
conveyed by lack of correlation. We begin our discussion with the three mutually 
correlated pairs and then consider the group with 28 mutual correlations, followed by the 
group with 50 mutual correlations. We close by considering the two uncorrelated 
responses.  

 The rate of data packets injected into the network (y3) is highly correlated (0.99) 
with the rate of packets leaving (y4). This strong correlation is expected because packets 
must enter the network before they can exit and the rate of entry and exit should be 
balanced (unless many packets are lost within the network). Perhaps more surprising is 
the fact that the rate of packets entering and exiting the network is not strongly correlated 
with any other responses. The closest correlation (around 0.5) is with the rate of flow 
completions (y6), which is largely uncorrelated with any other responses. One might 
expect correlation between the number of active flows (y1) and the number of packets 
entering and leaving the network, but this is not the case. From this, we conclude that the 
rate of packets flowing through the network is influenced by factors different from those 
influencing the number of active flows. Thus, our sensitivity analysis needs to consider 
either the rate of packets entering or leaving the network but not both. 

The (SRTT) smoothed round-trip time (y15) and relative queuing delay (y16) are 
somewhat correlated (0.7). This makes sense because the relative queuing delay is 
computed by transforming the SRTT. The correlation is not particularly strong because 
the relative queuing delay factors out the propagation delay and gives enhanced weight to 
time spent in buffers. Buffer size has a greater influence on y16, while that influence is 
somewhat diluted (by propagation delay) in y15. The low strength of the correlation 
suggests that our sensitivity analysis should consider both y15 and y16. On the other 
hand, the reasons underlying the correlation suggest that perhaps we could use only y15, 
which captures influences due to both propagation delay and queuing delay. 

The average instantaneous throughput for DF flows (y18) is strongly correlated 
(0.98) with the throughput for FF flows (y20). This reflects the fact that throughput is 
constrained by the capabilities of the slower of the two access-router classes over which 
such flows transit. This strong correlation implies that we need only consider one of these 
two responses for our sensitivity analysis. 

The next correlation group in Fig. 4-15 consists of 28 mutual correlations among 
six responses: loss rate (y5); connection failures (y8) and connection-failure rate (y9); 
retransmission rate (y10); negative acknowledgment rate (y13) and timeout rate (y14). 
Most of these mutual correlations exceed 0.8. The correlations among these responses 
appear reasonable because packet losses have numerous consequences: negative 
acknowledgments or timeouts, connection failures and retransmissions. The strongest 
correlation (0.99) exists between loss rate and retransmission rate. In fact, since both data 
packets and acknowledgments may be lost, one would expect the retransmission rate to 
be about twice the loss rate. The (0.89) correlation between loss rate and connection 
failures is lower because connection attempts are retried; three connection attempts must 
be lost before a connection fails. The (0.79) correlation between loss rate and negative 
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acknowledgment rate (as seen by sources) is lower because negative acknowledgments 
may also be lost; losses push up the rate at which receivers send negative 
acknowledgments but also increase probability that negative acknowledgments are lost. 
When acknowledgments (negative or positive) are lost, the rate of timeouts increases, so 
there is a higher correlation (0.88) between loss rate and timeouts. The six responses in 
this correlation group are measures of packet losses and the ensuing consequences for the 
network. Our sensitivity analysis need only consider one of these responses, such as 
retransmission rate (y10), which reflects both packet losses and the packets resent to 
recover from losses. 

The final correlation group consists of 50 mutual correlations among eight 
responses: active flows (y1) and proportion of possible flows that are active (y2); flow-
completion rate (y7); average congestion window (y11) and window-increase rate (y12); 
and average instantaneous throughput for DN (y19), FN (y21) and NN (y22) flows. Most 
correlations, which are negative, stem from sharing network resources. Increasing active 
flows leads to decreases in flow-completion rate, the average congestion window, 
window increase rate and instantaneous throughput for flows transiting normal access 
routers. Flows (DN, FN and NN) transiting normal access routers are most numerous; 
sharing access routers affects the throughput of these flows. As the number of flows 
transiting an access router increases, each flow receives a lower share of the bandwidth 
and so will receive lower throughput. Lower throughput implies smaller congestion 
windows. Smaller congestion windows imply a slower rate of window increases. More 
active connections also imply a lower rate of connection completion. Note, however, that 
the (-0.5) correlation between active connections and average congestion window is not 
strong enough to be included in this correlation group. Stronger correlations exist 
between average congestion window and flow throughputs (about 0.8) and window 
increase rate (0.85). This suggests that congestion window size is influenced by factors 
not solely related to the number of active connections. In fact, in Sec. 4.1.5 we showed 
that congestion window size is influenced by network speed, buffer-sizing algorithm and 
initial slow-start threshold, as well as by factors that influence the number of active 
connections. For our sensitivity analysis we can select one response (such as y22) to 
reflect the degree of sharing among common network resources. We should probably also 
include the number of active flows in order to investigate what factors influence the need 
to share resources. 

The two remaining responses, flows completed (y6) and average instantaneous 
throughput for DD flows (y17), are uncorrelated with other responses. Apparently, the 
number of flows completed is driven by factors different from the factors driving other 
responses. The reason for this is not obvious.  Throughput for DD flows is also driven by 
factors different from the factors influencing throughput for other flow classes. The 
reason for this appears straightforward. First, DD flows are relatively few in number, 
when compared with other flow classes. Second, DD flows cross high-speed access 
routers that are connected directly to backbone routers, so DD flows see less contention 
for bandwidth on the ingress and egress paths of the network. Since y6 and y17 are 
uncorrelated with other responses, we must include them in our sensitivity analysis. 

To recap, Table 4-19 identifies the responses we chose to investigate during our 
sensitivity analysis. Correlation analysis suggested that we could characterize system 
response using only seven of 22 responses. We decided to include an eighth response: the 
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number of active flows (y1). This added response allowed us to consider which factors 
lead to an increased number of active flows, a main influence on the degree of resource 
sharing required within a network. Two responses deal with the aggregate throughput of 
packets (y4) and flows (y6). One response (y10) reflects the degree and consequences of 
packet losses. One response (y15) mirrors the degree of network delay. The remaining 
responses gauge throughput for flows constrained by transiting directly connected (y17), 
fast (y20) or normal (y22) access routers.   

 
Table 4-19. Responses Selected for Investigation in Sensitivity Analysis 

 
Response Definition 

y1 Average number of active flows 
y4 Average number of packet output per measurement interval 
y6 Average number of flows completed per measurement interval 

y10 Average retransmission rate 
y15 Average smoothed round-trip time 
y17 Average instantaneous throughput for DD flows 
y20 Average instantaneous throughput for FF flows 
y22 Average instantaneous throughput for NN flows 

4.5 Principal Components Analysis   
Principal components analysis (PCA) is an alternative (or complementary) technique 
often used to assess the covariance structure of a set responses [96]. In this section, we 
describe the findings of a PCA applied to the 22 responses from our sensitivity analysis 
simulation runs. As the first step in the PCA, we transform our data responses into a 
standardized form by subtracting the mean value (over all 64 conditions) from each 
response to yield (22 x 64 =) 1408 normalized data points, as discussed previously in Sec. 
4.1.4. In this way, all responses are placed on an equivalent scale with respect to variance 
around the mean. Next, we find a weight vector that yields the maximum possible 
variance (or standard deviation), subject to the constraint that the sum of all weights (with 
each weight squared) is equal to one. We repeat this process, possibly up to the total 
number of responses, and each time require the weights selected to be orthogonal to the 
weights used in previous steps. Using this technique we are looking for the largest 
sources of variation in different directions through the data with each step. Each different 
direction through the data is considered a principal component. The amount of variation 
accounted for diminishes with each principal component considered. At some point, most 
of the variance will be accounted for and one could stop the analysis. 

For example, consider Figure 4-16, which displays the results of a PCA for the 22 
responses from our sensitivity simulations. The detailed layout of each sub-plot was 
explained previously in Sec. 4.1.4 (recall Fig. 4-8). The upper left-hand plot depicts the 
standard deviation (SD) across all normalized responses (y1 through y22). The remaining 
22 plots show the standard deviation accounted for by each of 22 principal components in 
decreasing order of magnitude. We note that most (about 86 %) of the variation in the 
data is accounted for by the first four principal components. Next, we plot the weights 
associated with each response in each of the first four principal components. Figure 4-17 
shows this information. The detailed layout of each sub-plot was explained previously in 
Sec. 4.1.4 (recall Fig. 4-7). 
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The results of the PCA suggest that the behavior of our model can be represented 
with as few as four (statistically uncorrelated) responses, instead of the seven responses 
suggested by our correlation analysis. Further, these four principal components, or PCs, 
are linear combinations of many regular responses. Extracting responses from each PC in 
Fig. 4-17 using heuristics mentioned in Sec. 4.1.4, we can group responses by principal 
component, as shown in Tables 4-20 through 4-23. 

 
 

 
Figure 4-16. Histograms for 22 Principal Components (x axis of each sub-plot identifies bins of 
normalized component values ranging from -20 to +20 and y axis the count of values within each bin). 
Above each sub-plot is the standard deviation in the data accounted for by the Principal Component. The 
first sub-plot gives the distribution of the normalized responses. 

 
 

Principal Component 1 Principal Component 2 Principal Component 3 Principal Component 4

 
 

Figure 4-17. Weight Vectors for the First Four Principal Components 
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The first principal component (Table 4-20) combines two response groups 
identified in the correlation analysis. One group represents the effects of resource sharing 
and congestion on the throughput of flows that transit typical access routers. Such flows 
are most numerous in any given simulation. The second group represents the level of 
congestion present in the network. Congestion occurs most often at access routers. Thus, 
the PCA finds that the largest source of variance in the 22 responses arises from the level 
of congestion at access routers in the simulated network. 
 

Table 4-20 Responses Composing Principal Component One 
 

Correlation Cluster Response Definition 

Effects of 
Resource Sharing 
and Congestion on 
Throughput in 
Flows Transiting 
Typical Access 
Routers 

y1 Average number of active flows 
y2 Proportion of possible flows that are active 
y7 Flow-completion rate 
y11 Average congestion window 
y12 Window-increase rate 
y19 Average instantaneous throughput for DN flows 
y21 Average instantaneous throughput for FN flows 
y22 Average instantaneous throughput for NN flows 

Overall Network 
Congestion 

y5 Loss rate 
y8 Connection failures 
y9 Connection-failure rate 
y10 Retransmission rate 
y13 Negative-acknowledgment rate 
y14 Timeout rate 

 
 

Table 4-21. Responses Composing Principal Component Two 
 

Response Definition 
y15 Smoothed round-trip time 
y16 Relative queuing delay 

 
The second principal component (Table 4-21) corresponds to a pair of responses 

(y15 and y16) grouped together by the correlation analysis. These responses represent the 
level of delay within the network. 

 
Table 4-22. Responses Composing Principal Component Three 

 
Correlation Cluster Response Definition 

Packet Throughput y3 Packets input 
y4 Packets output 

DD-flow Throughput  y17 Average instantaneous throughput for DD flows 
DF- & FF-flow 
Throughput 

y18 Average instantaneous throughput for DF flows 
y20 Average instantaneous throughput for FF flows 

 
The third principal component (Table 4-22) unites three separate groupings found 

in the correlation analysis. One group represents the number of data packets flowing in 
and out of the network, which correlation analysis suggested were not strongly correlated 
with other responses. Note, though, that there were moderate correlations with throughput 
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on faster flows (y17, y18 and y20) and with the number of flows completing (y6). In fact, 
the PCA assigns similar weights for y3 and y4 in both principal components three and 
four. (For this reason, we also include y3 and y4 in the grouping associated with principal 
component four.) Responses relating to throughputs for flows transiting only fast and 
directly-connected routers were grouped together by the principal components analysis, 
while correlation analysis separated these responses. Principal component three also 
seems to include the effects of the higher throughput flows on packets flowing into and 
out of the network. 

The fourth principal component represents the ability of the network to complete 
flows. Included in this component is the association with packets entering and leaving the 
network. If called upon to place y3 and y4 into only a single principal component, we 
would choose to place them into PC4. On the other hand, as shown in Table 4-23, PC4 
unites two separate groupings found in the correlation analysis. 

 
Table 4-23. Responses Composing Principal Component Four 

Correlation Cluster Response Definition 

Packet Throughput y3 Packets input 
y4 Packets output 

Flow Throughput y6 Flows completed per measurement interval 
 

The principal components analysis both confirms the findings of the correlation 
analysis and also provides additional information. For example, the PCA groups together 
the symptoms and effects of congestion. This appears sensible. The PCA also reveals a 
connection between packets in and out and two other groupings: throughput on high-
throughput flows and the number of connections completed. The correlation analysis 
hinted at these connections. The PCA suggests that throughput on DD flows should be 
grouped together with throughput on DF and FF flows; the correlation analysis indicated 
that DD flows should be studied separately. We will use findings from both the 
correlation and principal components analyses as we investigate the sensitivity of model 
responses to input parameters.   

4.6 Sensitivity Analysis   
In this section, we use the experiment design, the model responses and the results of the 
correlation and principal components analyses to assess the sensitivity of MesoNet to 
changes in eleven input factors. We begin by exploring how model inputs affect the eight 
responses identified by our correlation analysis (recall Table 4-19). Subsequently, we 
consider how the four main principal components (recall Tables 4-20 through 4-23) vary 
with changes in input factors. 

4.6.1 Sensitivity Analysis Guided by Correlation Analysis 
We begin by exploring how model inputs affect three, congestion-related responses: 
number of active flows (y1), retransmission rate (y10) and average instantaneous 
throughput for NN flows (y22). Subsequently, we consider the five remaining responses 
in the following order: average smoothed round-trip time (y15), rate of data packets 
output (y4), number of flows completed per measurement interval (y6) and average 
instantaneous throughput for DD flows (y17) and for FF flows (y20). 
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4.6.1.1 Congestion-Related Responses. For the topology and experiment design we 
adopted, flows transiting through the slowest (N-class) access routers were most 
numerous. For this reason, congestion tends to occur most often in N-class access routers, 
which affects the throughput of flows transiting such routers. The affected flows include 
DN, FN and NN flows, which our analysis showed to be significantly correlated. We 
selected NN flows as a representative flow class to consider. The throughput experienced 
by NN flows is likely to be affected by the number of active flows transiting N-class 
access routers and by the retransmission rate on those flows. Since flows transiting N-
class access routers are most numerous, macroscopic measures of the number of active 
flows and the retransmission rate network-wide should be indicative of the level of 
congestion experienced by NN flows. For these reasons, we decided to consider y1, y10 
and y22 as a related set of responses. 
 

 
 

Figure 4-18. Main-Effects Plot for Response y1 (Average Number of Active Flows) 
 

We decided to first examine factors that influence the number of active flows in 
the network, since the number of active flows is likely to affect congestion. Fig. 4-18 
gives the main-effects plot highlighting factors influencing the number of active flows. 
The main factors appear to fall into three categories: (a) number of sources underneath N-
class access routers, (b) idle interval for those sources and (c) duration for which flows 
remain active. The think time of sources (x5) is the main influence on the number of 
active flows. The shorter the think time the more often sources become active and 
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attempt to transfer files (i.e., sequences of packets). Naturally, the more sources that exist 
under N-class access routers, the greater will be the effects of shorter think time. The 
number of sources under N-class access routers is influenced by two factors: the base 
number (x8) of sources used to populate the topology and the distribution (x9) of those 
sources. The plus setting for x9 increases the probability flows will exist between sources 
and receivers under N-class access routers. This setting gives the network a bit of a peer-
to-peer (P2P) character. 

For flows active between N-class access routers, the longer it takes for flows to 
complete, the more likely the number of active flows will increase. There is a bit of 
reinforcement at work here. The more active flows that transit a given access router, the 
lower will be the throughput of each flow and the longer it will take for each flow to 
finish transferring its packets. Thus, the higher the arrival rate of flows (i.e., the lower the 
source think time) the larger the number of active flows. Two other factors have 
significant influence on the time taken to complete flows. The first factor is the average 
file size (x4). Larger files take longer to transfer because more packets must be relayed 
and acknowledged. The second factor is network speed (x2): a slower network (plus 
setting) will take longer to transfer files of any particular size. Fig. 4-18 reveals this 
complex collection of related and reinforcing influences on the number of active flows. 

Some other plots (not reproduced here) from the ten-step analysis also reveal 
interactions between number and distribution of sources (x8/x9), file size and distribution 
of sources (x4/x9) and think time and distribution of sources (x5/x9). These interactions 
make sense given the discussion contained in the previous paragraph. The effects from 
these factor interactions are much less significant than the main factors alone. In fact, the 
analysis of all 22 responses reveals that MesoNet simulations are driven by main factors 
and not by interactions among factors. 

Congestion at N-class access routers could certainly lead to packet losses, which 
would stimulate retransmissions and cause flows to take longer to complete because the 
required number of packet transmissions would increase. Given this reasoning, one 
would expect many of the same factors influencing the number of active flows to also 
influence the retransmission rate. Fig. 4-19 displays the main-effects plot for network-
wide retransmission rate (y10). Comparing Fig. 4-18 and Fig. 4-19 one can certainly see 
significant overlap in the main factors: number (x8) and distribution of sources (x9), 
average file size (x4) and think time (x5) and network speed (x2). In fact, the same 
settings for these factors that lead to increased number of active flows also lead to 
increased retransmission rate. The main difference is that retransmission rate is 
influenced most significantly (and equally) by network speed (x2) and buffer sizing 
algorithm (x3). Fewer buffers (minus setting) and lower network speed (plus setting) lead 
to increased probability of packet losses, which stimulate retransmissions. 

The fact that buffer size was not so important with respect to the number of active 
flows reflects TCP congestion control. Given a larger number of flows, the TCP 
congestion control mechanism reacts to losses by adjusting flow sending rate: slowing 
packet transmissions, which leads to lower throughputs but also mitigates packet losses. 
Fig. 4-19 shows that mitigating packet losses becomes more difficult when buffer sizes 
are severely restricted. One would expect the main effects influencing retransmission rate 
to be identical to the main effects influencing loss rate (y5). Our review of the main-
effects plot (not reproduced here) for loss rate confirms this expectation. 
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Figure 4-19. Main-Effects Plot for Response y10 (Average Retransmission Rate) 
 

Given the analysis related to number of active flows and retransmission rate, one 
would expect throughput8 on NN flows to be driven primarily by a relationship between 
available bandwidth (network speed) and number of active flows. The main-effects plot, 
Fig. 4-20, supports this expectation. Factors leading to fewer active flows include a lower 
number of sources (x8 minus) and a distribution that leads to fewer NN flows (x9 minus), 
as well as longer think time (x5 plus). Setting x9 to minus increases the probability that 
sources under N-class access routers will exchange data with receivers under F-class 
access routers, which gives the network a bit of a Web-centric character. With fewer 
active NN flows and higher network speed (x2 minus), the throughput achieved by NN 
flows is higher; under reverse conditions the throughput is lower. 

Fig. 4-20 also reveals some subtle, although less significant, effects. Shorter 
propagation delay (x1 minus) yields higher throughput. This occurs because sources 
receive feedback more quickly and timeout values remain lower. Perhaps unexpectedly, 
throughput is higher when file sizes are smaller (x4 minus). This appears related to 
reducing the number of active flows, as flows complete more quickly when fewer packets 
must be transferred. Finally, larger buffer sizes (x3 plus) lead to higher throughput. This 
appears due to experiencing fewer losses, which requires fewer retransmissions and 
timeouts. 
                                                 
8 Note that, though we use the term throughput when discussing flow classes, what we actually measure is 
often referred to as goodput; thus, retransmissions are not considered to be throughput. 
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Figure 4-20. Main-Effects Plot for Response y22 (Average Instantaneous Throughput for NN Flows) 
 
4.6.1.2 Delay-Related Responses. We selected average, smoothed, round-trip time 
(SRTT) as the response (y15) reflecting changes in network delay. Fig. 4-21 gives the 
related main-effects plot, which reveals that buffer-sizing algorithm and propagation 
delay are the main factors influencing SRTT. This makes eminent sense: higher 
propagation delay (x1 plus) and larger buffer sizes (x3 plus) lead directly to increase in 
SRTT. Larger buffer sizes permit bigger queues of packets, which increases queuing 
delay. Fig. 4-21 also reveals some minor effects, which suggest that congestion 
influences SRTT. This makes sense: more congestion leads to more packets residing in 
the bigger buffers. 
 
4.6.1.3 Responses Related to Macroscopic Throughput. To represent the macroscopic 
throughput of the network, we selected two responses: data packets output per interval 
(y4) and flows completed per interval (y6). The first response represents the rate at which 
packets are flowing through the network, while the second response represents the rate at 
which flows are being completed by the network. We begin by considering the rate of 
packet output. 

Fig. 4-22 reveals that the main influence on the rate of packet output is network 
speed: higher network speed (x2 minus) means a greater rate of packet output. This 
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stands to reason in a network with a sufficient number of active flows. The combination 
of shorter think times (x5 minus) and more sources (x8 plus) leads to an increase in the 
number of flows and the higher network speed implies that each flow can transmit faster, 
so the aggregate rate of packet output should be greater under these circumstances. File 
size is another factor significantly affecting the rate of packet output. Larger file sizes (x4 
plus) lead to greater throughputs because a smaller portion of the transfer occurs during 
slow-start, the transfer phase during which a flow’s congestion window is lowest. Flows 
transferring with a larger congestion window achieve higher throughput, which helps to 
increase the aggregate network throughput. 
 

 
 

Figure 4-21. Main-Effects Plot for Response y15 (Average Smoothed Round-Trip Time) 
 

As shown in Fig. 4-23, with one major exception, the story regarding the rate of 
flow completions is quite similar to the story regarding the rate of packet outputs. A 
sufficient number of connections (x5 minus and x8 plus) combined with higher network 
speed (x2 minus) contributes to a higher rate of flow completion. The exception involves 
file size (x4). In the case of packets output, larger file sizes (x4 plus) led to higher 
throughputs and thus to more packets output. On the contrary, for flows completed, 
smaller file size led to a higher completion rate. This stands to reason; smaller flows will 
be completed sooner. The sooner flows can be completed, the more flows can be 
completed per unit of time. 
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Figure 4-22. Main-Effects Plot for Response y4 (Average Packets Output per Measurement Interval) 
 
 
 

Figure 4-23. Main-Effects Plot for Response y6 (Flows Completed per Measurement Interval) 
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4.6.1.4 Responses Related to Advantaged Flow Classes. The final two responses we 
investigate represent throughputs achieved over advantaged flow classes, which are flows 
that transit between sources and receivers located under directly-connected and fast 
access routers. We examine the average instantaneous throughput of DD flows (y17) and 
FF flows (y20). 

 

 
 

Figure 4-24. Main-Effects Plot for Response y17 (Average Instantaneous Throughput of DD Flows) 
 

Each DD flow transits across a pair of D-class access routers, which are directly 
connected to backbone routers. D-class access routers are comparable in speed to POP 
routers, which are 10 times faster than N-class access routers. Given these factors, DD 
flows are the most advantaged in the simulation and should be able to achieve highest 
throughputs under the traffic scenario adopted for the sensitivity analysis. Few factors 
should impede the throughput of DD flows. Fig. 4-24 reveals that the throughput of DD 
flows is influenced by only two factors: propagation delay (x1) and file size (x4). This 
makes sense. Shorter propagation delay (x1 minus) permits faster feedback on DD flows, 
which allows the congestion window to increase more quickly. The rate of feedback is 
most important during the initial slow-start phase, where the congestion window starts at 
a small size but doubles with each acknowledgment received. The influence of file size is 
also clear. Larger file sizes (x4 plus) allow more of the packets in a file to be transferred 
after the flow reaches its peak sending rate. Smaller file sizes (x4 minus) imply that more 
of the packets in a file will be sent early in the slow-start phase, when a flow is building 
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up toward its peak sending rate. Throughput early in slow-start will be much smaller than 
throughput after a flow reaches its peak rate. 

Two other classes of advantaged flows are those where a source or receiver is 
under an F-class access router and its correspondent is under either an F-class or D-class 
access router. These flows comprise the following classes: DF flows and FF flows. The 
throughput achievable on these flows is constrained by the F-class access routers, which 
operate at twice the speed of N-class access routers. DF and FF flows are less advantaged 
than DD flows. We use the throughput on FF flows (response y20) to represent both 
classes. 

 Fig. 4-25 shows the main effects influencing throughput on FF flows. FF flows 
are influenced by a more complex mix of factors than DD flows. The significance of 
propagation delay (x1) and file size (x4) are two clear common factors among all 
advantaged flow classes. Shorter propagation delay means quicker feedback, which leads 
to faster increase in the congestion window for flows that are not impeded by congestion. 
Larger file sizes allow more of a flow’s packets to be transferred at a higher sending rate. 
Less advantaged (DN, FN and NN) flows are influenced mainly by congestion, so 
propagation delay has less effect on those flows. 

 

 
Figure 4-25. Main-Effects Plot for Response y20 (Average Instantaneous Throughput of FF Flows) 

 
Unlike DD flows, FF flows can face some congestion because selected source 

distributions lead to higher numbers of FN flows. Specifically, a source distribution (x9 
minus) that gives the network a Web-centric characteristic leads to more FN flows, which 
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compete for throughput with FF and DF flows. In addition, lower average think time (x5 
minus) leads to more active flows that can compete for throughput. Under these 
circumstances, higher network speed (x2 minus) allows competing flows to achieve 
higher throughputs. The influence of all these factors is evident in Fig. 4-25. 

Our investigation of throughput reveals three general categories of flows. 
Throughput in one category, which includes the most numerous (DN, FN and NN) flows, 
is influenced mainly by congestion and network speed. Throughput in a second category, 
which includes only the most advantaged and least numerous DD flows, is influenced 
mainly by propagation delay and file size. Throughput in the remaining category (DF and 
FF flows) is influenced by a combination of the factors influencing the other two 
categories. 

4.6.2 Sensitivity Analysis Guided by Principal Components Analysis 
In this section we examine the sensitivity of the principal components (PCs) to variations 
in model inputs. Recall from our PCA (Sec. 4.5) that we identified four main principal 
components accounting for most variation in the model’s 22 responses. We viewed these 
PCs, summarized in Table 4-24, as groupings of responses representing different aspects 
of the model’s behavior. The reader may note a correspondence between the groupings 
by principal component and the groupings used (in Sec. 4.6.1) to describe the sensitivity 
analysis of responses guided by correlation analysis. Below, we report the results of 
applying main-effects analysis to the PCs identified in Table 4-24. 
 

Table 4-24. Definition of Major Principal Components in Model Response 
 
Principal Component Responses in Principal Component 

Congestion (PC1) y1, y2, y5, y7, y10, y11, y12, y13, y14, y19, 
y21, y22 

Delay (PC2) y15, y16 
Throughput for Advantaged Flows (PC3) y17, y18, y20 
Macroscopic Throughput (PC4) y3, y4, y6 
 
4.6.2.1 Congestion. Given that PC1 represents the effects of network congestion, one 
would expect significant congruence between factors affecting PC1 and factors affecting 
responses driven by congestion. Previously, we analyzed three congestion-related 
responses: number of active flows (y1), retransmission rate (y10) and average 
instantaneous throughput for NN flows (y22). We also noted that loss rate (y5) and 
retransmission rate were related closely. Analysis of PC1 should show that the same 
factors influence PC1 as influence responses y1, y5, y10 and y22. Fig. 4-26 displays the 
main-effects plot for PC1. The key factors influencing PC1, in order of significance, 
include: network speed (x2), think time (x5), distribution (x9) and number (x8) of 
sources, file size (x4) and buffer size (x3). This set of factors is also the union of factors 
most significantly driving responses y1, y10 and y22. Further, given insights from our 
previous analyses, we conclude that Fig. 4-26 illustrates the following factors induce 
network congestion and its consequences: slower network speed (x2 plus), smaller buffer 
sizes (x3 minus), larger file size (x4 plus), shorter think time (x5 minus), more sources 
(x8 plus) and a P2P-like distribution of sources (x9 plus). Reversing these factors eases 
network congestion and its consequences.  



Study of Proposed Internet Congestion Control Mechanisms NIST 

Mills, et al. Special Publication 500-282 121 

M
ea
n 
Re

sp
on

se
 Y
 (P
ri
nc
ip
al
 C
om

po
ne

nt
 1
)

 
 
Figure 4-26. Main-Effects Plot for PC1 (Network Congestion) – the % computations in Main-Effects 
plots for PCs appear unreadable (and meaningless) because PC values are normalized to a 0 mean. The 
reader may simply use the magnitude and slope of the lines connecting the – and + level of each of the 11 
factors to provide information that may be compared with previous Main-Effects plots applied to individual 
responses rather than PCs, which are linear combinations of many individual responses 
 

The reasons that these factors modulate network congestion have already been 
explained in Sec. 4.6.1.1. Our analysis suggests that factors modulating network 
congestion will influence all responses grouped under PC1. For example, increasing 
network congestion lowers the average congestion window (y11), decreases the rate of 
congestion window increases (y12), increases the rate of negative acknowledgments 
(y13) and timeouts (y14) and reduces average throughput for DN (y19), FN (y21) and 
NN (y22) flows. For the traffic scenario adopted, the macroscopic pattern of network 
congestion relates primarily to the most numerous types of flows, which transit the most 
numerous N-class access routers. Other factors influence less numerous, more 
advantaged flows, as discussed below when considering PC3. 
 
4.6.2.2 Delay. Given that PC2 represents effects on network delay, one would expect 
significant congruence between factors affecting PC2 and factors affecting responses 
driven by delay. Previously, we analyzed one delay-related response: average smoothed 
round-trip time – SRTT (y15). SRTT was driven primarily by two factors: buffer size 
(x3) and propagation delay (x1). Note that SRTT is significantly correlated (0.70) with 
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relative queuing delay (y16), which is driven mainly by one factor: buffer size (x3). One 
would expect PC2 to be driven by the same factors that drive SRTT and relative queuing 
delay. Fig. 4-27 depicts the main-effects plot for PC2. The plot shows that PC2 is mainly 
influenced by two factors: buffer size and propagation delay. Fig. 4-27 also reveals a 
minor influence of think time (x5). Interpreting Fig. 4-27 shows that average network 
delay increases with increases in propagation delay (x1 plus) and buffer size (x2 plus). 
Further, Fig. 4-27 suggests that decreasing think time (x5 minus) tends to increase delay; 
this is likely due to the fact that more flows are active simultaneously, which helps to fill 
the larger available buffer space. 
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Figure 4-27. Main-Effects Plot for PC2 (Network Delay) 
 

These results indicate that, for the traffic scenario used here, network delay is 
largely orthogonal to network congestion. Why might this be so? Under congestion, the 
TCP congestion control mechanism causes flows to reduce their sending rate. This adapts 
the flow of packets into the network in accordance with perceived congestion. The 
feedback rate for the congestion control mechanism depends largely on network delay, 
which is due to two factors: propagation delay and queuing delay. Propagation delay is 
modulated by the distance packets must travel, and queuing delay is modulated by the 
size of buffers in network routers. Congestion cannot affect the distance that packets must 
travel. When buffers are small, congestion cannot affect the queuing delay because 
queues will be small. Only when buffers are large can the degree of congestion influence 
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network delay, but in this case TCP congestion control reacts to reduce the rate of traffic 
entering the network, which tends to limit the number of packets in the network. For 
these reasons, results suggesting lack of correlation between network congestion and 
delay appear reasonable.  
 
4.6.2.3 Throughput for Advantaged Flows. Given that PC3 represents the effects on 
throughput for advantaged flows, one would expect significant congruence between 
factors affecting PC3 and factors affecting throughput for DD (y17), DF (y18) and FF 
(y20) flows. Previously, we analyzed factors influencing throughput on DD and FF 
flows. Factors influencing throughput on DF flows (not included in this report) are 
identical to the factors influencing FF flow throughput. The main factors influencing 
throughput for advantaged flows include: propagation delay (x1), file size (x4), network 
speed (x2), distribution of sources (x9) and think time (x5). Review of Fig. 4-28 shows 
that the same factors influence PC3. PC3 is also driven to some extent by buffer size (x3), 
which was not a significant factor in the previous analysis of throughput for DD or FF 
flows. 
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Figure 4-28. Main-Effects Plot for PC3 (Throughput for Advantaged Flows) 
 

One could interpret Fig. 4-28 as depicting lower throughput above the zero line 
and higher throughput below the zero line. Using this interpretation, Fig. 4-28 indicates 
that higher throughput on advantaged flows results from: larger file sizes (x4 plus), 
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higher network speed (x2 minus), shorter propagation delay (x1 minus), and more P2P-
like network traffic (x9 plus). Reversing the settings for these factors would lead to lower 
throughputs. These findings are consistent with our previous analysis of the factors 
influencing throughput for DD (y17) and FF (y20) flows. 

One somewhat new piece of information is revealed by Fig. 4-28: the influence of 
buffer size on throughput for advantaged flows. In our previous analyses, buffer size had 
a more modest influence on throughput. The influence that was present indicated that 
smaller buffers led to lower throughputs and larger buffers led to higher throughputs. 
This seems to make sense because small buffers lead to increased losses, which lead to 
increased retransmissions, which lead to longer file transfer times, which results in lower 
throughputs. Fig. 4-28 shows the same influence, so the interpretation of PC3 remains 
consistent with the earlier results for DD and FF flows. 
 
4.6.2.4 Macroscopic Throughput. Given that PC4 represents effects on macroscopic 
(network-wide) throughput, one would expect significant congruence between factors 
affecting PC4 and factors influencing the rate of data packets leaving the network (y4) 
and the flow-completion rate (y6). Recall, though, that one factor, file size (x4), had the 
opposite influence on y6 and y4. With this information, we should be able to determine 
which aspect of macroscopic throughput is represented by PC4. Sec. 4.5 suggested that 
PC4 represents macroscopic throughput of flow completions. 
 

 
Figure 4-29. Main-Effects Plot for PC4 (Macroscopic Throughput) 
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Fig. 4-29 displays the main-effects plot for PC4. The primary factors influencing 
PC4, in order of significance, include: network speed (x2), think time (x5) and file size 
(x4). Interpreting Fig. 4-29 suggests that higher network speed (x2 minus) and shorter 
think time (x5 minus) increase macroscopic throughput.9 These findings are consistent 
with the factors influencing both the rate of packet output (y4) and the rate of flow 
completion (y6). Fig. 4-29 shows that smaller file size (x4 minus) causes variation in the 
same direction as higher network speed and shorter think time. From this, we conclude 
that PC4 represents macroscopic throughput of flow completions. This agrees with the 
previous PCA. 

4.6.3 Summary of Findings from the Sensitivity Analysis 
Results from the sensitivity, correlation and principal components analyses increased our 
confidence in MesoNet. The behavioral patterns and relationships revealed by the 
sensitivity analysis aligned with our expectations. Further, the sensitivity analysis 
provided significant insight into model operation. We review our key findings here. We 
begin with a summary of the main aspects of model behavior. Second, we characterize 
the major factors influencing model behavior. Third, we identify and discuss factors that 
appear to have little influence on model behavior. 
 
4.6.3.1 Main Aspects of Model Behavior. The sensitivity analysis revealed the model to 
have six main behavioral aspects: congestion, delay, throughout for DD flows, 
throughput for DF and FF flows, packet throughput and flow completion throughput. We 
discuss each of these in turn. 

Congestion. The largest behavioral aspect of the model relates to macroscopic 
congestion, which occurs primarily in the slowest (N-class) access routers. In the 
topology employed for the sensitivity analysis, most users (represented as model sources) 
accessed the network through the (105) N-class routers. This is analogous to business and 
home users who connect to a network via limited bandwidth links. Higher network tiers 
(represented in the model by 22 POP and 11 backbone routers) typically operate at speeds 
sufficient to support traffic entering the network from the access tier. The topology used 
in the sensitivity analysis reflects this fact of network design. The model’s heterogeneous 
topology allowed selected (D-class and F-class) access routers to operate at higher 
speeds. (Twenty-eight) F-class access routers represented larger businesses that might 
support Web sites, which could be accessed by many users, most of whom connect to the 
network through N-class routers. (Six) D-class access routers represented research 
institutions and very large corporations that connect directly to the network backbone. 

The net result of this topology is that most active flows transit N-class access 
routers because most users reside underneath such routers. These flows include NN, FN 
and DN flows. Since these flows are most numerous, their behavior tends to drive 
macroscopic congestion, which occurs at the network edge (i.e., in the access tier). Of 
course, this is also due in part to the homogeneous Web-like traffic model employed 
during the sensitivity analysis. Regardless of traffic model, one should expect network 
congestion to arise primarily at the access tier because transit networks are continuously 
                                                 
9 Note that PCA involves normalizing and transforming responses to a scale differing from the scales of the 
original responses. This means that interpretation of the main-effects plots for principal components must 
be aided by context provided from previous interpretation of main-effects influencing particular responses. 
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monitored by network providers and the bandwidth in the POP and backbone tiers is 
provisioned to meet traffic demands from the access tier. 

Throughput available to individual NN, FN and DN flows is constrained by the 
bandwidth of N-class routers. This means that lower network speed (x2 plus) will reduce 
flow throughputs, while higher speed (x2 minus) will increase flow throughputs. Further, 
the more flows (y1) that transit an N-class router, the lower will be the individual 
throughputs for each flow. This behavior is revealed by the related response variables: 
y19, y21 and y22. The number of active flows transiting an access router is influenced 
primarily by three factors: number (x8) and distribution (x9) of sources and average idle 
time (x5) between source transfers. Increasing the number of sources leads to increased 
congestion within a fixed topology of N-class access routers. In the sensitivity analysis, 
the FN to NN ratio (in number of flows) shifts depending on the distribution of sources. 
With the plus setting for x9 the pattern of flows takes on a P2P-like characteristic, where 
the FN to NN ratio decreases. With the minus setting the flow pattern adopts a Web-
centric characteristic, where the FN to NN ratio increases. Since NN flows take slightly 
longer to complete than FN flows, the P2P pattern tends to result in more flows transiting 
N-class routers at any given instant. And, of course, the shorter the idle time between 
transfers the more sources will arrive in any given period. 

Network congestion also influences macroscopic responses, including: loss (y5) 
and retransmission (y10) rates, congestion window (y11) and its rate of increase (y12), 
and rate of negative acknowledgments (y13) and timeouts (y14). As with flow 
throughputs, these responses can be primarily attributed to the relative number of flows 
simultaneously transiting N-class access routers, as well as to the speed of N-class 
routers. The existence of fewer simultaneous flows, combined with higher speed, creates 
a better experience for individual flows and less congestion at the network edge. 

To summarize, congestion occurs at the network edge. The primary effects of 
congestion are due to flows transiting N-class access routers. Higher speed N-class 
routers mitigate congestion to some extent. The macroscopic effects of congestion are 
due to the most numerous flow types: NN, FN and DN flows. 

Delay. Network delay, measured as smoothed round-trip time (SRTT), is 
influenced by two main factors: propagation delay (x1) and buffer-sizing algorithm (x3). 
As one would expect, longer propagation delay and larger buffer sizes lead to increased 
SRTT (y15). Further, relative queuing delay (y16) is driven only by buffer size. These 
relationships are as expected. Perhaps unexpected is that network delay is largely 
uncorrelated with congestion. We attribute this to the fact that the TCP congestion control 
mechanism responds to network congestion by slowing the rate of packets injected into 
the network and thus limiting the number of packets that might otherwise be sitting in 
network buffers. 

Throughput for DD Flows. For DD flows, both the source and receiver reside 
under D-class access routers, which connect directly to backbone routers and operate at 
the same speed as POP routers. Further, the number of simultaneously active DD flows is 
typically quite small, relative to other flow classes. Given these facts, DD flows should 
be able to achieve throughputs constrained only by the minimum of the speeds of the 
source and receiver. The sensitivity analysis revealed that, unique among flow classes, 
throughput of DD flows is influenced by only two factors: propagation delay (x1) and file 
size (x4). 
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A DD flow must transit through TCP slow-start before reaching its maximum 
achievable throughput. The time taken to reach maximum throughput then depends upon 
the feedback rate on the flow. The feedback rate is determined mainly by propagation 
delay. Longer propagation delay lengthens time taken to achieve maximum throughput. 
Further, for larger files, more packets may be transferred at maximum throughput, so 
average throughput is higher. For the traffic patterns used in the sensitivity analysis, no 
other factors influenced throughput of DD flows. For this reason, DD flows must be 
given separate consideration from other flow classes.   

Throughput for DF and FF Flows. DF and FF flows could potentially achieve 
maximum throughputs constrained only by the minimum of the speeds of the source and 
receiver, but some other factors can interfere. For example, DF and FF flows compete for 
throughput with FN flows, which might be smaller or larger in number, depending upon 
various factors discussed previously. When the relative number of FN flows is smaller, 
then DF and FF throughputs are influenced mainly by propagation delay and file size, as 
is the case for DD flows. When the relative number of FN flows is larger, then DF and FF 
throughputs are influenced more by the factors that influence throughput of FN flows. 

Packet Throughput. Packet throughput (y4) is influenced primarily by network 
speed (x2), idle time of sources (x5) and file size (x4). When network speed is faster (x2 
minus), flow congestion windows are larger, and so flows can send more packets per unit 
of time. When idle time is smaller (x5 minus), more flows tend to be active, which means 
more flows are injecting packets into the network. Finally, when file sizes are larger (x4 
plus), then more flows are operating at their maximum achievable throughputs, so more 
packets are being injected into the network. The higher the network speed and the more 
packets being injected into the network, the greater the number of packets leaving the 
network. These factors determine packet throughput. Of course, when there are many 
active flows and lower network speed, then congestion increases and the TCP congestion 
control mechanism slows the rate of packets entering the network, which also slows the 
rate of packets exiting the network. 

Flow-Completion Throughput. Flow-completion throughput (y6) is also 
influenced primarily by network speed, idle time of sources and file size. In this case, 
however, smaller file sizes (x4 minus) lead to shorter file-transfer times, which increases 
the number of flows completed in a given time period. Of course, since each file transfer 
spends a lower proportion of its duration at maximum achievable throughput, the number 
of packets injected will be lower than if the file size is smaller. Thus, to some extent, 
variations in file size lead to a tradeoff between packet throughput and flow-completion 
throughput.     
 
4.6.3.2 Major Factors Influencing Model Behavior. Based on the results of the sensitivity 
analysis, we can identify the major factors influencing the behavior of MesoNet. We 
consider the results of the analysis by a domain expert and also the PCA. We begin with 
the results from a domain expert, which are based on six main behavioral characteristics, 
as identified in the preceding section. 

We use one response to represent each characteristic: packet throughput (y4), 
flow-completion throughput (y6), congestion (y10), delay (y15) and throughput of DD 
(y17) and FF (y20) flows. Table 4-25 shows the result of a rank analysis, where the 
relative influence of each factor on each of the six responses is assigned a rank from one 
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(most influential) to 11 (least influential) based upon the degree to which the factor 
altered the response when moving from a plus to a minus setting. The average rank is 
computed for each factor, and then the average rank is converted into an integer ranking 
based on ordering the factors from most (one) to least (11) influential. The table shows 
that network speed (x2) is the most influential factor, followed by file size (x4) and think 
time (x5). Next is number of sources (x8), followed by propagation delay (x1) and 
distribution of sources (x9). Buffer-sizing algorithm (x3) ranks seventh. The remaining 
factors lag: initial slow-start threshold (x11), distribution of receivers (x10), probability 
that a flow transfers a larger document (x6) and then probability that a host is fast (x7). 

Table 4-26 gives a similar analysis based on the top four principal components 
identified by the PCA. The PCA squeezes out some redundancy included in the analysis 
conducted by the domain expert. In particular, the domain expert separated throughput 
for advantaged flows into two responses (y17 and y20) based upon an observation that 
different factors drove the two responses. In addition, the domain expert noted that packet 
throughput (y4) was driven in two different directions, depending upon file size (x4); 
thus, decided to retain packet throughput as a separate response. The PCA amalgamated 
y17 and y20 (in PC3) and also combined y4 with y6 (in PC4). 
 

Table 4-25. Rank Analysis based on Domain Expertise 
 

 x1 x2 x3 x4 x5 x6 x7 x8 x9 x10 x11 
y4 9.5 1 8 3 2 9.5 11 4 5 6.5 6.5 
y6 11 1 6 2 3 9 10 4 5 7.5 7.5 
y10 7 1.5 1.5 5 5 10 10 5 3 8 10 
y15 2 3 1 4 5 8 10 6 7 10 10 
y17 1 8 10.5 2 8 5 5 3 10.5 8 5 
y20 1 3 8 5 4 10 11 6 2 9 7 

Average Rank 5.25 2.92 5.83 3.50 4.50 8.58 9.50 4.67 5.42 8.17 7.67 
Ordinal Rank 5 1 7 2 3 10 11 4 6 9 8 

 
Table 4-26. Rank Analysis based on Principal Components Analysis 

 
 x1 x2 x3 x4 x5 x6 x7 x8 x9 x10 x11 

PC1 10.5 1 6 5 2 10.5 9 4 3 7.5 7.5
PC2 2 6 1 7 3 8.5 8.5 4 11 10 5
PC3 3 2 5 1 6 8 10.5 7 4 9 10.5
PC4 5 1 4 3 2 10 11 7 9 8 6

Average Rank 5.13 2.50 4.00 4.00 3.25 9.25 9.75 5.50 6.75 8.63 7.25
Ordinal Rank 5 1 4 4 2 10 11 6 7 9 8 

 
Comparing Tables 4-25 and 4-26 reveals similarities (in the main) and a few 

differences. Both tables rank factors x6, x7, x10 and x11 as not very influential on system 
response. Both tables identify network speed (x2) as the main factor driving response and 
both tables also rank file size (x4) and think time (x5) as significant factors. Both tables 
also agree on the relative influence of propagation delay (x1). The PCA suggests that 
buffer size is fairly influential, while the domain expert finds buffer size to be less 
significant. When the redundancies (y17 and y4) are removed from Table 4-25, the 
significance of buffer size is comparable for both analyses. Overall, the analyses are quite 
consistent.  
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4.6.3.3 Factors Exhibiting Little Influence on Model Behavior. The sensitivity analysis, 
whether based on domain expertise or principal components, shows that system response 
is little influenced by four factors: probability of transferring a larger file (x6), probability 
that a source is on a fast host (x7), distribution of receivers (x9) and initial slow-start 
threshold. The experiment design varied the probability of transferring a (10x) larger file 
from 0.01 (x6 plus) to 0.02 (x6 minus). Apparently, the difference in these probabilities 
was small enough that the system response was not influenced. Results might have 
proven different if the higher probability were increased, but this would imply that a 
lower proportion of file transfers were reserved for simple Web browsing activities. 

  The probability that a source is on a fast host (x7) makes little difference in 
system response because most sources existed underneath N-class access routers, which 
had limited bandwidth to share among those sources. Apparently, due to multiplexing 
with other sources, most sources were seldom able to realize their maximum potential 
transmission rate. 

The distribution of receivers (x10) had little influence on results because no 
matter the setting, most receivers resided under N-class access routers. The proportion of 
receivers under N-class access routers varied from 76 % (x10 plus) to 86 % (x10 minus). 
The distribution of receivers had more bearing on the number of receivers under D-class 
access routers (4 % and 2 % for x10 plus and minus, respectively) and also under F-class 
access routers (20 % and 12 % for x10 plus and minus, respectively). 

The initial slow-start threshold (x11) had significant influence on only one 
response: average congestion window size (y11). Absent losses, the congestion window 
on a flow can become very high even though flow throughput will be limited by the 
minimum of the maximum speeds of the source and receiver. Setting a high initial slow-
start threshold (x11 plus) allows flows to increase their congestion window very quickly 
to a large size. Setting a lower initial slow-start threshold (x11 minus) permits quick 
increase to a small size and then linear increase afterward. Thus, when congestion is 
light, using a large threshold for initial slow-start permitted the average congestion 
window size to become much larger, even though there was little influence on flow 
throughput. 

4.7 Exploring Effects of Buffer Sizing   
As we explained in Sec 4.1.6, the experiment design approach we used can facilitate 
additional exploratory analyses that were not necessarily planned at the time the 
experiment was undertaken. Here, we demonstrate this feature of our approach by using 
model response data to investigate the importance of buffer sizing relative to network 
speed and propagation delay. Our experiment design used two algorithms for buffer 
sizing. One algorithm, which is recommended practice [40], sets buffer size by 
multiplying average estimated round-trip time by capacity. The second algorithm, 
suggested by McKeown and colleagues [37], divides buffer size computed from the first 
algorithm by the square root of the expected number of flows. This second algorithm 
requires much less buffer space in network routers. McKeown and colleagues conducted 
an analytical study and empirical experiment that found similar performance when using 
either buffer sizing algorithm. The McKeown study, which was limited to a small number 
of flows transiting a few routers, suggested that network providers could deliver 
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reasonable performance while requiring much less memory in routers. The study left for 
future work consideration of the effects of the alternate buffer-sizing algorithm in a 
network-wide context. Our sensitivity analysis was not intended explicitly to study 
detailed effects of buffer-sizing algorithms, but the experiment design used does provide 
information that could shed some light on the topic. 

In this section, we use the results from our sensitivity experiment to explore the 
effects of buffer-sizing algorithm on overall network behavior and user experience. Our 
goal is to develop evidence relevant to the findings of the McKeown study. First, we 
consider the effects that choice of buffer-sizing algorithm has on smoothed round-trip 
time (SRTT) and on relative queuing delay. In previous discussions, we showed that 
buffer-sizing algorithm influenced both these aspects of network delay. Here, we look a 
bit more explicitly at the data. Second, we conduct a rank analysis based on selected 
responses chosen to characterize overall network behavior and user experience. 
 

 
Figure 4-30. Multi-factor Scatter Plot of Smoothed Round Trip Time (y15) for each of the 11 
Experiment Factors 
 
4.7.1 Effects on Delay Variation. Fig. 4-30 presents a multi-factor scatter plot (explained 
in Appendix D.2) for SRTT.  Fig. 4-31 shows a similar plot for relative queuing delay. 
Each plot depicts how the related response varies with the two settings of each of the 11 
factors used in our experiments. For the current discussion we are interested in the buffer-
sizing algorithm (factor x3). Fig. 4-30 shows that the choice of buffer-sizing algorithm 
shifts the pattern of SRTT. The McKeown algorithm restricts variation in SRTT. This 
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occurs because buffer sizes are much smaller and thus queuing delays must also be 
smaller. 

Fig. 4-31 illustrates clearly that reduced buffer size restricts the range of queuing 
delay that packets experience. Reducing variation in queuing delay within a network 
leads to more predictable SRTT and also to faster feedback regarding congestion. These 
traits might be considered valuable for selected networks and applications. On the other 
hand, one wonders whether more predictable delay might come at the cost of worsening 
behavior in other aspects of the network. The McKeown study suggested that smaller 
buffer size would not detract from user experience. We investigate this question next. 

 
4.7.2 Effects on Other Aspects of Network Behavior. In this section, we consider the 
relative influence of propagation delay (x1), network speed (x2) and buffer-sizing 
algorithm (x3) on selected responses, chosen to represent macroscopic network behavior 
and user experience. To represent macroscopic behavior, we use packet throughput (y4), 
flow-completion throughput (y6), retransmission rate (y10) and relative queuing delay 
(y16). To represent user experience, we use average throughput from three different flow 
classes: DD flows (y17), FF flows (y20) and NN flows (Y22). We aim to determine 
which of the three factors (x1, x2 or x3) has largest influence on the combined responses. 
 

  
Figure 4-31. Multi-factor Scatter Plot of Relative Queuing Delay (y16) for Each Experiment Factor 

 
We use a rank analysis to study the effects of our chosen factors on our selected 

responses. In this particular analysis, we elected to use a larger number to indicate higher 
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rank and a smaller number to indicate lower rank. We begin by combining our three 
factors into a condition that can be assigned one of eight settings, as illustrated in Table 
4-27. Next, we compute the average value for each of our responses under each 
condition. Table 4-28 displays the results of this averaging. 
 

Table 4-27. Mapping of Factor Settings to Eight Conditions  
(M means the – level of a factor and P means the + level of a factor) 

 
 Values 

Condition Factor Settings 
x1:x2:x3 

Propagation Delay 
Multiplier 

Backbone Router 
Speed 

Buffer Sizing 
Algorithm 

C1 M:M:M 1 800 RTTxC/SQRT(n) 
C2 P:M:M 2 800 RTTxC/SQRT(n) 
C3 M:P:M 1 400 RTTxC/SQRT(n) 
C4 P:P:M 2 400 RTTxC/SQRT(n) 
C5 M:M:P 1 800 RTTxC
C6 P:M:P 2 800 RTTxC
C7 M:P:P 1 400 RTTxC
C8 P:P:P 2 400 RTTxC

 
 

Table 4-28. Average Response Values for Each Condition 
 

 Response 
Condition y4 y6 y10 y16 y17 y20 y22 

C1 109 863.71 1 384.55 0.07 1.53 229.88 167.12 107.06 
C2 104 049.61 1 218.14 0.05 1.45 138.02 97.66 70.59 
C3 68 721.38 803.31 0.27 1.41 229.82 89.81 37.48 
C4 69 996.51 872.54 0.17 1.39 137.65 73.92 28.25 
C5 111 195.23 1 324.93 0.02 2.52 237.65 169.29 119.39 
C6 109 949.76 1 409.62 0 1.91 138.17 106.73 96.33 
C7 74 509.45 956.32 0.08 3.27 226.01 131.99 51.3 
C8 70 170.53 881.34 0.04 2.83 136.26 79.82 37.04 

 
 
Using the average responses from Table 4-28, we next rank each condition from 

high (8) to low (1) for each response, based on the appropriate ordering criteria. For 
retransmission rate (y10) and relative queuing delay (y16) a lower value would be ranked 
higher. For the other five responses in Table 4-28 a higher value would be ranked higher. 
After ranking the conditions with respect to each response, we compute an average 
ranking. The results of our ranking are shown in Table 4-29. 

We can assign the average rank for each condition to the vertex of a cube, where 
each vertex represents a specific combination of settings for propagation delay, network 
speed and buffer size. Fig. 4-32 shows the cube corresponding to Table 4-29.  Moving 
along the edges among the vertices on the cube allows us to determine changes in ranking 
attributable to each factor. The change in each factor (x1, x2 and x3) across all conditions 
is represented by a set of four different edges from among the 12 edges contained in the 
cube. We extract the relevant changes in ranking and display them in Table 4-30. 
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Table 4-29. Ranking for Each Condition vs. Each Response 
 

 Condition 
Response C1 C2 C3 C4 C5 C6 C7 C8 

y4 6 5 1 2 8 7 4 3 
y6 7 5 1 2 6 8 4 3 

y10 4 5 1 2 7 8 3 6 
y16 5 6 7 8 3 4 1 2 
y17 7 3 6 2 8 4 5 1 
y20 7 4 5 1 8 5 6 2 
y22 7 5 3 1 8 6 4 2 

Average Rank 6.1 4.7 3.4 2.6 6.9 6.0 3.9 2.7 
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4-32. Average Condition Ranking Displayed on Vertices of a Cube 
 
 

Table 4-30. Changes in Ranking Attributable to Each Factor 
 

 Propagation Delay (x1) Network Speed (x2) Buffer Sizing (x3) 
Edge 1 1.4 2.7 0.8 
Edge 2 0.8 2.1 0.5 
Edge 3 0.9 3 1.3 
Edge 4 1.2 3.3 0.1 

 
Interpreting Table 4-30 we see that changing network speed has the largest effect 

on the responses we selected. Changing propagation delay has the second largest effect. 
Changing buffer-sizing algorithm has the smallest effect. Further, Fig. 4-31 shows that 
changing from fewer to more buffers has a larger effect when network speed is high and 
propagation delay is long. This makes intuitive sense because more packets could 



Study of Proposed Internet Congestion Control Mechanisms NIST 

Mills, et al. Special Publication 500-282 134 

potentially be inside the network when speed and propagation delay increases, so a higher 
proportion of the increased buffers would likely be occupied. 

While our examination of the effect of buffer-sizing algorithm should not be 
considered definitive, the results extracted from our sensitivity experiment tend to 
support the findings of McKeown and colleagues. For the topology and traffic patterns 
used in our study, reducing buffer sizes by the square root of the expected number of 
active flows transiting each router had little overall effect on macroscopic network 
behavior and user experience. On the other hand, we found that reducing buffer sizes can 
markedly restrict the range of variation in queuing delay and thus in round-trip times. 
Reducing variance in round-trip times allows faster feedback on losses and permits the 
TCP flows to adapt more quickly, which could offset some of the losses that might 
otherwise occur due to reducing the number of buffers. 

4.8 Conclusions   
We described a method for conducting sensitivity analyses for simulations of large, 
complex systems, such as communications networks, computing grids and service-
oriented architectures. The method included: orthogonal fractional factorial (OFF) design 
of two-level experiments, correlation and principal components analyses and a ten-step 
graphical analysis. We applied the method to gain an understanding of MesoNet 
(described in Chapter 3). Correlation and principal components analyses revealed the 
main dimensions of MesoNet behavior to include: (1) congestion, (2) delay, (3) 
throughput of advantaged flows and (4) aggregate rate of flow completions.  

Sensitivity analysis identified the main factors influencing each aspect of 
MesoNet behavior. Congestion is influenced primarily by network speed, number and 
distribution of sources and average idle time for sources. Delay is influenced primarily by 
buffer size and propagation delay. Advantaged flows come in two categories: DD flows 
and FF (and DF) flows. Throughput for DD flows is influenced by two factors: 
propagation delay and file size. While propagation delay and file size prove influential, 
throughput for FF flows is also affected by network speed and distribution and idle time 
of sources. These additional factors reflect situations where increased numbers of FN 
flows compete with DF and FF flows. The aggregate rate of flow completions is 
influenced by network speed, source idle times and file size. Using rank analysis, we 
found the order of overall influence exerted by key factors. From more to less influential, 
the overall influence of factors was ordered as follows: network speed, file size and idle 
time, number of sources, propagation delay, distribution of sources and buffer size. 

Sensitivity analysis also identified four factors that had little influence on the 
behavior of MesoNet. These factors included: probability of electing to download a larger 
file, probability of sources and receivers residing on fast hosts, distribution of receivers 
and initial slow-start threshold. 

We extended our analysis to investigate explicitly the relative influence of 
network speed, propagation delay and buffer size on overall behavior of the model. We 
found that network speed had greatest influence and buffer size had least influence. We 
also showed that very small buffer sizes restrict the range of variance in smoothed round-
trip times. Further, we found that buffer size has greater influence on model behavior 
when network speed and propagation delay are larger. 
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We also conducted a second sensitivity analysis (see Appendix C) that used the 
same 211-5 OFF experiment design template documented in Sec. 4.1, but that changed the 
specific values assigned to each of the 11 experiment factors so that network size and 
speed were increased and so that the distances between the – and + levels for each 
parameter were expanded. The sensitivity analysis documented in Appendix C found the 
same main factors driving MesoNet behavior as we documented in Chapter 4, though the 
influence of propagation delay was increased due to the expanded distance between the 
values chosen for the two levels. In general, the network simulated in Appendix C 
exhibited lower correlations because overall congestion was lower. This was also 
reflected in changes in principal components, which became more difficult to interpret. 

Overall, analyses conducted on MesoNet increase our confidence in the model’s 
correctness and reasonableness. The fundamental characteristics of the model and the 
topology, as investigated here and in Appendix C, provide a reasonable basis for 
comparing the effects of alternate congestion control algorithms on macroscopic network 
behavior and user experience. In the next section, we discuss the congestion control 
algorithms we will study and we show how we modeled those algorithms.       
 



Chapter 5 – Modeling Congestion Control Algorithms  
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5 Modeling Alternate Congestion Control Mechanisms 
The fundamental design of the Internet protocol suite [3] assumes that network elements, such as 
routers, are relatively simple – receiving, buffering and forwarding packets among connected 
links and dropping packets when buffers are insufficient to accommodate arriving packets. 
Under this assumption, computers connected to the Internet must implement decision algorithms 
to pace the rate at which packets are injected into the network. Such decision algorithms, known 
typically as congestion control mechanisms, are implemented independently by each source with 
the goal of achieving a satisfactory network-wide outcome and a fair distribution of resources to 
all active sources. In the current state-of-the-practice, congestion control mechanisms are 
implemented as part of the transmission control protocol (TCP) [8-10] that operates within every 
computer attached to the global Internet. While TCP congestion control procedures have proven 
quite successful [2] at achieving desired properties, numerous researchers [46-51, 64] have 
postulated potential changes in relationships among bandwidth and propagation delay as the 
speed of network links increases toward 10s and 100s of gigabits per second (Gbps). Under such 
envisioned circumstances, researchers predict that TCP congestion control procedures will prove 
insufficient, leading to substantial underutilization in network resources and preventing end users 
from achieving high transfer rates, potentially reaching or surpassing 1 Gbps. These predictions 
have stimulated researchers to propose alternate congestion control mechanisms [52-61] that 
might achieve higher network utilization and better user performance as network speeds 
increase. 

 As part of proposing alternate congestion control mechanisms, researchers typically 
model, simulate and implement prototypes and then explore how candidate congestion control 
mechanisms might affect the Internet and its users. Given the increasing number of proposals, 
interest is growing [62-68] in developing procedures to fairly and effectively evaluate the 
properties of the proposals. A similar motive underlies the work reported in the current study, 
where our approach is to simulate proposed congestion control mechanisms within a reasonably 
large network that can support O(105) active flows simultaneously. To illustrate our 
methodology, we have chosen to investigate six proposed alternate congestion control 
mechanisms [52-54, 58, 60-61], which have been simulated and studied empirically at smaller 
scales. 

In this chapter of our study, we introduce the basic concepts underlying TCP congestion 
control and we explain the changes to those procedures that are proposed by six different 
research teams. Other research teams [55-57, 59] have also proposed changes to TCP congestion 
control procedures. We chose to examine only six proposals in order to limit our study, which 
focuses on methods for conducting evaluations rather than on an exhaustive consideration of all 
published proposals. We selected five specific proposals because a recent study by Li, Leith and 
Shorten [67] reports empirical results from prototype implementations included within Linux. 
This enables us to validate our simulations of the proposals against the reported empirical 
measurements. We chose a sixth alternate congestion control mechanism, Compound TCP [58], 
or CTCP, because it has been proposed by researchers at Microsoft and, thus, may be available 
in the future within a large number of computers attached to the Internet. Further, there are some 
recent empirical results [66] against which we can validate our model of CTCP. The 
methodology we define in our study can be applied to additional proposals for alternate 
congestion control mechanisms. 
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The remainder of this chapter is organized into five major topics. We begin (in Sec. 5.1) 
by introducing TCP congestion control and then (in Sec. 5.2) define the procedures adopted by 
six, selected, alternate proposals for congestion control in the Internet. Next (in Sec. 5.3), we 
describe how we model congestion control procedures within MesoNet. In Sec. 5.4, we describe 
the test configuration used to verify that we correctly model each congestion control mechanism. 
We then present simulation results showing evolution of congestion windows over time for each 
congestion control mechanism that we model. The information reported in this section sets the 
stage for us to consider (in Chapters 6 through 9) whether proposed alternate congestion control 
procedures might change macroscopic network behavior or user experience. 

5.1 TCP Congestion Control  
 A typical TCP flow evolves through three phases: connection, transfer and close. For purposes 
of congestion control, we limit our discussion to the connection and transfer phases. Fig. 5-1 
gives a high-level view of these two phases. During the connection phase, a source attempts to 
establish contact with an intended receiver. Inability to establish contact results in a connection 
failure, which prevents data from flowing between source and receiver; thus, connection 
establishment procedures provide one form of congestion control implemented by TCP. During 
the transfer phase, a source sends data (in the form of segments) on the flow until the required 
number has been received successfully. A receiver signals receipt of data segments by sending 
acknowledgments (ACKs) to the source. By sending duplicate acknowledgments, a receiver may 
also indicate failure to receive specific segments, which the source must then retransmit. Further, 
a sender may fail to receive acknowledgments, which requires the sender to raise a timeout and 
to retransmit unacknowledged data. During the transfer phase, congestion control procedures 
determine when a source may send data segments to a receiver. The resulting series of segments 
is known as a flow. 

 

Figure 5-1. Main Phases and Congestion Control Procedures in the Life of a TCP Flow (The Six Alternative 
Congestion Control Mechanisms in this Study Change the Congestion Avoidance Regime Only) 

TCP flows consist of a series of data segments (or packets) sent from a source to a 
receiver, along with a corresponding stream of acknowledgment packets flowing in the reverse 
direction. At any given time, a source may send a prescribed number of packets (known as the 
congestion window, or cwnd) prior to receiving an acknowledgment. Thus, the size of the cwnd 
controls the rate of packet transmission on a flow. Using TCP congestion control procedures, a 
source increases a flow’s cwnd exponentially from a small initial value until either a loss is 
detected or until the cwnd reaches a threshold, known as the initial slow-start threshold, or sst. If 
the sst is reached, the source subsequently increases the cwnd more slowly, at a linear rate. If a 
packet is lost, then the cwnd is reduced in half and then increased linearly until another packet is 
lost after which the cwnd is reduced in half again and so on. The resulting saw-tooth pattern in 
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the cwnd (see Fig. 5-7) induces a corresponding variation in the rate of transmission on a flow. 
TCP congestion control procedures require that sources use dynamic measurement of losses on a 
path to discover how many packets per second may be transmitted on a given flow. In addition, 
as we show later, these dynamic measurements allow TCP sources to adapt flow transmission 
rate as path characteristics change. The main goal of TCP congestion control is to allow all flows 
transiting shared paths to obtain an equal (fair) share of any available transmission capacity, 
while also allowing flows to increase or decrease transmission rate to achieve full utilization of 
path capacity. In particular, when flows are added to a path already supporting several flows in 
equilibrium with fair transmission rates, TCP congestion control procedures aim to achieve a 
new equilibrium, where all flows achieve fair (but lower) transmission rates. Similarly, when 
flows are dropped from a path in equilibrium, TCP congestion control aims to achieve a new 
equilibrium where all flows achieve fair (but higher) transmission rates. We define the 
responsiveness of TCP congestion control procedures as the time taken to achieve a new 
equilibrium by dynamically adjusting the congestion windows on flows sharing a common 
network path.   

Dynamic adjustment of the congestion window happens only during the transfer phase, 
which includes two regimes: slow start and congestion avoidance. Slow start occurs when a 
source is uncertain about the transmission rate that might be achieved on a TCP flow. For this 
reason, after establishing a connection, a source begins the transfer phase using slow-start 
procedures. A source also adopts slow-start procedures after a timeout. Slow-start begins by 
sending data at a slow rate but then increases that rate quickly (e.g., exponentially) as ACKs 
arrive from the receiver. Once a source has a better idea about an achievable transmission rate, 
slow-start procedures are abandoned in favor of congestion avoidance procedures, which attempt 
to increase the sending rate more slowly (e.g., linearly). Thus, congestion control procedures 
during the transfer phase have three basic purposes: (1) find an achievable transfer rate on a 
flow; (2) maintain the achievable transfer rate if possible; (3) attempt to increase the achievable 
transfer rate. Proposals for revising TCP congestion control procedures target mainly congestion 
avoidance procedures within the transfer phase. 

Below, we describe the procedures used in our model for connection establishment and 
slow start. Then we outline our model of standard (i.e., Reno) TCP congestion avoidance 
procedures. Subsequently, in Sec. 5.2, we describe our model of congestion avoidance 
procedures for each of the six alternate congestion control mechanisms that we simulate. 

5.1.1 Connection Phase 
Typically, establishing a TCP connection (or flow) requires a three-way handshake involving a 
connection-request (SYN) segment sent from a source to a receiver, followed by a connection-
confirm (SYN+ACK) segment sent from a receiver to a source and then ending with an ACK 
segment sent from a source to a receiver. Our model simulates connection establishment as a 
two-way handshake – SYN followed by SYN+ACK – because TCP allows ACKs to be 
piggybacked on data (DT) segments. This implies that the first DT sent from a source to receiver 
during the transfer phase may also double as the final segment of connection establishment. 

Of course, congestion may lead to lost SYN or SYN+ACK segments, so a source must 
implement error detection and recovery procedures, which typically involve retransmitting SYN 
segments. In our model, we simulate such procedures while adopting default parameters 
typically used in TCP implementations within the Microsoft Windows® family of operating 
systems. We take this decision because many computers connected to the Internet use the 
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Microsoft implementation of TCP. Fig. 5-2 illustrates schematically our connection 
establishment model, showing one possible scenario leading to connection failure. 
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Figure 5-2. TCP Connection Establishment Procedures Leading to Connection Failure 
 
 
During connection establishment a source first sends a SYN segment and waits for a 

period of time (3 s in Fig. 5-2) for a SYN+ACK. If no SYN+ACK segment arrives, the source 
sends a second SYN and waits for a longer period of time (6 s in Fig. 5-2). If no SYN+ACK 
segment arrives, the source sends a third SYN and waits for a longer period of time (12 s in Fig. 
5-2). This cycle repeats until the maximum number of SYNs (3 in Fig. 5-2) has been sent or until 
a SYN+ACK segment arrives. If no SYN+ACK segment arrives after the maximum number of 
SYNs is sent, then (as shown in Fig. 5-2) TCP raises a connection-failure signal. For the 
parameters we adopt, connection failures occur after 21 s without receipt of a SYN+ACK after 
the first SYN is sent. Arrival of a SYN+ACK segment during this timeout period (as illustrated 
in Fig. 5-3) results in successful connection establishment. Fig. 5-2 and Fig. 5-3 show several 
losses that can require retransmission of SYN and SYN+ACK segments. 
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Figure 5-3. TCP Connection Establishment Procedures Leading to Initiation of the Transfer Phase 
 
Our model of connection establishment procedures uses the variables identified and 

defined in Table 5-1.  
 

Table 5-1. Definition of Symbols Used to Model Connection Establishment Procedures 
 
 
 
 
 
 
 
 
 
 
 
 
 
Initiation of the connection phase entails the following steps by a source. 
 

 
 

 
(1) 

 
 

Symbol  Definition 

synINT  Timeout interval (sec) for initial SYN 

synMAX  Maximum number of SYNs to send 

synSENT  Number of SYNs that have been sent 

synTO  Timeout (sec) for current SYN 

time  Current time 
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Upon a timeout, a source implements the following procedures, which amount to an exponential 
back-off in the timeout period until the maximum number of SYN segments have been sent. 

 
 

 
(2) 

 
 

 

 
If a SYN+ACK segment is received prior to connection failure, then the source initiates the 
transfer phase, which is discussed next in two parts: slow start and congestion avoidance. 

(3) 

5.1.2 Transfer Phase – Slow Start 
During the transfer phase a TCP flow establishes and adjusts a congestion window (cwnd) and 
slow start threshold (sst), which requires introducing and defining some additional symbols, as 
shown in Table 5-2. Our model permits two forms of slow-start: (a) standard TCP slow start or 
(b) limited slow start [7]. We explain each of these in turn. 

 
Table 5-2. Definition of Symbols Used to Model Slow-Start Procedures 

 
 
 
 
 
 
 
 
 

 

 

 

 

5.1.2.1 Standard Slow Start. Upon entering slow start, a TCP flow adopts a small value (cwndINT) 
for the congestion window (cwnd). During standard slow start, a flow then increases cwnd 
exponentially as ACKs are received until reaching an initial slow-start threshold (sstINT). After 
the congestion window reaches sstINT (or upon a loss) the flow enters a congestion avoidance 
regime. In our model, a flow initiates slow start with the following procedures. 

Symbol  Definition 

cwnd  Current congestion window in  number of packets 

cwndINT  Initial congestion window (we use cwndINT = 2 packets) 

sst  Current slow‐start threshold in number of packets 

sstMAX 
Threshold (in packets) to switch from exponential to 
logarithmic increase (varies with experiment) 

sstINT 
Threshold (in packets) to terminate initial slow start (varies 
with experiment) 
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(4) 

 
 
5.1.2.2 Limited Slow Start. During limited slow start, a flow increases cwnd exponentially as 
ACKs are received until reaching a maximum slow-start threshold (sstMAX). After the congestion 
window reaches sstMAX the flow increases cwnd logarithmically with each ACK received until 
reaching sstINT. After the congestion window reaches sstINT (or upon a loss) the flow enters a 
congestion avoidance regime. 

Our model distinguishes standard slow start from limited slow start based on the 
relationship between sstMAX and sstINT. Limited slow-start procedures are used if sstMAX < sstINT. 
Otherwise, standard slow-start procedures are used. These conventions are specified through the 
combination of configuration parameters for sstMAX and sstINT, initialization procedures (4) and 
the following procedures upon receiving an ACK.  

(5) 

 
 

 

5.1.2.3 Setting Slow-Start Threshold. The literature indicates no widespread agreement on what 
value should be chosen for sstINT. Some authors [6] recommend setting sstINT to an arbitrarily 
large value, which implies that initial slow start will continue until a flow experiences its first 
loss or timeout. Other authors [10] recommend setting sstINT to a small value, which means that 
slow start might terminate before a flow has determined its available bandwidth, so the 
maximum available bandwidth might not be achieved before the flow terminates (depending on 
the number of data segments in the flow). Mark Carson (personal communication, November 12, 
2008) indicated that Linux sets sstINT selectively based upon properties maintained by the device 
driver for the network interface. In addition, some [4] suggest using the advertised receiver 
window (rwnd) returned from a receiver to set sstINT. The rwnd indicates the number of packets 
that fit in a receiver’s buffer. 

Given such varying suggestions, we included sstINT as a configuration parameter of our 
model. This allows sstINT to be set to large and small values, as desired. Our model does not 
support setting sstINT variably based on properties of the network interface. Our model does not 
simulate a receiver’s rwnd, so setting sstINT based on that value is not supported. 

5.1.3 Transfer Phase – Congestion Avoidance 
In our model of TCP Reno, congestion avoidance, which begins once cwnd > sst, increases the 
congestion window linearly, at the rate of one packet per round-trip time. The increase accrues 
fractionally as ACKs are received. When the receiver signals a loss, the congestion window is 
cut in half. Upon a timeout, the slow-start threshold is set to half the congestion window and the 
congestion window is set to its initial value. Below we specify the procedures used by a source to 
increase cwnd on receipt of each ACK, to decrease cwnd upon each signaled loss and to decrease 
cwnd and sst at each timeout. (As explained in Sec. 5.2, alternative congestion control 
procedures replace the standard TCP increase and decrease procedures.) 
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5.1.3.1 Increase Congestion Window after Acknowledgment. For each ACK received within each 
round-trip time up until a loss or timeout, a TCP source increases its congestion window by a 
fraction, using the following procedures. 

 
(6) 

 

An actual TCP implementation will use cwnd as part of a decision function to determine its send 
window (swnd). The decision function is swnd = min(cwnd, rwnd). Since our model does not 
simulate rwnd, a source’s swnd is always equal to its cwnd. This means the sending rate of 
sources in our model will be constrained by network congestion rather than by local policies 
within receivers. 
 
5.1.3.2 Decrease Congestion Window after Signaled Loss. When a receiver signals a loss within 
a given round-trip time, a TCP source reduces its cwnd by half. In real TCP implementations, a 
loss is signaled by receiving three consecutive, duplicate ACKs. This convention was designed 
to accommodate cases where DTs are delivered out of order by the network. Reordering DTs can 
lead to duplicate ACKs even though a DT was not lost, so a TCP source defers any decision that 
a DT was lost until three duplicate ACKs arrive in sequence. Modern router vendors strive to 
ensure that packets are not reordered on a given flow [41-43], but some researchers [38-39, 45] 
have reported cases where packets are reordered within a router. Our simulation model permits 
packets to be lost, but not reordered. For this reason, our sources detect explicit losses upon 
receiving a single duplicate ACK, which we model as a negative acknowledgment (NAK). 

Sources in our model reduce a flow’s cwnd once in a round-trip time when a loss is 
signaled by a receiver. The reduction rule follows. 

 
 

(7) 
 
 
The sst is reset to the cwnd so that the flow continues in congestion avoidance rather than 
reentering slow start. 
     
5.1.3.3 Decrease Slow-Start Threshold and Reset Congestion Window after Timeout. A source 
encounters a timeout when no ACKs or NAKs have been received on a flow for the duration of a 
retransmission timeout (RTO). The RTO for a flow is maintained to be no less than twice and no 
greater than 32 times round-trip propagation delay between a source and receiver. Regardless of 
congestion control mechanism, our model implements a single set of procedures for maintaining 
and increasing RTO. Upon initiation of a flow’s transfer phase, RTO is set to twice the round-
trip propagation delay. Upon receipt of an ACK or NAK, a flow’s RTO is set to the maximum of 
1.5 times the measured, smoothed round-trip time (SRTT) or twice the round-trip propagation 
delay. With each timeout the RTO is doubled, which leads to an exponential back-off, up to the 
maximum RTO. 

 Occurrence of a timeout indicates a significant interruption in the path between a source 
and receiver. For this reason, our model adopts a conservative strategy in responding to timeouts. 
The sst is reduced using the reduction rules required by the specific congestion control 
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mechanism in use for the flow. In addition, the cwnd is reset to its initial value. This implies that 
the flow will reenter slow start and then use rapid increase procedures until cwnd > sst. 
Subsequently, the flow returns to congestion avoidance procedures. Our model for TCP Reno 
uses the following timeout procedures. 
 

(8) 
 

 

5.1.3.4 Combined Effects of Slow Start and Congestion Avoidance.  To appreciate the combined 
effects of slow start and congestion avoidance, as implemented in our model of TCP Reno, we 
consider some schematic graphs of the temporal changes of the cwnd for hypothetical flows. Fig. 
5-4 depicts changes in cwnd assuming the use of standard slow start, with both sstMAX and sstINT 
set to 128 packets. The cwnd increases exponentially in slow start until it reaches sstINT. 
Subsequently, congestion avoidance commences and the cwnd increases linearly. Just after the 
cwnd reaches 150 (time 30 s), a loss occurs and the cwnd is reduced to 75. The cwnd then 
increases linearly until it reaches 100 (time 55 s). At about time 63 s the source experiences a 
timeout and the cwnd is reduced to its initial value (2). At the same time sst is set to 50 (half the 
value of the cwnd when the timeout occurred). As ACKs resume the cwnd increases 
exponentially (in slow start) to 50 (the value of sst) after which the flow returns to congestion 
avoidance and the cwnd increases linearly.  
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Figure 5-4. Sample Change in Congestion Window (packets) over Time (secs) under Standard Slow Start and 
Congestion Avoidance 
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Fig. 5-5 displays the same scenario as Fig. 5-4, with the exception that standard slow start 
is replaced by limited slow start, with  sstMAX = 16 and sstINT = 128. Here, the cwnd increases 
exponentially until reaching 16 and then increases logarithmically until reaching 128. 
Subsequently, cwnd increases linearly in congestion avoidance until a loss occurs, just after the 
cwnd reaches 150 packets (about time 42 s). After the loss, the cwnd drops in half (to 75) and 
then increases linearly until reaching 100. At about time 80 s the source experiences a timeout 
and the cwnd is reduced to 2, while sst is reset to 50 (half the value of the cwnd when the timeout 
occurred). When ACKs resume the cwnd increases exponentially to 16 and then logarithmically 
to 50 (the value of sst) from which the cwnd increases linearly as the flow returns to congestion 
avoidance. 
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Figure 5-5. Sample Change in Congestion Window (packets) over Time (secs) under Limited Slow Start and 
Congestion Avoidance 

5.2 Congestion Avoidance Procedures for Six Alternate Congestion 
Control Mechanisms 
In this section, we describe congestion avoidance procedures defined by six proposed alternate 
congestion control mechanisms: Binary Increase Congestion control (BIC) [61], Compound TCP 
(CTCP) [58], Fast Active Queue Management (AQM) Scalable TCP (FAST) [60], High-Speed 
TCP (HSTCP) [52], Hamilton TCP (H-TCP) [54] and Scalable TCP [53]. For each congestion 
control mechanism, we specify increase procedures taken upon receipt of an ACK, decrease 
procedures used upon explicit notification of a loss and timeout procedures. In addition, three of 
the congestion control mechanisms (CTCP, FAST and H-TCP) require periodic actions, which 
we also specify. 

All but two (FAST and H-TCP) of the alternate congestion control mechanisms define a 
threshold, such that when the congestion window is below the threshold then normal TCP 
congestion avoidance procedures are used. This means that the alternate congestion avoidance 
procedures will be invoked only when a flow’s congestion window surpasses the threshold. 
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Further, whenever a congestion window passes and then falls below the threshold, normal TCP 
congestion avoidance procedures will be resumed. Alternate procedures will be reactivated when 
the congestion window again passes the threshold. H-TCP also uses an activation threshold, but 
defined in terms of elapsed time since the most recent loss on a flow. FAST does not use a 
threshold, so the alternate congestion avoidance procedures are always applied for FAST flows. 
When appropriate, we specify the threshold values associated with each alternate congestion 
control mechanism. 

5.2.1 BIC 
The congestion avoidance procedures used by BIC aim to make aggressive increases in the cwnd 
when the current cwnd is far from a target and smaller increases as the current cwnd nears the 
target. BIC determines the target by conducting a binary search within some range around the 
current cwnd. When the target falls beyond the search range, BIC increases the cwnd additively 
by a fixed increment and then reinitiates the binary search within the new range. Implementing 
this behavior requires rather complex logic, so BIC procedures for congestion avoidance tend to 
be somewhat elaborate. The resulting cwnd evolution for BIC reflects its complexity – 
reproducing a function that appears to change in a pattern resembling a human heartbeat. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Table 5-3. Symbols and Definitions Used to Model BIC Congestion Avoidance Procedures 

Symbol  Definition 

�B  Multiplicative back‐off factor for loss (BIC parameter � = 0.8)

BB  Parameter for computing increase in congestion window (BIC parameter B = 4) 

�B  Candidate numerator for increase in congestion window 

LWB  Low‐window threshold ( LWB = 14 packets) for applying BIC procedures 

MINB  Variable to track minimum value for computing BIC target window  

MAXB  Variable to track maximum value for computing BIC target window 

PREVB  Variable to track previous MAXB 

"B  Parameter for computing increase in congestion window (BIC parameter " = 20)

SMAXB  Threshold to begin rapid increase in congestion window (BIC parameter Smax = 32)

SSB  Boolean indicating whether the flow is in BIC slow start (true) or not (false) 

SSTB  BIC slow‐start target 

SSWB  BIC slow‐start congestion window 

TGTB  BIC target window (BIC variable w1)



Study of Proposed Internet Congestion Control Mechanisms NIST  

Mills, et al. Special Publication 500-282 148 

Specifying BIC congestion avoidance procedures requires some additional symbols, as identified 
and defined in Table 5-3. Where applicable, the table denotes parameter values used within our 
model. We adopt parameter values matching default values reported in the empirical study by Li, 
Leith and Shorten [67] of prototype implementations for congestion control mechanisms. 

A given BIC flow uses normal TCP congestion avoidance procedures or the alternate 
BIC procedures, defined below, depending on the relationship between cwnd size and a low-
window parameter (LWB = 14 packets). 

 
  

 
 
 
5.2.1.1 Increase Procedures. The window increase procedures (9) used by BIC differ depending 
upon whether the current cwnd is below or beyond a previously determined maximum cwnd. As 
the cwnd passes the previously determined maximum, BIC invokes slow-start procedures (these 
differ from TCP slow start) that increase the cwnd until the cwnd approaches a new maximum 
(set to twice the previous maximum). As the cwnd nears the new maximum, BIC slow-start 
procedures are abandoned and the cwnd is increased using a binary search. Once the new 
maximum is exceeded, then BIC reenters its slow-start procedures. Thus, during congestion 
avoidance, BIC increase procedures alternate between BIC slow-start and binary search. 

 
(9) 
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with 

 
 

(10) 
 
 
 
 
 
 

During the BIC binary search, the cwnd is increased more quickly when further from the 
current midpoint and less quickly as it nears the midpoint. The rules controlling the increase 
pattern are encoded within a function (10). 

 
5.2.1.2 Decrease Procedures. Upon notification of a loss (11), BIC sets the maximum cwnd for 
the binary search to the current cwnd and then multiplicatively decreases the congestion window. 
If the loss followed closely behind a previous loss, then BIC also multiplicatively decreases the 
maximum cwnd used for the binary search. In addition, BIC abandons its slow-start procedures 
to ensure a new binary search commences within the reduced range. 
 
 

(11) 
 
 
 
 
 
 
 
 
 
5.2.1.3 Timeout Procedures. For BIC timeout procedures (12) we adopt logic similar to that used 
for a loss, except that the sst is set to half the cwnd and the cwnd is set to its initial value 
(cwndINT). This ensures that standard (or limited) slow-start is used until the flow’s cwnd reaches 
the new sst. After that, BIC congestion avoidance procedures resume. 
 

(12) 
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5.2.2 CTCP 
Compound TCP, or CTCP, augments the congestion window with a second component, called 
the delay window (dwnd). (See Table 5-4 for a complete listing of symbols and parameter 
settings used to specify CTCP behavior.) The dwnd is added to the cwnd to establish the actual 
send window used for CTCP flows. CTCP defines rules for increasing dwnd aggressively when a 
flow is underutilizing the available transmission rate and also defines rules for reducing dwnd as 
a flow’s transmission rate nears the available bandwidth. Upon detection of congestion, either 
through explicit losses or timeouts, CTCP reduces the delay window toward zero. 
 

Table 5-4.  Symbols and Definitions Used to Model CTCP Congestion Avoidance Procedures 

  
CTCP procedures update the dwnd periodically, typically once per round-trip time. As a 

flow’s transmission rate nears equilibrium around some estimated available bandwidth, CTCP 
tends to cause the send window to oscillate by exponentially increasing the dwnd when the 
estimated number of packets queued for a flow falls below a threshold (�C = 30) and then linearly 
decreasing dwnd when the estimated number of queued packets exceeds the threshold. On the 
other hand, when the transmission rate is increasing on a flow, CTCP exponentially increases the 
dwnd without exerting a countervailing linear decrease. Consequently, the CTCP send window 
can reach a large size relatively quickly when a transmission path exhibits no congestion. 

Symbol  Definition 

�C  Window  increase (�C = 0.125) weight for CTCP 

AC  Actual throughput (cwnd/SRTTC) experienced on CTCP flow 

�C  Window  decrease (�C = 0.5) weight for CTCP 

CDC  Boolean denoting whether early congestion has been detected (true) or not (false) 

�C  CTCP gamma threshold (�C = 30) for detecting early congestion 

DC  Difference between expected and actual throughput experienced on CTCP flow 

dwnd  CTCP delay window 

EC  Expected throughput (cwnd/minRTTC) on CTCP flow 

�C  CTCP zeta parameter (�C  = 0.1) defining reduction speed in delay window 

kC  Exponent (kC  = 0.8) for  CTCP window‐increase procedures 

LWC  Low‐window threshold ( LWC = 41) for applying CTCP procedures 

minRTTC  Minimum round‐trip time experienced on CTCP flow 

SRTTC  Average Smoothed Round‐Trip Time experienced on CTCP flow 
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As shown below (13), CTCP uses normal TCP congestion avoidance procedures for 
adjusting the cwnd whenever the cwnd is below a threshold (LWC = 41 packets). This means that 
the dwnd is used only when the cwnd is sufficiently large. 
 

(13) 
 
 
 
5.2.2.1 Increase Procedures. CTCP increases (14) the cwnd fractionally with each ACK received 
in a round-trip time without a loss. The increased cwnd is then added to the current dwnd. As 
with other congestion avoidance procedures, CTCP suspends increases after a loss in a round-trip 
time until an ACK arrives associated with a subsequent round-trip. The increase procedures 
adopted by CTCP consider both the cwnd and the dwnd, as follows. 
 

 
(14) 

 
 
5.2.2.2 Decrease Procedures. Upon a loss, CTCP decreases the cwnd by half and then notes that 
congestion was detected. As with other congestion avoidance procedures, the sst is reset to the 
cwnd in order to ensure the flow remains in congestion avoidance. During the next periodic 
update cycle, CTCP will act on the loss notification by reducing the dwnd. Equation (15) 
specifies the precise decrease procedures used by CTCP upon an explicit loss. 
 

(15) 
 
 
 
 
5.2.2.3 Timeout Procedures. Given a timeout, CTCP adopts the same procedures used by TCP 
and then augments those procedures by resetting dwnd to zero and noting that congestion was 
detected. The precise procedures follow. 
 
 

(16) 
 
 
 
 
 
5.2.2.4 Periodic Procedures. The remaining CTCP procedures are used periodically, every 
round-trip time, to update the dwnd. The update procedures (17) depend upon a number of 
parameters. We adopt the recommended settings for those parameters, as shown in Table 5-4. 
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(17) 
 
 
 
 
 
 
 
  
 

5.2.3 FAST 
FAST TCP adopts a fundamentally different approach from the other congestion control 
mechanisms considered in this study. First, FAST aims to achieve an equilibrium cwnd that does 
not change during the life of a flow, while other congestion control mechanisms lead to an 
oscillating cwnd. Second, FAST updates the cwnd based mainly on measured changes in queuing 
delay, using loss signals only when congestion prevents reaching a lossless equilibrium. Third, 
FAST does not resort to standard TCP congestion avoidance procedures; instead, FAST uses its 
own procedures at all times during congestion avoidance. FAST adopts these approaches based 
on the idea that queuing delay can be measured quite frequently and thus accurately, while 
packet losses are rare events that provide insufficient information to estimate loss probability on 
a given flow. 

Explaining FAST congestion avoidance procedures requires numerous parameters and 
variables, listed and defined in Table 5-5. In addition to procedures associated with cwnd 
increase on ACKs and decrease on losses and timeouts, FAST requires a periodic procedure to 
determine a target cwnd (TcwndF). FAST also defines optional, periodic procedures for tuning a 
parameter (�F), which determines how many packets a flow attempts to keep queued between a 
source and receiver. These optional, �-tuning procedures require two periodic processes: one to 
estimate flow throughput and one to adjust �F based on changes in flow throughput. 
 
5.2.3.1 Increase Procedures. FAST uses periodic procedures (explained below in Sec. 5.2.3.4) to 
determine a target congestion window (TcwndF) and then increases or decreases cwnd as needed 
to reach TcwndF. FAST does not move cwnd to TcwndF in one step, but instead paces the rate of 
increase to reflect that expected number of ACKs arriving on a given flow within each round-trip 
time. Our model uses the following procedures (18) for adjusting cwnd with each arriving ACK. 
 

(18) 
 
 
 
5.2.3.2 Decrease Procedures. Upon an explicit loss for FAST, we reduce (19) cwnd by half and 
assign the reduced value to both the TcwndF and the sst. These actions provide a new, lower 
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basis from which FAST can begin increasing the cwnd and also ensure that the flow remains in 
congestion avoidance. 
 

(19) 
 
 
 

Table 5-5. Symbols and Definitions Used to Model FAST Congestion Avoidance Procedures 
 

Symbol  Definition 

acksRTTF  Count of ACKs received on FAST flow during the most recent  SRTTF 

�F  Current  � parameter 

ADF  Default  � parameter setting (ADF = 200) when �‐tuning disabled 

ATF  Boolean indicating whether �‐tuning is enabled (true) or disabled (false)   

A1F  First � parameter setting (A1F = 8 packets) 

A2F  Second � parameter setting (A2F = 20 packets) 

A3F  Third � parameter setting (A3F = 200 packets) 

BkF  Current average throughput on FAST flow 

�F  Weight (�F  = 0.5) of recent information when updating TcwndF 

minRTTF  Minimum round‐trip time experienced on FAST flow 

M0M1F  Set � = A2F when � = A1F and throughput passes M0M1F (= 1500 ppms) 

M1M0F  Set  � = A1F when � = A2F and throughput passes M1M0F (= 1250 ppms) 

M1M2F  Set  � = A3F when � = A2F and throughput passes M1M2F (= 15,000 ppms) 

M2M1F  Set � = A2F when � = A3F and throughput passes M2M1F (= 12,500 ppms) 

SRTTF  Average Smoothed Round‐Trip Time experienced on FAST flow 

TF  Weight (TF  = 0.5) to assign to most recent throughput sample when computing  BkF 

TcwndF  Current target congestion window 

UAF  Periodicity (UAH  = 200 s) for updating � parameter when �‐tuning enabled 

UWF  Periodicity (UWH  = 20 ms) for updating TcwndF 
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5.2.3.3 Timeout Procedures. For a FAST timeout, we adopt procedures (20) analogous to those 
used with other congestion control mechanisms. We set the sst to half the cwnd and then set 
cwnd and TcwndF to the initial congestion window (cwndINT) and recommence slow start. 
 

(20) 
 
 
 
 
5.2.3.4 Periodic Procedures. FAST defines one mandatory periodic process (21) to update the 
target congestion window (TcwndF) for the flow every UWF (= 20 ms, here). A parameter (�F) 
determines how much weight is placed on the previous cwnd and how much weight is given to 
recent information. FAST procedures prevent the new target cwnd from being more than twice 
the current cwnd. 
 

(21) 
 
 
The �F parameter may be fixed or tuned. If �-tuning is enabled, the following procedures (22) are 
executed every UAF (= 200 s, here). 
 

(22) 
 
 
 
 
The various parameters associated with �-tuning are defined in Table 5-5. Estimated flow 
throughput (BkF) is a variable used in the �-tuning procedures. To estimate BkF, the following 
procedures (23) are used each round-trip time. 
 
 

(23) 
 

5.2.4 HSTCP 
High Speed TCP (HSTCP) modifies standard TCP congestion control procedures in order to 
achieve high transmission rates (e.g., 10 Gbps) when network conditions permit, while 
maintaining comparable performance to standard TCP when a network path exhibits moderate to 
heavy congestion. HSTCP retains the fundamental additive-increase and multiplicative-decrease 
(AIMD) strategy adopted by standard TCP, but HSTCP alters the AIMD parameters to become a 
function of congestion window size. The altered AIMD functions result in more aggressive 
increases and less aggressive decreases at larger window sizes. Below a low-window threshold 
(LWHS) HSTCP adopts standard TCP congestion-avoidance procedures. 
 

(24) 
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Table 5-6 identifies and defines symbols used below when explaining HSTCP congestion-
avoidance procedures. 
 

Table 5-6. Symbols and Definitions Used to Model HSTCP Congestion Avoidance Procedures 

 
5.2.4.1 Increase Procedures. HSTCP increases the cwnd additively upon receiving each ACK in 
a round-trip time until a loss is detected. The increase procedures (25) appear quite similar to 
standard TCP increase procedures, except that the numerator for the increase is a function of 
cwnd size. 
 
 

(25) 
 
Function f�(c), defined below (26), returns the increase numerator that will yield the desired 
packet drop rate for a given window c. Function f�(c) uses a subsidiary function, g�(c), defined 
below (27). Function g�(c) is also used to determine the multiplicative-decrease parameter 
applied on losses and timeouts. 
 
 

(26) 
 
 
 
 

(27) 
 
5.2.4.2 Decrease Procedures. Upon detecting an explicit loss, HSTCP reduces the cwnd by a 
multiplicative factor that is a function of the cwnd. The specific procedures, which use function 
g�(c), are given below. 

 
(28) 

 
 
 
5.2.4.3 Timeout Procedures. For a timeout (29), HSTCP sets sst to the reduced cwnd and then 
resets the cwnd to its initial value. This enables slow-start procedures up to the new sst, after 
which congestion avoidance resumes. 
 

Symbol  Definition 

HWHS  High‐window threshold ( HWHS = 83,000) for HSTCP procedures 

LWHS  Low‐window threshold ( LWHS = 31) for applying HSTCP procedures 

RHS  Decrease congestion window by this percentage ( RHS  = 0.1) after loss above  LWHS 

0.5 

0.5 
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(29) 

 
 
 

5.2.5 H-TCP 
H-TCP differs from other congestion avoidance procedures in two main aspects. First, H-TCP 
determines the numerator of the cwnd increase as a function of elapsed time since the most 
recent packet loss. The increase is scaled by the round-trip time experienced on a path in order to 
compensate for differences in feedback delay. The motive is to give larger increases in cwnd 
during periods of low network congestion, so a flow could reach higher transmission rates more 
quickly on uncongested, high-bandwidth, long-delay paths. H-TCP adopts standard TCP increase 
procedures for a specified time after each loss. Second, H-TCP implements an adaptive back-off 
procedure to determine the multiplicative decrease in cwnd after a loss. The back-off factor is 
varied based on estimating the queuing delay on a path. The motive is to prevent senders from 
backing off too much after packet losses. H-TCP adopts standard TCP decrease procedures when 
flow throughput has changed by more than a specified amount since the most recent loss. To 
monitor changes in flow throughput, H-TCP requires a periodic process to measure average 
throughput. Table 5-7 identifies and defines parameters and variables used below to explain H-
TCP congestion avoidance procedures. 
 

Table 5-7. Symbols and Definitions Used to Model H-TCP Congestion Avoidance Procedures 
Symbol  Definition 

acksRTTH  Count of ACKs received on H‐TCP flow during the most recent  UH 

�H  Most recent computed percentage (initially  �H = 0.5) cwnd residual on a loss  

Bk1H  Average throughput on H‐TCP flow at time of most recent loss 

BkH  Current average throughput on H‐TCP flow 

�H  Time elapsed since the most recent loss 

�BH  Percentage throughput increase (�BH = 0.2) for selecting  

�LH  Use normal TCP procedures until  �H  >  �LH, where �LH = 1 s 

GH  Maximum percentage (GH  = 0.8) cwnd reduction on a loss 

maxRTTH  Maximum round‐trip time experienced on H‐TCP flow 

minRTTH  Minimum round‐trip time experienced on H‐TCP flow 

TH  Weight (TH  = 0.5) to assign to most recent throughput sample when computing  BkH 

UH  Periodicity (UH  = 250 ms) for updating throughput estimate for H‐TCP flow 
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5.2.5.1 Increase Procedures. For each ACK received without a loss in a round-trip time, H-TCP 
increases cwnd by a fraction of the cwnd. The numerator of the increase fraction is a function 
(30) of the most recently computed multiplicative-decrease parameter (�H) and the elapsed time 
(�H) since the most recent loss. 
 

(30) 
 
Function f�(�H) returns (31) one if standard TCP increase procedures are in effect; otherwise it 
returns a value exhibiting a quadratic increase with increasing �H. The quadratic increase (32) is 
scaled by the minimum round-trip time measured on the flow. 
 

(31) 
 
 
 

(32) 
 
5.2.5.2 Decrease Procedures. Upon an explicit loss, H-TCP reduces (33) the cwnd by a fraction, 
computed as a function (34) of changing throughput. In addition, H-TCP records the average 
flow throughput at the time of the loss. 
 

(33) 
 
 
 
Given default parameters, the H-TCP algorithm varies the back-off fraction between 0.5 and 0.8. 
The lower value (larger reduction) is adopted whenever measured throughput (BkH) has changed 
by a significant percentage (�BH) since the most recent loss, which suggests that the flow is 
undergoing some disturbance or transition. Less significant change in throughput indicates that 
the flow is nearer to stability. Stable flows are reduced by a fraction reflecting the estimated 
queuing delay as a proportion of estimated propagation delay. The residual cwnd is capped by 
parameter GH (= 0.8). 
 

(34) 
   
 
 
5.2.5.3 Timeout Procedures. For a timeout, we adopt procedures (35) that mirror the rules H-
TCP uses for an explicit loss with significant change in flow throughput. This amounts to 
reducing the sst to half the cwnd, recording the flow’s average throughput and setting �H = 0.5. 
We also reset the cwnd to its initial value, which reinitiates slow start. 
 

(35) 
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5.2.5.4 Periodic Procedures. To support recording and monitoring of flow throughput, H-TCP 
requires a periodic process (36) to estimate average throughput. In our model, estimated 
throughput is updated every UH (= 250 ms, here).  

 
 

(36) 
 

 

5.2.6 SCALABLE TCP 
Scalable TCP adopts a simple, fixed-increase rule aimed at allowing a flow to increase its 
congestion window more quickly than would be the case with standard TCP. In addition, 
Scalable TCP defines a decrease rule that limits a flow to a fixed multiplicative decrease that is 
recommended to be much less than the 50% decrease used by standard TCP. The Scalable TCP 
rules are defined in an additive-increase, multiplicative-decrease (AIMD) form, but the rules 
actually amount to a multiplicative-increase, multiplicative-decrease (MIMD) regime. 
Researchers have found [1] that MIMD algorithms are not guaranteed to converge to fair 
bandwidth sharing in drop-tail networks, such as the Internet. Empirical measurements by Li, 
Leith and Shorten [67] have also shown that failure to converge is a property of Scalable TCP. 
Below, we describe Scalable TCP procedures for increase on ACK, decrease on explicit loss and 
decrease on timeout. Our description uses the symbols and definitions shown in Table 5-8. 
 

 Table 5-8. Symbols and Definitions Used to Model Scalable TCP Congestion Avoidance Procedures 

 
Scalable TCP includes (37) a low-window threshold (LWS) that ensures standard TCP 

procedures for congestion avoidance are followed when the cwnd is small. Scalable TCP 
congestion avoidance procedures are used only when the cwnd is above the threshold. 
 

(37) 
 
 
 
5.2.6.1 Increase Procedures. Upon receiving each ACK within a round-trip time without a 
congestion signal Scalable TCP increases (38) the cwnd by a fixed value �S (= 0.01). 
 

(38) 
 

Symbol  Definition 

�S  Increase (�S  = 0.01) applied by Scalable TCP on each ACK 

�S  Percentage residual cwnd (�S  = 0.875) applied by Scalable TCP on each loss 

LWS  Low‐window threshold (LWS = 16 packets) for applying Scalable TCP procedures 
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5.2.6.2 Decrease Procedures. Upon receiving an explicit loss notification, Scalable TCP reduces 
(39) the cwnd by a fixed percentage. Here, the reduction amounts to (1 - �S =) 0.125. We also set 
sst to the new, lower cwnd to ensure the flow remains in congestion avoidance. 
 

(39) 
 
 
 
5.2.6.3 Timeout Procedures. For a timeout we define procedures (40) that require Scalable TCP 
to set the sst to the reduced cwnd and then reset the cwnd to its initial value. This means that, like 
the other congestion control mechanisms we model, Scalable TCP will reenter slow start until 
the cwnd passes the sst and then return to congestion avoidance. 
 

(40) 
 
 
 
 

5.3 Modeling the Transfer Phase in MesoNet 

The section explains the key ideas underlying our model for the transfer phase of a flow. We 
begin by explaining how our model simulates data transfer procedures in general and then 
concentrate separately on slow start and congestion avoidance. Previously in Sec. 5.2, we 
explained the detailed slow-start and congestion avoidance procedures for individual congestion 
control mechanisms. Here, we focus on the common approach used by MesoNet to model the 
transfer phase across all congestion control mechanisms.  

5.3.1 General Data Transfer Procedures 
We adopt a simplified model of data transfer procedures in order to simulate fundamental aspects 
of congestion control without incurring the detailed complexity of TCP implementations. A 
simplified model permits simulating reasonably large, fast networks for suitable time durations 
on standard computing hardware without incurring excessive costs in processing time and 
memory use. Our simplified model retains key properties that enable us to compare and contrast 
various congestion control mechanisms under a wide range of network conditions. 

During the data transfer phase for each flow, a simulated source transfers a randomly 
selected number (flowDTs) of DT segments. Each DT segment is assigned a sequence number; 
the first segment is number one and the sequence number increases by one for each subsequent 
segment. A flow’s receiver, then, expects to receive DT segments in sequence, where each 
segment has a sequence number one greater than the most recently received segment. When the 
sequence number is as expected, the receiver sends an ACK back to the source. When the 
sequence number is higher than expected, the receiver sends a NAK back to the source. The 
ACK or NAK is numbered with the next expected sequence number. This simplification, which 
ignores the possibility for reordered segments, is feasible because MesoNet allows packets to be 
discarded but does not permit packet reordering. Absent reordering, our model of data transfer 
procedures may omit features such as duplicate ACKs and selective ACKs. 
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A source in our model expects to receive a stream of ACKs and NAKs from a flow’s 
receiver. Since a receiver sends an ACK or NAK only upon receiving a DT segment, a source 
can simply count each received ACK and NAK as evidence that one DT segment has been 
delivered successfully to the receiver. When the source has received one ACK or NAK for each 
segment comprising the flow, then the data transfer is finished and the source can terminate the 
flow. Of course, each NAK received by a source also causes the number of DT segments sent on 
the flow to increase by one (a retransmission) because the NAK indicates that one DT segment 
was lost and, thus, was not counted as successfully delivered. Receiving a NAK also stimulates a 
source to take remedial action. In our model, receipt of a NAK activates a source’s loss 
procedures on a flow. 

ACK and NAK segments may also be lost on a flow. This means that each lost ACK or 
NAK will not be counted by the source. For this reason, each lost ACK and NAK will also 
increase by one (a retransmission) the number of DT segments that must be sent by the source in 
order to receive a sufficient number of ACKs and NAKs. Further, if no ACKs or NAKs are 
received by a source for a retransmission timeout (RTO) period, then a source must also take 
remedial action. In our model, expiration of a RTO activates a source’s timeout procedures on a 
flow. 

Whenever a NAK is received or a timeout occurs, a source notes the next sequence 
number that it intends to send on the flow. This enables the source to ignore window increase 
and decrease procedures for all subsequent ACKs and NAKs that arrive with lower sequence 
numbers. This technique ensures that window increase procedures are abandoned in a round-trip 
time after a loss or timeout. The technique also ensures that window decrease procedures are 
activated only once within a round-trip time. 

The remaining elements of our general data transfer model concern controlling the ability 
of a source to transmit a DT. A source maintains a flow cwnd using the procedures described 
earlier (Sec. 5.2). A source also knows the sequence number (nextSeq) for the next DT segment 
it intends to send and the highest sequence number (highSeq) received in an ACK or NAK. With 
this information, a source can compute (41) the number of unacknowledged DT segments 
(unAckedDTs) and thus the number of DT segments it is permitted to send (unsentDTs). 
 

(41) 
 
 
Equation 41 reveals the self-clocking nature of TCP flows. Two conditions enable a source to 
send a DT segment: arrival of an ACK or NAK or increase in the congestion window. In our 
model, a timeout causes highSeq to be set to nextSeq, which means that unsentDTs will equal 
cwnd.  Recall that we also reset cwnd to its initial value upon a timeout. 

 One last detail must be explained. The procedures in equation 41 can cause extra DTs to 
be sent at the end of a flow. To prevent this, our model computes (42) the difference 
(residualDTs) between the number of DTs (flowDTs) comprising a flow and unacknowledged 
DTs (unAckedDTs). The number of DTs that can be sent (unsentDTs) is then set to the minimum 
of the segments allowed by the congestion window or the segments required to complete the 
flow. 
 

  (42) 
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Data transfer procedures are distributed across elements of MesoNet. Sources manage 
sending of DT segments and also react to flow timeouts. Access routers process incoming ACKs 
and NAKs on behalf of sources and also process incoming DTs on behalf of receivers. When 
processing incoming ACKs and NAKs an access router updates the cwnd as required by the 
congestion control mechanism in use on the related flow. When processing incoming DTs an 
access router determines whether a receiver needs to send an ACK or NAK and then queues that 
assignment for the receiver. 

5.3.2 Slow Start 
Slow-start procedures are invoked within a simulated access router upon receipt of an ACK 
whenever the cwnd is below the sst. If the cwnd is below sstMAX, then standard slow-start 
procedures are used to increase the cwnd at an exponential rate; otherwise, limited slow-start 
procedures are used to increase the cwnd at a logarithmic pace. 

5.3.3 Congestion Avoidance 
Congestion avoidance procedures are invoked within a simulated access router upon receipt of 
any qualified NAK, and for qualified ACKs where the cwnd equals or exceeds the sst. Selected 
congestion control mechanisms also require periodic procedures, which our model implements 
within simulated access routers. We implement timeout procedures within simulated sources. 
   
5.3.3.1 Acknowledgement Procedures. MesoNet assigns one congestion control mechanism to 
each simulated source, which represents a computer attached to the network and running a 
particular version of TCP. This means that the particular congestion control mechanism in 
operation on a simulated flow will be determined by the congestion control mechanism used by 
the flow’s source. Upon receipt of a qualified ACK a simulated access router selects the 
appropriate window increase procedures for the flow as a function of the congestion control 
mechanism (tcpType) used by the simulated source. Qualified ACKs include all ACKs received 
within a round-trip time prior to a congestion signal. 
 
5.3.3.2 Negative Acknowledgement Procedures. Upon receipt of a qualified NAK a simulated 
access router selects the appropriate window decrease procedures for the flow as a function of 
the tcpType used by the simulated source. Qualified NAKs include the first NAK received within 
any given round-trip time for a flow. 
 
5.3.3.3 Periodic Procedures. In general, MesoNet activates periodic procedures only after a flow 
passes initial slow start. Periodic procedures that estimate throughput are always active during a 
flow’s transfer phase. MesoNet implements periodic procedures in a somewhat approximate 
form. Specifically, periodic procedures are invoked within a simulated access router only when 
an ACK or NAK has been received and provided that sufficient time has elapsed. Further, the 
timer is reset only after invoking the related procedures. Thus, MesoNet does not invoke periodic 
procedures on a precisely rigid schedule, as might be stimulated by a timer. Periodic procedures 
can be invoked regardless of whether an ACK or NAK is qualified to stimulate increase or 
decrease procedures for a flow. 
 
5.3.3.4 Timeout Procedures. MesoNet invokes timeout procedures within a simulated source 
when a flow’s RTO expires. A source’s RTO is reset within a simulated access router whenever 
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any ACK or NAK arrives for the source. Upon expiration of the RTO, a source selects the 
appropriate timeout procedures for the flow as a function of the source’s tcpType. 
 
5.4 Verifying Simulated Congestion Control Mechanisms 
To verify the behavior of congestion control mechanisms simulated within MesoNet, we defined 
a test configuration similar to that used in the Li, Leith and Shorten study [67] of congestion 
control mechanisms implemented in Linux. We also adopted parameters used in that study and 
then simulated similar scenarios and recorded temporal changes in the congestion window. 
Below, we give our simulated cwnd graphs and compare the behavior of our simulated 
congestion control mechanisms to findings reported by Li, Leith and Shorten. First, we describe 
the test configuration adopted to produce the reported cwnd graphs. 

We defined a dumbbell topology, shown in Fig. 5-6, similar to the dumbbell topology 
used by Li, Leith and Shorten. The topology in Fig. 5-6 is annotated with key parameter values 
used to generate the results presented below. The topology consists of two sources that attach to 
the same access router. Each source can transmit DTs to one of a pair of receivers that attach to 
the second access router in the topology. Li, Leith and Shorten place a dummynet router between 
the sources and receivers and use that router to control propagation delay, bottleneck speed and 
buffer provisioning on the network path between the sources and receivers. Our simulations use 
MesoNet facilities to control path characteristics. 
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Figure 5-6. Simulated Dumbbell Topology for MesoNet Verification Experiments 
   
Access Router #1, highlighted in red in Fig. 5-6, simulates the bottleneck bandwidth for 

the path. Here, the bottleneck speed is set to 21 p/ms (packets/millisecond), which amounts to 21 
p/ms x 1000 ms/sec x 12000 bits/packet = 252 million bits per second (Mbps), assuming 1500-
byte packets. This approximates a 250 Mbps bottleneck link used in the empirical study. Note 
that the sources, receivers and backbone routers are configured with speeds exceeding the 
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bottleneck access routers. The sources and receivers are capable of transmitting at 960 Mbps, 
which is close to 1 billion bits per second (Gbps). Similarly the backbone routers can transmit at 
984 Mbps. 

The propagation delay of the network path in Fig. 5-6 is controlled by the one-way 
propagation delay of the backbone link. Round-trip propagation delay will be twice the one-way 
propagation delay. For our simulations with the dumbbell topology we used three different one-
way delays (21 ms, 81 ms and 162 ms) to match the short (42 ms), medium (162 ms) and long 
(324 ms) round-trip propagation delays used by Li, Leith and Shorten.  

We configured MesoNet to provision buffers for each router sufficient to accommodate 
the bandwidth-delay product. MesoNet also includes a parameter that can adjust the number of 
provisioned buffers. Here, we reduce the buffers to be 20 % of the number required by the 
bandwidth-delay product. This matches the buffer provisioning used for several scenarios 
reported in the study by Li, Leith and Shorten. 

Given the topology and parameters from Fig. 5-6, we simulated congestion control 
mechanisms under a scenario lasting 1000 s, where one source begins sending data immediately 
and the second source delays (250 s) and then starts to send data. For each congestion control 
mechanism we use limited slow-start, with sstMAX = 100 and sstINT = 232/2.We repeat the scenario 
three times for each congestion control mechanism, varying the round-trip propagation delay 
(rtt) from short, to medium, to long with each repetition. We record and graph (on the y axis) the 
time-varying cwnd (in packets) for each scenario. The maximum value (in packets) of the y axis 
on each graph scales with rtt: 1200 at 42 ms, 4500 for 162 ms and 9000 for 324 ms. The x axis in 
all graphs is denominated in 100 ms units. All graphs also include the average overall cwnd 
when one flow is transmitting and when both flows are transmitting. When both flows are 
transmitting, each graph also displays the average cwnd for each flow.  
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Figure 5-7. Change in cwnd (packets) vs. Time (0.1 s units) for Two TCP Flows (rtt = 42 ms) 

5.4.1 Standard TCP Congestion Control Model 
Fig. 5-7 graphs cwnd evolution for standard TCP congestion control under a short propagation 
delay. The graph shows the expected behavior of the TCP cwnd, which (after initial slow start 
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ends with a loss just after the cwnd passes 1100) oscillates in a saw-tooth pattern between a cwnd 
of 550 and 1050 (average about 800). The bandwidth-delay product is (42 ms x 21p/ms =) 882 
packets, so an average cwnd of 800 seems appropriate. After the second flow begins (at time 250 
s) it takes between 50 and 100 s for the cwnd of the two flows to converge to a similar value 
(average around 400 packets). Convergence to a similar cwnd means the two flows will receive 
fairly equal average throughputs. This property of convergence to fairness is a hallmark trait of 
TCP congestion control. 

The next scenario, displayed in Fig. 5-8, begins to show why many researchers believe 
standard TCP congestion control procedures are ill-suited to high-speed, long-delay 
environments. Here, the 162 ms round-trip propagation delay (rtt) suggests a cwnd of (162 ms x 
21p/ms =) 3402 packets. The first flow reaches (and then exceeds) that value during slow start, 
which ends with a loss (at cwnd = 4200) early in the flow. After the loss, TCP reduces the cwnd 
in half (to 2100) and then TCP enters its congestion avoidance regime. Increasing the cwnd with 
standard TCP congestion avoidance procedures requires about 150 s for the flow to reach its 
peak window. Thus, absent other activities, the single flow would oscillate in throughput over 
periods of about 150 s. 
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Figure 5-8. Change in cwnd (packets) vs. Time (0.1 s units) for Two TCP Flows (rtt = 162 ms) 

 
Once the second flow commences, the cwnd of the two flows begin to converge; 

however, the lengthy propagation delay slows the increase in cwnd and the rate of convergence. 
In fact, the two flows in Fig. 5-8 have not fully converged even after 750 s. The situation 
becomes worse when rtt becomes even longer, as shown in Fig. 5-9. Further, increasing the 
network speed would increase the bandwidth-delay product and worsen the delay in recovering 
from packet losses and converging to fair throughputs. 
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Figure 5-9. Change in cwnd (packets) vs. Time (0.1 s units) for Two TCP Flows (rtt = 324 ms) 

5.4.2 Behavior of BIC Congestion Control Model 
Next, we subject BIC congestion control to the same three scenarios under which we simulated 
standard TCP. The resulting cwnd evolutions are shown in Figs. 5-10 through 5-12. The graphs 
display the heartbeat-like pattern of BIC cwnd evolution, as seen in the empirical study by Li, 
Leith and Shorten. Note that BIC congestion avoidance shows small improvement in 
convergence time for scenarios with short and medium propagation delays. At the long 
propagation delay, BIC exhibits significantly less fairness in bandwidth allocation than standard 
TCP. These findings are consistent with findings by Li, Leith and Shorten. 
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Figure 5-10. Change in cwnd (packets) vs. Time (0.1 s units) for Two BIC Flows (rtt = 42 ms) 
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Figure 5-11. Change in cwnd (packets) vs. Time (0.1 s units) for Two BIC Flows (rtt = 162 ms) 
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Figure 5-12. Change in cwnd (packets) vs. Time (0.1 s units) for Two BIC Flows (rtt = 324 ms) 

5.4.3 Behavior of CTCP Congestion Control Model 
The empirical study by Li, Leith and Shorten did not include CTCP, so in verifying the behavior 
of CTCP we must compare our simulations to results from a later empirical study by Leith, 
Andrew, Quetchenbach, Shorten and Lavi [66]. Unfortunately, the later study did not use the 
same parameters and scenarios used by Li, Leith and Shorten. For that reason, comparing our 
CTCP simulation results to empirical results is not quite as direct as for the other congestion 
control mechanisms. We can compare the pattern of cwnd evolutions between the simulations 
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and the empirical results of Leith, Andrew, Quetchenbach, Shorten and Lavi and we can 
compare their CTCP-related findings with the findings from our simulation. 

Figs. 5-13 through 5-15 show cwnd evolution for CTCP under our scenario with short, 
medium and long rtt. CTCP exhibits a distinctive pattern of cwnd evolution, which becomes 
evident once the second flow starts in Fig. 5-13 and 5-14. This pattern is also evident in one of 
the CTCP cwnd graphs shown by Leith, Andrew, Quetchenbach, Shorten and Lavi. They also 
report that the time taken by CTCP to recover from a loss, as well as the convergence time when 
a second flow begins, is similar to standard TCP. Further, they find that convergence time scales 
linearly with bandwidth-delay product. The MesoNet simulation of CTCP exhibits the same 
properties, as shown in the cwnd graphs below. 
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Figure 5-13. Change in cwnd (packets) vs. Time (0.1 s units) for Two CTCP Flows (rtt = 42 ms) 
 
Leith, Andrew, Quetchenbach, Shorten and Lavi report that CTCP exhibits similar rtt 

fairness to TCP Reno, but when buffers are smaller CTCP has slightly better rtt fairness. 
MesoNet simulations also show a similar fairness between CTCP and standard TCP, but CTCP 
had a slight edge in rtt fairness for the case of medium propagation delay (rtt = 162 ms). Leith, 
Andrew, Quetchenbach, Shorten and Lavi find that link utilizations can be low and 
responsiveness can be sluggish for CTCP. The potential sluggishness of CTCP responsiveness is 
also evident in Figs. 5-14 and 5-15. In Sec. 5.4.8, we report more about fairness, as well as link 
and buffer utilization, among all congestion control mechanisms that we simulated.  

5.4.4 Behavior of FAST Congestion Control Model 
The FAST congestion control algorithm includes �–tuning as an option, which complicates the 
verification of the FAST simulation within MesoNet. Li, Leith and Shorten [67] report results for 
FAST with �–tuning enabled. The designers of FAST indicate [60] that �–tuning is no longer 
used routinely within FAST implementations. Instead, the designers suggest fixing �F to a value 
suitable for expected network conditions. Of course, the designers recognize that fixing �F is not 
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a general solution and list �–tuning as an open issue. In some empirical studies, the designers of 
FAST set �F = 200. We report simulation results for FAST under three different configurations: 
�–tuning enabled (Figs. 5-16 through 5-18), �F = 80 (Figs. 5-19 through 5-21) and �F = 200 (Figs. 
5-22 through 5-24). 
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Figure 5-14. Change in cwnd (packets) vs. Time (0.1 s units) for Two CTCP Flows (rtt = 162 ms) 
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Figure 5-15. Change in cwnd (packets) vs. Time (0.1 s units) for Two CTCP Flows (rtt = 324 ms) 
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Figure 5-16. Change in cwnd (packets) vs. Time (0.1 s units) for Two FAST Flows (�–tuning enabled, rtt = 42 
ms) 
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Figure 5-17. Change in cwnd (packets) vs. Time (0.1 s units) for Two FAST Flows (�–tuning enabled, rtt = 162 
ms) 

 
Li, Leith and Shorten report two main findings regarding FAST with �–tuning enabled. 

First, FAST can converge to fair bandwidth allocation and then diverge to unfair allocation. The 
MesoNet simulation shows this trait in Figs. 5-16 to 5-18. Second, when the network path has 
insufficient buffers to sustain �F/2 queued packets per flow, then cwnd oscillates as FAST floods 
the buffers with too many packets, leading to substantial packet losses. The FAST designers 
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report this same tendency to oscillate when buffers are insufficient. The MesoNet simulation 
shows this oscillatory behavior in Fig. 5-16, for each flow prior to reaching equilibrium, which 
becomes possible once �–tuning reduces �F from its initial value (200) to 20. Fig. 5-22 also 
shows this oscillatory behavior for �F = 200, which prevents either flow from ever achieving 
equilibrium. 
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Figure 5-18. Change in cwnd (packets) vs. Time (0.1 s units) for Two FAST Flows (�–tuning enabled, rtt = 324 
ms) 
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Figure 5-19. Change in cwnd (packets) vs. Time (0.1 s units) for Two FAST Flows (�F = 80, rtt = 42 ms) 
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Li, Leith and Shorten also report that FAST has the fastest convergence time among the 

congestion control mechanisms compared. Of course, they note the issue of divergence must be 
taken into account. For all MesoNet simulations where FAST converges to equilibrium the 
convergence time is very fast. 
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Figure 5-20. Change in cwnd (packets) vs. Time (0.1 s units) for Two FAST Flows (�F = 80, rtt = 162 ms) 

 

0 1000 2000 3000 4000 5000 6000 7000 8000 9000 1 .104
0

1000

2000

3000

4000

5000

6000

7000

8000

9000

Time

C
on

ge
st

io
n 

W
in

do
w

avg. cwnd = 5413 avg. cwnd = 6915

avg. red  cwnd =  3483
avg. blue cwnd =  3432

0 1000 2000 3000 4000 5000 6000 7000 8000 9000 1 .104
0

1000

2000

3000

4000

5000

6000

7000

8000

9000

Time

C
on

ge
st

io
n 

W
in

do
w

avg. cwnd = 5413 avg. cwnd = 6915

avg. red  cwnd =  3483
avg. blue cwnd =  3432

 
Figure 5-21. Change in cwnd (packets) vs. Time (0.1 s units) for Two FAST Flows (�F = 80, rtt = 324 ms) 
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Figure 5-22. Change in cwnd (packets) vs. Time (0.1 s units) for Two FAST Flows (�F = 200, rtt = 42 ms) 
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Figure 5-23. Change in cwnd (packets) vs. Time (0.1 s units) for Two FAST Flows (�F = 200, rtt = 162 ms) 

 
MesoNet simulations achieved closest convergence among cwnd for competing flows 

with �F = 80, which was the value we determined as best for the simulated network conditions. 
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We simulated with �F = 200 to match values used by the designers of FAST in some empirical 
studies. Where buffers were sufficient, MesoNet simulations also achieved close convergence 
with this larger �F. 
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Figure 5-24. Change in cwnd (packets) vs. Time (0.1 s units) for Two FAST Flows (�F = 200, rtt = 324 ms) 

5.4.5 Behavior of HSTCP Congestion Control Model 
The MesoNet simulation results for HSTCP, shown in Figs. 5-25 to 5-27, agree with results from 
the study by Li, Leith and Shorten. HSTCP flows converge to fairness, but this requires 
significant time, which increases with increasing rtt. 

5.4.6 Behavior of H-TCP Congestion Control Model 
Figs. 5-28 to 5-30 display the cwnd evolutions produced by the MesoNet simulation of H-TCP, 
which appear quite similar in shape to those reported in the empirical study. H-TCP flows in the 
simulation appear to converge slightly slower than those reported in the empirical study. 
Convergence times for simulated H-TCP are second fastest among the congestion control 
mechanisms simulated. This agrees with results from the study by Li, Leith and Shorten. 

5.4.7 Behavior of Scalable TCP Congestion Control Model 
MesoNet simulation results for Scalable TCP are shown in Figs. 5-31 to 5-33. For the three rtt 
values simulated, Scalable TCP did not converge to a fair allocation of bandwidth. Scalable TCP 
implements what amounts to a multiplicative-increase, multiplicative-decrease (MIMD) 
algorithm, which previous theoretical analysis [1] shows cannot guarantee convergence. Li, Leith 
and Shorten [67] also found that Scalable TCP either does not converge or converges very 
slowly. Scalable TCP flows did not converge to fair bandwidth allocation over the 10-minute 
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duration of the tests used by Li, Leith and Shorten in their empirical study. This agrees with the 
MesoNet simulation results. 
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Figure 5-25. Change in cwnd (packets) vs. Time (0.1 s units) for Two HSTCP Flows (rtt = 42 ms) 
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Figure 5-26. Change in cwnd (packets) vs. Time (0.1 s units) for Two HSTCP Flows (rtt = 162 ms) 
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Figure 5-27. Change in cwnd (packets) vs. Time (0.1 s units) for Two HSTCP Flows (rtt = 324 ms) 
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Figure 5-28. Change in cwnd (packets) vs. Time (0.1 s units) for Two H-TCP Flows (rtt = 42 ms) 
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Figure 5-29. Change in cwnd (packets) vs. Time (0.1 s units) for Two H-TCP Flows (rtt = 162 ms) 
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Figure 5-30. Change in cwnd (packets) vs. Time (0.1 s units) for Two H-TCP Flows (rtt = 324 ms) 
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Figure 5-31. Change in cwnd (packets) vs. Time (0.1 s units) for Two Scalable TCP Flows (rtt = 42 ms) 
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Figure 5-32. Change in cwnd (packets) vs. Time (0.1 s units) for Two Scalable TCP Flows (rtt = 162 ms) 
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Figure 5-33. Change in cwnd (packets) vs. Time (0.1 s units) for Two Scalable TCP Flows (rtt = 324 ms) 

5.4.8 Summary of Behavior of MesoNet Congestion Control Models 
In this section, we provide a summary of the comparative behavior of MesoNet simulations 
across all seven congestion control mechanisms, including the two extra FAST configurations. 
We consider three aspects of performance: link utilization, buffer utilization and fairness. In 
making our comparisons, we use average cwnd as a surrogate for average throughput. We limit 
our numerical analyses to two (rounded) decimal places, so we do not discuss smaller differences 
in performance among the congestion control mechanisms.  

Given a single path with a set of long-lived flows, an ideal congestion control mechanism 
would yield a situation where each flow has the same average cwnd and the sum of the average 
cwnd over all flows equals the bandwidth-delay product (BDP). In such a situation the link is 
fully utilized, buffers are empty and each flow receives fair (i.e., the same) bandwidth. While 
congestion control mechanisms are unlikely to be ideal, we can compare congestion control 
mechanisms by examining relative link and buffer utilizations and fairness.    

Table 5-9 (first row) displays the capacity (in packets) of the network path modeled by 
the dumbbell topology (Fig. 5-6) as a function of rtt. These figures define the throughput limits 
on a path, which caps the maximum link utilization. Once a path contains a sufficient number of 
packets, then some source will always be able to transmit. As an example, given rtt = 42, the 
path will hold 882 packets in aggregate. Average link utilization can be determined by summing 
the average cwnd over all flows on the path and dividing by the BDP. For example, from Fig. 5-7 
we see two TCP flows with average cwnd of 409 and 395 packets, respectively. The average link 
utilization can then be computed as (409 + 395)/882 = 0.91. 

In cases where the aggregate average cwnd exceeds the BDP, then the excess packets 
must be sitting in buffers on the path. Table 5-9 (second row) shows the buffer sizes (20% of 
BDP) as a function of rtt. We can estimate the buffer utilization on a path by subtracting the 
BDP from the aggregate average cwnd and then dividing the residual by the number of buffers 
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on the path. When the residual is < 0, buffers are empty. For example, Fig. 5-31 (rtt = 42 ms) 
shows that Scalable TCP leads to an aggregate average cwnd of (901 + 102 =) 1003 packets, 
giving a residual of (1003 – 882 =) 121 packets in buffers on the path. Thus, buffer utilization is 
(121/176 =) 0.69. In general, given several congestion control mechanisms that yield 100 % link 
utilization, we might prefer the one that leads to lowest buffer utilization. 

 
 

Table 5-9. Capacity (in Packets) of the Dumbbell Topology with Various Round-Trip Times 
 

  rtt = 42 ms rtt = 162 ms rtt = 324 ms

Bandwidth‐Delay Product (packets)  882 3402 6804

Buffers (packets)  176 680 1360

Buffers + Bandwidth‐Delay Product  1058 4082 8164

 
Among several congestion control mechanisms with high link utilization, we might also 

prefer the one allocating bandwidth most fairly. To measure fairness, we use Jain’s fairness 
index [64] but applied to cwnd rather than throughput. We use the following formulation. 
 
 

(41) 
 
 
 
 

Jain’s fairness index ranges between 0 and 1, with a higher value denoting better fairness. 
Table 5-10 gives link and buffer utilizations for each simulated congestion control 

mechanism as a function of rtt. Even at the shortest rtt (= 42 ms), several of the congestion 
control mechanisms fail to achieve full link utilization. For TCP and CTCP this results from slow 
recovery from packet losses. For FAST with �–tuning low utilization arises from two factors: 
prior to reaching equilibrium �F is too high, which leads to substantial packet losses, and after 
reaching equilibrium �F is too low to fully utilize the link. �F is too high for FAST with �F = 200, 
which leads to packet losses and an oscillating cwnd. 

As rtt increases, all congestion control mechanisms except CTCP and standard TCP 
achieve full link utilization. (CTCP does achieve 100% at rtt = 162 ms, while maintaining an 
average of four buffered packets.) Among the congestion control mechanisms achieving full 
utilization, H-TCP, HSTCP and FAST (�F = 80) lead to relatively low buffer utilizations. BIC 
and Scalable TCP exhibit relatively high buffer utilizations. 

Table 5-11 shows Jain’s fairness index for the simulated congestion control mechanisms 
as a function of rtt. As expected, Scalable TCP shows substantial unfairness. The unfairness of 
BIC and HSTCP increases with rtt. Also as expected, FAST with �–tuning leads to unfairness. 
Several congestion control mechanisms (CTCP, FAST with fixed �F, and H-TCP) yield fairness 
across all values of rtt. 
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Table 5-10. Link and Buffer Utilizations for Simulated Congestion control Mechanisms 
 

  rtt = 42 ms  rtt = 162 ms rtt = 324 ms

  Link Util.  Buffer Util. Link Util. Buffer Util. Link Util.  Buffer Util.

TCP  0.91  0.00 0.89 0.00 0.89  0.00

BIC  1.00  0.45 1.00 0.51 1.00  0.63

CTCP  0.95  0.00 1.00 0.01 0.92  0.00

FAST � Tuning  0.82  0.00 1.00 0.44 1.00  0.21

FAST �F  = 80  1.00  0.90 1.00 0.21 1.00  0.08

FAST �F  = 200  0.92  0.00 1.00 0.53 1.00  0.29

HSTCP  0.99  0.00 1.00 0.17 1.00  0.28

H‐TCP  1.00  0.31 1.00 0.21 1.00  0.22

Scalable TCP  1.00  0.69 1.00 0.66 1.00  0.66

 
 
Table 5-11. Bandwidth Fairness (Jain’s Index) for Simulated Congestion Control Mechanisms 

 
  rtt = 42 ms rtt = 162 ms rtt = 324 ms 

TCP  1.00 0.96 1.00 

BIC  1.00 0.96 0.77 

CTCP  1.00 1.00 1.00 

FAST � Tuning  0.97 0.88 0.89 

FAST �F  = 80  1.00 1.00 1.00 

FAST �F  = 200  1.00 1.00 1.00 

HSTCP  1.00 0.95 0.85 

H‐TCP  1.00 1.00 0.99 

Scalable TCP  0.61 0.52 0.51 

 
As evident from our simulations, several of the proposed congestion control mechanisms 

approach ideal performance under the limited cases reported here. H-TCP, FAST and HSTCP 
give full link utilizations. H-TCP and HSTCP also tend to limit buffer utilization at full link 
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utilization. FAST limits buffer utilization under some circumstances. H-TCP and FAST with 
fixed �F also show good fairness across values of rtt. How will the various congestion control 
mechanisms compare in a larger topology with varying network conditions? We explore this 
question in the next four chapters (6-9). 

 



Chapter 6 – Comparing Congestion Control  
                    Regimes in a Large, Fast Network  
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6 Comparing Congestion Control Regimes in a Large,  
   Fast Network 
We continue our investigation of congestion control mechanisms by comparing relative 
behaviors given a large (up to 278 x 103 sources), fast (backbone routers operating up to 
192 Gbps), simulated network with Web traffic, a few long-lived flows and periods of 
heavy file transfers among selected sites. We adopt an unrealistic assumption that all 
sources within our simulated network use the same congestion control regime.1 We 
simulate our network under a range of conditions, then change the congestion control 
regime and repeat the simulation for the same conditions. In this way, we can determine 
how each congestion control regime responds to various conditions and then identify any 
differences. Various data analyses given later in this chapter refer to congestion control 
regimes by the identifiers shown in Table 6-1. The details of each regime were explained 
previously in Chapter 5. 

 
Table 6-1. Congestion Control Mechanisms Compared 

Identifier Label Name of Congestion Avoidance Algorithm
1 BIC Binary Increase Congestion Control
2 CTCP Compound Transmission Control Protocol

3 FAST Fast Active-Queue Management Scalable 
Transmission Control Protocol

4 HSTCP High-Speed Transmission Control Protocol

5 HTCP Hamilton Transmission Control Protocol
6 Scalable Scalable Transmission Control Protocol

7 TCP Transmission Control Protocol (Reno)
 

 
We begin by describing (in Sec. 6.1) our experiment design, including the 

topology simulated, the input factors varied (and fixed), the conditions adopted, the 
temporal scenario and measured responses. Subsequently (in Sec. 6.2), we describe how 
we executed our experiments and collected data. In Sec. 6.3, we discuss our approach to 
data analysis. We display our most salient results in Sec. 6.4 and then (in Sec. 6.5) report 
our main findings before concluding in Sec. 6.6. 

6.1 Experiment Design 
The experiment was conducted within a single topology, illustrated in Fig. 6-1. This four-
tier topology was explained and justified in Chapter 3. The top tier is formed by 11 
backbone routers and 14 pairs of long-distance links. The second tier consists of 22 POP 
routers, while the third tier comprises 139 access routers. Access routers come in three 
varieties: normal (gray), fast (green) and directly connected (red). Fast and directly 
connected access routers connect sites to the topology at higher speeds than normal 
access routers. Directly connected access routers bypass POP routers and connect directly 
to the backbone. The fourth tier, not shown in Fig. 6-1, consists of various sources and 
receivers distributed throughout the topology and located under access routers. 
                                                 
1 We change this assumption in Chapters 8 and 9. 
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Figure 6-1. Topology Adopted for Experiments 
 
One of the reasons for adopting such a topology is to permit flows to transit paths 

with a variety of characteristics, so congestion control mechanisms can be compared with 
respect to path class as defined in Table 6-2, where each path class consists of one or 
more flow type. A flow type is defined by the type of the access routers under which the 
source and receiver are located. The flow types in Table 6-2 are color coded to match the 
access routers depicted in Fig. 6-1. Since a flow cannot expect better performance than 
access routers provide, a flow is placed into the class dictated by its slowest access router. 
Thus, the “Very Fast” path class includes only DD flows, while DF flows are allocated to 
the “Fast” path class and DN flows are allocated to the “Typical” path class and so on.  

 
Table 6-2. Definition of Three Path Classes (note that the correspondent of a source is a receiver and 
the correspondent of a receiver is a source) 
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6.1.1 Simulation Parameters 
Within the framework provided by the topology given in Fig. 6-1, a wide range of 
network conditions may be simulated by specifying values for various parameters, or 
input factors, as discussed previously in Chapters 3 and 4. Guided by our sensitivity 
analysis, we selected six parameters, shown in Table 6-3, which we vary to establish the 
conditions under which we compare the congestion control mechanisms listed in Table 6-
1. These six parameters are called robustness factors because any conclusions we draw 
hold (i.e., are robust) only over our simulated combinations of these parameters. Other 
simulation parameters are fixed across all experiments, as we document below. 
 

Table 6-3. Robustness Factors Selected for Comparing Congestion Control Mechanisms 

Identifier Definition PLUS (+1) Value Minus (-1) Value
x1 Network Speed 8000 packets/ms 4000 packets/ms
x2 Think Time 5000 ms 2500 ms
x3 Source Distribution Uniform (.33/.33/.33) Skewed (.1/.6/.3)
x4 Propagation Delay 2 1

x5 File Size 100 packets 50 packets
x6 Buffer Sizing Algorithm RTTxCapacity RTTxCapacity/SQRT(N)

 
In Chapter 4, seven of the 11 parameters considered exhibited most significant 

influence. We adopted six of those seven as robustness factors for our current 
experiment. We omitted the multiplier on number of sources and receivers because we 
will consider a smaller network separately in Chapter 7. For each factor, we selected two 
settings, so we use a two-level experiment design. Network speed (x1) defines the 
fundamental capacity of backbone routers in packets per ms (p/ms). Recall, however, that 
this fundamental capacity is multiplied by BBspeedup to determine the full capacity of 
each backbone router. The speeds of other routers within the topology are derived from 
the value of x1 using various transformations, as shown in Table 6-4, which lists fixed 
parameters associated with the network model. 

 
Table 6-4. Fixed Network Parameters 

 
 
 
 
 
 
 
 
 
 
 

Sources and receivers may operate at one of two speeds: Hbase (8 p/ms) or Hfast 
(80 p/ms). This simulates the situation in real networks, where some computers connect 
at 100 Mbps, while others connect at 1 Gbps. For this experiment, we permit 40 % of 

ValueDefinitionParameter

1Factor by which buffer size will be multipliedQfactor

0.4Probability that a source is fastP(FastHost)
80Speed of fast sources (960 Mbps)Hfast
8Speed of basic sources (96 Mbps)Hbase

2Fast access router speed = x1/R2/R3xBfastBfast
10Directly connected access router speed = x1/R2/R3xBdirectBdirect
10Access routers speed = x1/R2/R3R3
4POP routers speed = x1/R2R2
2Backbone router speed = x1xBBspeedupBBspeedup

ValueDefinitionParameter

1Factor by which buffer size will be multipliedQfactor

0.4Probability that a source is fastP(FastHost)
80Speed of fast sources (960 Mbps)Hfast
8Speed of basic sources (96 Mbps)Hbase

2Fast access router speed = x1/R2/R3xBfastBfast
10Directly connected access router speed = x1/R2/R3xBdirectBdirect
10Access routers speed = x1/R2/R3R3
4POP routers speed = x1/R2R2
2Backbone router speed = x1xBBspeedupBBspeedup
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sources (and receivers) to connect at the fast speed, while remaining sources (and 
receivers) connect at the slower speed. 

Factors x4 (propagation delay) and x6 (buffer-sizing algorithm) also alter 
characteristics of the network. When x4 = 2, the fundamental propagation delays encoded 
in the topology are doubled. Factor x6 selects the algorithm used to size router buffers. 
Setting the Qfactor = 1 ensures that the results of the chosen algorithm are used without 
further scaling of buffer sizes. 

The factors controlling network characteristics may be translated into domain-
specific values to give a sense of the nature of the network being simulated. For example, 
the speed of a backbone router when x1 = 8000 p/ms may be translated as 8000 p/ms x 2 
x 1000 sec/ms x 12000 bits/packet = 192 Gbps. Table 6-5 shows the simulated speeds for 
all types of routers given the two values for factor x1. Similar reasoning indicates that 
fast sources operate at 960 Mbps and basic sources operate at 96 Mbps. 

 
Table 6-5. Domain View of Router Speeds 

 
 

 
 
 
 
 
 
 
 
Table 6-6 illustrates the range of propagation delays being used within the 

experiment. Setting x6 = 1 (Minus) simulates a topology with an average one-way path 
propagation delay comparable to a network in the continental United States that has some 
links to Europe. Setting x6 = 2 (PLUS) simulates a topology that could span from East 
Asia to Western Europe, while transiting across North America. Since buffer sizes are 
computed based on router speed and propagation delay, Table 6-7 gives the range of 
buffer sizes that are simulated in our experiments. 

 
Table 6-6. Path Propagation Delays Simulated 

 
 
 
 
 
 

Table 6-7. Buffer Sizes Simulated 

Router
PLUS (+1) Minus (-1)

Min Avg Max Min Avg Max
Backbone 325.528 x 103 732.437x 103 130.211x 104 1.153x 103 2.606x 103 4.654 x 103

POP 40.691x 103 91.555x 103 162.764x 103 221 505 908

Access 6.47 x 103 14.557x 103 25.879 x 103 91 207 369
 

100416Minus (-1)
2008112PLUS (+1)

MaxAvgMin

100416Minus (-1)
2008112PLUS (+1)

MaxAvgMin

12 Gbps24 GbpsDirectly Connected Access

2.4 Gbps4.8 GbpsFast Access
1.2 Gbps2.4 GbpsNormal Access
12 Gbps24 GbpsPOP
96 Gbps192 GbpsBackbone

Minus (-1)PLUS (+1)Router

12 Gbps24 GbpsDirectly Connected Access

2.4 Gbps4.8 GbpsFast Access
1.2 Gbps2.4 GbpsNormal Access
12 Gbps24 GbpsPOP
96 Gbps192 GbpsBackbone

Minus (-1)PLUS (+1)Router
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Factor x2, think time, represents the average (exponentially distributed) interval 
(in ms) before a source initiates a new flow after completing a previous flow. A longer 
think time leads to lower demand on the network. Factor x3 controls the distribution of 
sources throughout the topology. The uniform distribution tends to spread congestion 
more evenly across the topology, while the skewed distribution tends to concentrate 
congestion more toward fast access routers. The number of sources in the topology is 
determined by a combination of factor x3 and two fixed factors, Bsources and U, shown 
in Table 6-8. The net effect on the maximum number of simulated sources is given in 
Table 6-9. Table 6-8 also gives the fixed distribution of receivers, which creates a bias 
toward placing receivers under typical access routers. Further, Table 6-8 records the 
initial slow-start threshold – fixed to an arbitrarily large number of packets for the current 
simulation experiment. 
 

Table 6-8. Fixed Parameters Related to Sources and Receivers 
Parameter Definition Value

Bsources Basic number of sources per access router 1000

U Avg. sources per access router = Bsources x U 2

P(Nr) Probability receiver under normal access router 0.6

P(Nrf) Probability receiver under fast access router 0.2

P(Nrd) Probability receiver under directly connected access router 0.2

sstINT Initial slow-start threshold in packets 231/2
 

 
Table 6-9. Number of Simulated Sources 

PLUS (+1) Minus (-1)
278 x 103 174.6 x 103

 
 

Several fixed parameters, shown in Table 6-10, control the operation of the 
simulation. The basic simulation time step is set to 1 ms and measurements are taken 5 
times/sec, i.e., measurement interval (mi) duration is 200 ms. Total simulated time is 
(7500 mi/5 mi/s) = 1500 s, which amounts to (1500 s/60 s/m =) 25 minutes simulated for 
each condition. In order to reduce memory consumption, measures are buffered for only 
(1500 mi/5 mi/s/60 s/m =) 5 minutes before being written to disk. Table 6-10 also shows 
the fixed random number seed used for each run. 

 
Table 6-10. Fixed Simulation Control Parameters 

Parameter Definition Value

M Number of Time Steps per Measurement Interval 200
MI Number of Measurement Intervals Simulated 7500

MB Number of Measurement Intervals Buffered 1500

Rnseed Random Number Seed 200000
TSD Duration of Each Time Step in seconds 0.001

 
 

For each condition, the 25 simulated minutes are orchestrated into the same 
scenario, shown in Fig. 6-2. Each time period consists of simulated traffic with specific 
properties, as defined below. The first 10 minutes, used primarily as a warm-up period, 
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consists of simulated Web traffic. The subsequent 15 minutes are divided into three, five-
minute periods. At the beginning of the first time period (TP1), ongoing Web traffic is 
augmented by three long-lived flows, which continue for the duration of the simulation. 
All flows initiated on very fast paths (i.e., DD flows) during TP2 carry jumbo file 
transfers. At the onset of TP3, all newly initiated flows return to a pattern of simulated 
Web traffic; any residual backlog of ongoing, jumbo file transfers started during TP2 will 
continue into TP3 until they complete or the simulation ends. As explained below in Sec. 
6.1.3, separate measurements are made in each time period, and selected measurements 
are totaled over the entire 25 minutes of the simulated scenario. 

 
 
 
 
 
 
 
 
 
 

Figure 6-2. Scenario Adopted for Each Simulated Condition 
 
 

Table 6-11. Fixed Parameters Specifying Simulated User Traffic 
 
 
 
 
 
 
 
 
 
 

 
Table 6-11 specifies the primary fixed parameters controlling generation of user 

traffic over the 25-minute scenario. Table 6-12 gives fixed parameters for the three long-
lived flows. Fundamental file sizes within the simulation are chosen from a Pareto 
distribution with a mean given by factor x5, which equals either 50 or 100 packets 
depending on the level of the factor. The shape parameter for the Pareto distribution is 
fixed at 1.5. Factor x5 represents Web pages with an average size of (50 packets x 1500 
bytes/packet =) 75 Kbytes or (100 packets x 1500 bytes/packet =) 150 Kbytes. Recall, 
however, that MesoNet packets have no size, so file sizes are specified in packets. With a 
fixed probability of 0.01, i.e., P(F), a document will be downloaded from a Web site. 
Document sizes are determined by multiplying a file size selected for a Web page by a 
fixed factor of 10, i.e., Fx, so downloaded documents average either 500 packets (750 
Kbytes) or 1000 packets (1.5 Mbytes), depending on the value of x5. This combination of 
Web pages and documents makes up the pattern of user traffic labeled as normal Web 
traffic. 

ValueDefinitionParameter

100Jumbo file size = file (or document) size x JxJx

0.8Jumbo file transfers cease after Joff x 25 minutesJoff

0.6Jumbo file transfers begin after Jon x 25 minutesJon

0.01Probability a file is a documentP(F)

10Document size = x5 x FxFx

1.5Shape parameter for Pareto distribution of file sizes

ValueDefinitionParameter

100Jumbo file size = file (or document) size x JxJx

0.8Jumbo file transfers cease after Joff x 25 minutesJoff

0.6Jumbo file transfers begin after Jon x 25 minutesJon

0.01Probability a file is a documentP(F)

10Document size = x5 x FxFx

1.5Shape parameter for Pareto distribution of file sizes
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Jumbo file transfers, initiated on all DD flows started during TP2, are controlled 
by three parameters. Jon determines the proportion of elapsed simulation time before 
jumbo transfers begin and Joff defines the proportion after which initiation of jumbo 
transfers cease. The size of a jumbo transfer is determined by multiplying the file size 
chosen for normal Web traffic by a factor of 100 (Jx). This means that jumbo file 
transfers will average ((50 x .99 + 500 x .01) x 100 =) 251 packets (376.5 Kbytes) or 
((100 x .99 + 1000 x .01) x 100 =) 1089 packets (1.63 Mbytes), depending upon the 
setting of factor x5. Note that all transfers – whether Web pages, documents or jumbo 
files – are subject to the heavy-tailed property of the Pareto distribution, so transfers may 
be much larger than the average size. 
 

Table 6-12. Fixed Parameters Specifying Long-Lived Flows 
 
 
 
 
 
 
 

Table 6-12 gives the details for the three long-lived flows that commence in TP1 
and continue throughout the remainder of the simulated scenario. Each long-lived flow 
transmits continuously at whatever rate can be achieved over a very fast (DD) path. The 
maximum transmission rate for long-lived flows is 80 x 103 pps (i.e., long-lived sources 
and receivers operate at the rate defined by Hfast). Flow L1 traverses the length of the 
topology. Flow L3 traverses the width of the topology. Flow L2 traverses the middle of 
the topology. These flows serve several purposes. First, the flows can be individually 
tracked and measured in detail. This reveals the temporal evolution of the flows, as well 
as how the flows are influenced by other flows. Second, since the flows transit different 
distances across the network, measurements can be taken to determine the lag time before 
each flow reaches its maximum transmission rate. Third, the flows transit directly-
connected access routers, so in TP2 the influence of jumbo file transfers may be 
observed.  

6.1.2 Conditions Simulated 
For the six factors enumerated in Table 6-2, a two-level experiment design would require 
simulating (26 =) 64 conditions. Given the size and speed of the network we wished to 
simulate, we decided we could afford examining only 32 conditions. For this reason, we 
adopted a 26-1 orthogonal fractional factorial (OFF) design. To generate the subset of 
conditions required by the design, we selected values from Table 6-2 as specified in 
Table 6-13, a template where each row defines a condition as a combination of the six 
input factors. The resulting experiment design (in Table 6-14) provides a good balance of 
individual factors as well as orthogonal combinations of factors. The 26-1 design is a 
resolution VI design, which means that main effects will be confounded (explained in 
Sec. 2.5.1) only with five-factor interactions. In addition, two-factor interactions will be 
confounded only with four-factor interactions. Our previous sensitivity analysis revealed 
that our model is driven primarily by main effects; even two-factor interactions were not 
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very evident. For these reasons, we can obtain all necessary information by simulating 
only 32 of the 64 conditions defined by our input factors. 
 

Table 6-13. Template Specifying a 26-1 Orthogonal Fractional Factorial Design 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

6.1.3 Responses Measured 
The remainder of the experiment design addresses the system responses measured for 
each simulated condition. At the top level, we measured a collection of 45 instantaneous 
responses averaged over each time period and we aggregated 28 measures across all 25 
minutes of the simulated scenario. We designate the instantaneous responses as y1 
through y45 and we designate the aggregate responses as T.y1 through T.y28. We begin 
by defining the instantaneous average measures, which may be divided into three 
categories: (1) measures of macroscopic network behavior, (2) measures of user 
experience and (3) measures of buffer usage in designated access routers. 
 
6.1.3.1 Measures of Macroscopic Behavior. We selected 12 responses (see Table 6-15) to 
represent macroscopic behavior in the simulated network. Each response is measured 
during each measurement interval, which forms a time series. The measured values are 
then averaged over the relevant time period. Five responses (highlighted in yellow) 
characterize the status of non-idle flows. Idle flows are those flows waiting within a think 
period. Non-idle flows are either connecting (y42) or active (y1). Active flows may be 
operating within initial slow start (y43) or within the normal TCP congestion control 

Factor-> X1 X2 X3 X4 X5 X6
Condition -- -- -- -- -- --

1 -1 -1 -1 -1 -1 -1
2 +1 -1 -1 -1 -1 +1
3 -1 +1 -1 -1 -1 +1
4 +1 +1 -1 -1 -1 -1
5 -1 -1 +1 -1 -1 +1
6 +1 -1 +1 -1 -1 -1
7 -1 +1 +1 -1 -1 -1
8 +1 +1 +1 -1 -1 +1
9 -1 -1 -1 +1 -1 +1

10 +1 -1 -1 +1 -1 -1
11 -1 +1 -1 +1 -1 -1
12 +1 +1 -1 +1 -1 +1
13 -1 -1 +1 +1 -1 -1
14 +1 -1 +1 +1 -1 +1
15 -1 +1 +1 +1 -1 +1
16 +1 +1 +1 +1 -1 -1
17 -1 -1 -1 -1 +1 +1
18 +1 -1 -1 -1 +1 -1
19 -1 +1 -1 -1 +1 -1
20 +1 +1 -1 -1 +1 +1
21 -1 -1 +1 -1 +1 -1
22 +1 -1 +1 -1 +1 +1
23 -1 +1 +1 -1 +1 +1
24 +1 +1 +1 -1 +1 -1
25 -1 -1 -1 +1 +1 -1
26 +1 -1 -1 +1 +1 +1
27 -1 +1 -1 +1 +1 +1
28 +1 +1 -1 +1 +1 -1
29 -1 -1 +1 +1 +1 +1
30 +1 -1 +1 +1 +1 -1
31 -1 +1 +1 +1 +1 -1
32 +1 +1 +1 +1 +1 +1
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regime (y44) or an alternate regime (y45). The precise nature of the alternate congestion 
control regime depends upon which congestion avoidance algorithm (recall Table 6-1) is 
adopted for a particular set of runs. As one would expect, y45 will always be zero when 
normal TCP Reno congestion avoidance is in use and y44 will be zero for FAST. 
 

Table 6-14. Instantiated Robustness Conditions for 26-1 Experiment Design 

 
 

Table 6-15. Responses Characterizing Macroscopic Behavior 
 
 
 
 
 
 
 
 
 
 
 
       

Two responses (highlighted in blue) represent network-wide throughput, either as 
packets output (y3) per measurement interval or as flows completed (y5) per 
measurement interval. Three responses (highlighted in orange) summarize network-wide 
congestion. One reflection of congestion is the average retransmission rate (y6). Two 

Average congestion-window increases per active flowy2

Average flows completed per measurement intervaly5

Average number of active (i.e., connected) flowsy1
Average number of active flows in initial slow starty43
Average number of active flows in normal congestion-control modey44
Average number of active flows in alternate congestion-control modey45

Average congestion window per active flowy4

Average round-trip queuing delayy8
Average smoothed round-trip time (SRTT)y7
Average retransmission ratey6

Average packets output per measurement intervaly3

Average number of connecting flowsy42
DefinitionResponse

Average congestion-window increases per active flowy2

Average flows completed per measurement intervaly5

Average number of active (i.e., connected) flowsy1
Average number of active flows in initial slow starty43
Average number of active flows in normal congestion-control modey44
Average number of active flows in alternate congestion-control modey45

Average congestion window per active flowy4

Average round-trip queuing delayy8
Average smoothed round-trip time (SRTT)y7
Average retransmission ratey6

Average packets output per measurement intervaly3

Average number of connecting flowsy42
DefinitionResponse
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other responses reflect congestion-induced delay: average SRTT (y7), from which the 
average round-trip propagation delay may be subtracted to reveal the average round-trip 
queuing delay (y8). 

The two remaining responses (in green) relate to the congestion window for an 
average active flow. One (y2) measures the average number of window increases per 
flow in a measurement interval, while the other (y4) measures the average congestion 
window size (in packets) per flow. These measures reflect congestion but can also reflect 
details associated with the operation of specific congestion control algorithms. 

 
6.1.3.2 Measures of User Experience. We use goodput as a fundamental measure of user 
experience. We define goodput as the number of packets per second (pps) received at the 
user level on a given flow. Thus, goodput excludes retransmissions. Since various flows 
transit the topology on paths that possess different characteristics, we measure user 
experience for flows on each path class (recall Table 6-2). Recognizing that goodput can 
be influenced by the number of flows sharing the same path, we measure the relevant 
characteristics. For example, Table 6-16 shows how we characterize user experience for 
flows on very fast (DD) paths. We measure not only average goodput (y9) but also the 
average number of active flows (y10) and the average number of completed flows (y11). 
We assume that completed flows finish at uniformly distributed times in a given 
measurement interval. We then compute (y12) the average aggregate number of pps 
delivered on all DD flows. This allows us to investigate average goodput in a nuanced 
fashion. We make similar measurements for (DF and FF) flows transiting fast paths 
(Table 6-17) and for those (DN, FN, NN) flows transiting typical paths (Table 6-18).  
 

Table 6-16. Responses Characterizing User Experience on Very Fast Paths 
 
 
 
 
 
 
 
 

Table 6-17. Responses Characterizing User Experience on Fast Paths 
 
 
 
 
 
 
 
 
 
 
 
 

 

Average aggregate number of DD packets delivered per second = 
y9x(y10+(y11/2))y12

Average number of DD flows completed per measurement intervaly11

Average number of active DD flowsy10

Average goodput (pps) for DD flowsy9

DefinitionResponse

Average aggregate number of DD packets delivered per second = 
y9x(y10+(y11/2))y12

Average number of DD flows completed per measurement intervaly11

Average number of active DD flowsy10

Average goodput (pps) for DD flowsy9

DefinitionResponse

Average goodput (pps) for FF flowsy21

Average number of active FF flowsy22
Average number of FF flows completed per measurement intervaly23
Average aggregate number of FF packets delivered per second = 
y21x(y22+(y23/2))y24

Average aggregate number of DF packets delivered per second = 
y13x(y14+(y15/2))y16

Average number of DF flows completed per measurement intervaly15

Average number of active DF flowsy14

Average goodput (pps) for DF flowsy13

DefinitionResponse

Average goodput (pps) for FF flowsy21

Average number of active FF flowsy22
Average number of FF flows completed per measurement intervaly23
Average aggregate number of FF packets delivered per second = 
y21x(y22+(y23/2))y24

Average aggregate number of DF packets delivered per second = 
y13x(y14+(y15/2))y16

Average number of DF flows completed per measurement intervaly15

Average number of active DF flowsy14

Average goodput (pps) for DF flowsy13

DefinitionResponse
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Table 6-18. Responses Characterizing User Experience on Typical Paths 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
We also measure user experience individually for the three long-lived flows 

defined in the scenario. For these flows, we measure only average goodput, as shown in 
Table 6-19. 
 

Table 6-19. Responses Characterizing User Experience on Long-Lived Flows 
 
 
 
 
 
 

Table 6-20. Responses Charactering Buffer Usage in Directly Connected Access Routers 
 
 
 
 
 
 
 
 
  
6.1.3.3 Measures of Buffer Usage. The construction of the simulated topology ensures 
that most (if not all) significant buffer usage occurs at the access routers, most of which 
have much lower speeds than the POP and backbone routers. The topology used in the 
simulation consists of 139 access routers. We chose to analyze buffer usage only for the 
six directly connected access routers, as shown in Table 6-20. For each router, we 
measure average buffer saturation, defined as the ratio of buffers in use to buffers 
available. 

Average goodput (pps) for the short-distance flow (L3)y35

Average goodput (pps) for the medium-distance flow (L2)y34

Average goodput (pps) for the long-distance flow (L1)y33

DefinitionResponse

Average goodput (pps) for the short-distance flow (L3)y35

Average goodput (pps) for the medium-distance flow (L2)y34

Average goodput (pps) for the long-distance flow (L1)y33

DefinitionResponse

Average buffer saturation for router E0ay38
Average buffer saturation for router F0ay39
Average buffer saturation for router I0ay40
Average buffer saturation for router K0ay41

Average buffer saturation for router C0ay37

Average buffer saturation for router B0ay36

DefinitionResponse

Average buffer saturation for router E0ay38
Average buffer saturation for router F0ay39
Average buffer saturation for router I0ay40
Average buffer saturation for router K0ay41

Average buffer saturation for router C0ay37

Average buffer saturation for router B0ay36

DefinitionResponse

Average goodput (pps) for NN flowsy29

Average number of active NN flowsy30

Average number of NN flows completed per measurement intervaly31
Average aggregate number of NN packets delivered per second = 
y21x(y22+(y23/2))y32

Average aggregate number of FN packets delivered per second = 
y25x(y26+(y27/2))y28

Average goodput (pps) for FN flowsy25

Average number of active FN flowsy26
Average number of FN flows completed per measurement intervaly27

Average aggregate number of DN packets delivered per second = 
y17x(y18+(y19/2))y20

Average number of DN flows completed per measurement intervaly19

Average number of active DN flowsy18

Average goodput (pps) for DN flowsy17

DefinitionResponse

Average goodput (pps) for NN flowsy29

Average number of active NN flowsy30

Average number of NN flows completed per measurement intervaly31
Average aggregate number of NN packets delivered per second = 
y21x(y22+(y23/2))y32

Average aggregate number of FN packets delivered per second = 
y25x(y26+(y27/2))y28

Average goodput (pps) for FN flowsy25

Average number of active FN flowsy26
Average number of FN flows completed per measurement intervaly27

Average aggregate number of DN packets delivered per second = 
y17x(y18+(y19/2))y20

Average number of DN flows completed per measurement intervaly19

Average number of active DN flowsy18

Average goodput (pps) for DN flowsy17

DefinitionResponse
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6.1.3.4 Aggregate Measures. We measure 28 responses over the course of the entire 25-
minute scenario, including the warm-up period. These responses fall into three broad 
categories: (1) measures of macroscopic behavior, (2) measures of user experience and 
(3) measures of flow distribution among backbone routers. We discuss each of these in 
turn. 

As shown in Table 6-21, we aggregate the number of data packets injected (T.y1) 
into the network as well as the number of packets delivered (T.y2) over the entire 25 
minutes simulated. We provide similar measures for flows connected (T.y3) and 
completed (T.y4). For connected flows, we also measure (T.y5) the average number of 
SYN packets sent per flow. This provides some measure of the degree to which 
congestion impedes the ability of flows to connect. 
 

Table 6-21. Aggregate Responses Characterizing Macroscopic Behavior 
 
 
 
 
 
 
 
  
 
 

We characterize user experience for completed flows in each path class using two 
measures: (1) aggregate number of flows completed and (2) average per-flow goodput on 
the completed flows. We consider completed flows in aggregate for two reasons. First, 
we can include flows across the entire 25 simulated minutes. Second, some flows may 
have trouble completing, so we can view goodput for completed flows as a best case 
measure of user experience. Below, we identify the measures for each path class: very 
fast paths (Table 6-22), fast paths (Table 6-23) and typical paths (Table 6-24). 
 

Table 6-22. Responses Characterizing User Experience for Completed Flows on Very Fast Paths 
 
 
 
 
 
 
 

Table 6-23. Responses Characterizing User Experience for Completed Flows on Fast Paths 
 
 
 
 
 
 
 

Aggregate flows connectedT.y3
Aggregate flows completedT.y4
Average SYNs sent per flowT.y5

Aggregate packets outputT.y2

Aggregate packets inputT.y1

DefinitionResponse

Aggregate flows connectedT.y3
Aggregate flows completedT.y4
Average SYNs sent per flowT.y5

Aggregate packets outputT.y2

Aggregate packets inputT.y1

DefinitionResponse

Average goodput (pps) for completed DD flowsT.y7

Aggregate number of DD flows completedT.y6

DefinitionResponse

Average goodput (pps) for completed DD flowsT.y7

Aggregate number of DD flows completedT.y6

DefinitionResponse

Average goodput (pps) for completed DF flowsT.y9

Aggregate number of FF flows completedT.y12

Average goodput (pps) for completed FF flowsT.y13

Aggregate number of DF flows completedT.y8

DefinitionResponse

Average goodput (pps) for completed DF flowsT.y9

Aggregate number of FF flows completedT.y12

Average goodput (pps) for completed FF flowsT.y13

Aggregate number of DF flows completedT.y8

DefinitionResponse
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Table 6-24. Responses Characterizing User Experience for Completed Flows on Typical Paths 
 
 
 
 
 
 
 
 
 
 
 

The final set of responses measure the distribution of flows transiting the 11 
backbone routers. As shown in Table 6-25, we simply total the number of completed 
flows that transit each backbone router during the 25 simulated minutes. Measuring these 
responses enables us to detect whether any of the congestion control regimes shift the 
workload experienced by backbone routers. 
  

Table 6-25. Responses Characterizing Distribution of Flows among Backbone Routers 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

6.2 Experiment Execution and Data Collection 
In this section, we shift gears to discuss the mechanics of executing the experiments and 
collecting the data. We describe the resources available for conducting the simulations 
and also the resource requirements. In addition, we define the format in which we 
collected data to capture our measured responses. 

6.2.1 Experiment Execution 
We simulated seven congestion control mechanisms (recall Table 6-1) under the same 32 
conditions (recall Table 6-14), requiring (7 x 32 =) 224 separate simulation runs. We had 
six available compute servers with the characteristics defined in Table 6-26. Each 
compute server provided 8 processors, so we had a total of (6 x 8 =) 48 processors on 
which we could execute simulations in parallel. Each of the compute servers was 

Average goodput (pps) for completed FN flowsT.y15

Aggregate number of NN flows completedT.y16

Average goodput (pps) for completed DN flowsT.y11

Aggregate number of FN flows completedT.y14

Average goodput (pps) for completed NN flowsT.y17

Aggregate number of DN flows completedT.y10

DefinitionResponse

Average goodput (pps) for completed FN flowsT.y15

Aggregate number of NN flows completedT.y16

Average goodput (pps) for completed DN flowsT.y11

Aggregate number of FN flows completedT.y14

Average goodput (pps) for completed NN flowsT.y17

Aggregate number of DN flows completedT.y10

DefinitionResponse

Aggregate completed flows transiting backbone router FT.y23

Aggregate completed flows transiting backbone router GT.y24

Aggregate completed flows transiting backbone router HT.y25

Aggregate completed flows transiting backbone router IT.y26

Aggregate completed flows transiting backbone router JT.y27

Aggregate completed flows transiting backbone router DT.y21

Aggregate completed flows transiting backbone router ET.y22

Aggregate completed flows transiting backbone router BT.y19

Aggregate completed flows transiting backbone router CT.y20

Aggregate completed flows transiting backbone router KT.y28

Aggregate completed flows transiting backbone router AT.y18

DefinitionResponse

Aggregate completed flows transiting backbone router FT.y23

Aggregate completed flows transiting backbone router GT.y24

Aggregate completed flows transiting backbone router HT.y25

Aggregate completed flows transiting backbone router IT.y26

Aggregate completed flows transiting backbone router JT.y27

Aggregate completed flows transiting backbone router DT.y21

Aggregate completed flows transiting backbone router ET.y22

Aggregate completed flows transiting backbone router BT.y19

Aggregate completed flows transiting backbone router CT.y20

Aggregate completed flows transiting backbone router KT.y28

Aggregate completed flows transiting backbone router AT.y18

DefinitionResponse
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provisioned with 32 Gbytes of memory. Two of the servers (ws9 and ws10) had four 
dual-core AMD Opertron™ 8218 processors operating at 2.6 GHz, while the remaining 
servers (ws11-ws4) had four dual-core AMD Opertron™ 8222 SE processors operating at 
3 GHz. All of the compute servers executed under the control of the 64-bit version of 
Microsoft Windows2 Server 2003™.  
 

Table 6-26. Characteristics of Compute Servers Used to Execute the Simulations 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Given 48 processors (also referred to as central-processing units, or CPUs), we 
were able to run one congestion control mechanism simultaneously against all 32 
conditions and we could run another congestion control mechanism against half (16) of 
the conditions. As shown in Table 6-27, we ran simulations for five congestion control 
mechanisms (BIC, CTCP, FAST, HTCP and TCP) on the four faster compute servers 
(ws11-ws14) and we ran simulations for the other two (HSTCP and Scalable TCP) on the 
slower compute servers (ws9-ws10). 
 
Table 6-27. Processing Requirements for Simulations Mapped to Specific Compute Servers (Units 
are Processor Days) 
 
 
 
 
 
 
 
 
 
 
 

Each simulated condition required about 1.25 Gbytes of memory, so running 8 
simulations in parallel on one compute server required about 10 Gbytes, or about 1/3 of 

                                                 
2 Our simulation model, MesoNet, is written in the SLX simulation language. The SLX compiler and run-
time require the Microsoft Windows™ operating system. 
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the available memory. On the other hand, as indicated in Table 6-27, running all 224 
simulations required substantial processing resources: (472.5 + 219.1 =) 691.6 processor 
(CPU) days. Running 48 simulations in parallel, we could potentially have finished the 
experiment in (691.6 processor days/48 processors =) 14.4 days. Achieving this goal 
required some astute management of the runs. For example, launching 32 runs for a given 
congestion control mechanism and then waiting for all runs to complete prior to starting 
the next set would advance progress at a pace congruent with the maximum processor 
time required among the 32 simulations run for each congestion control mechanism. As 
shown in the last row of Table 6-27, this naïve approach would have completed the 
simulations in 28.42 days, which is the time required to run the five congestion control 
mechanisms on ws11-ws14. Using the same naïve approach, the two mechanisms 
simulated on ws9 and ws10 could complete (28.42 - 26.37 =) two days sooner. Note that 
since only 16 of the 32 conditions could be run in parallel on ws9 and ws10 the processor 
time required must be doubled, e.g., (6.57 + 6.61) x 2 = 26.37 days. 

To complete the simulations in about two weeks one needs to achieve a rate of 
progress close to the average processor time per run, shown in the second row of Table 6-
27. This can be done by first estimating the relative run time required by each simulated 
condition, and then sorting the conditions by estimated run time into two lists: (1) 
shortest-to-longest and (2) longest-to-shortest. The two lists define a mapping function 
for scheduling simulation runs. Whenever a simulation finishes for a specific condition 
on the first list, select the next condition to start based on its mate from the second list. In 
this way, as short conditions finish they are replaced by long conditions and vice versa. 
This enables completing the simulations in just over two weeks, the maximum of 14.77 
days and 13.7 days, as shown in the second row of Table 6-27. 

Why does the simulation require so much processor time? Each experiment 
simulates the operation of up to hundreds of thousands of simultaneously active flows 
over a period of 25 simulated minutes. Each flow that starts during the simulation must 
be modeled, as well as every packet sent on each flow. Each packet transits several 
routers as it propagates through the simulated topology. As shown in Table 6-28, the 
average condition requires simulating just over 74 million flows during the 25 simulated 
minutes. This amounts to simulating around 7 billion data packets, each of which has a 
matching acknowledgment. Thus, in a given simulation run 14 billion packets are sent on 
average. For all conditions across all congestion control algorithms, more than 16.5 
billion flows and 3 trillion packets (1.5 trillion data packets and 1.5 trillion 
acknowledgments) must be simulated. In Chapter 7 we investigate whether a scaled down 
network simulation can provide sufficient information while requiring less processor 
time. 
 

Table 6-28. Characterization of the Number of Flows and Data Packets Simulated 

Statistic Flows Completed Data Packets Sent
Avg. Per Condition 74.033 x 106 6.912 x 109

Min. Per Condition 40.966 x 106 3.147 x 109

Max. Per Condition 154.914 x 106 11.917 x 109

Total All Runs 16.583 x 109 1.548 x 1012
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6.2.2 Data Collection 
We collected summary response measurements into four files: one file for each of three 
five-minute time periods (recall Fig. 6-2) and one file containing data aggregated across 
the entire 25-minute scenario. Table 6-29 shows the format used for each time-period 
file. Each file consists of (7 x 32 =) 224 rows of 47 columns. The header row, shown for 
clarity in Table 6-29, was not included in the data file. The first column identifies the 
congestion control algorithm and the second column identifies the condition. Each of the 
remaining columns contains the value for one of the 45 responses measured for the 
relevant time period (recall Sec. 6.1.3). A response represents the average value across all 
measurement intervals within the time period.  
 

Table 6-29. Format Adopted for Each Time-Period Data File 
 
  
 

 
 
 
 
 
 
 
 
 
 
 
 
 

As shown in Table 6-30, we adopted a similar format for the file containing 
aggregate responses. In this case, the file included only 30 columns because the number 
of responses was limited to 28. As discussed in Sec. 6.1.3.4, most values represent an 
aggregation across the entire 25-minute scenario, while some values represent an average 
goodput or SYN rate across the scenario.  
 

Table 6-30. Format Adopted for Reporting Aggregate Measures 
 
 
 
 
 
 
 
 
 
 
 

…………………

099872.35…1.899736108421.6317

0363.9507…25.6616627644.4327

00.116…41.457915333.9927

023487.56…9.11577334108.2217

…………………

83.2173323397.35…9.12645828287.67321

110.8673602.5607…24.93412107357311

…………………

0.5553330.758…41.3502615370.521
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y45y44…y2y1RunAlgorithm
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To support some detailed analyses (as discussed below in Sec. 6.3) we also used 
selected time-series data files as output directly by MesoNet. A time series for a 
particular response simply provides the raw measurement data that was used to create the 
summarization reported in Table 6-29. 

6.3 Data Analysis Approach 
In this section, we introduce and explain our approach to data analysis. For illustrative 
purposes, we also provide a few insights into the behavior of our simulated network. We 
defer a complete presentation of key results until Sec. 6.4. 

We employed three main techniques for analyzing data: (1) cluster analysis, (2) 
detailed analysis of individual responses and (3) summary analysis of all responses across 
all conditions. Where advantageous, we also adopted some useful strategies to explore 
the data. We address each of these topics in turn, beginning with cluster analysis. 

6.3.1 Cluster Analysis 
We use cluster analysis to provide a comprehensive comparison of differences among all 
congestion control algorithms for all responses and conditions. Results from the cluster 
analysis establish whether any of the algorithms generate a distinctive response to the 
various conditions. To perform the analysis we used hierarchical clustering tools from the 
MATLAB™ Statistics Toolbox™ [87]. Hierarchical clustering requires selection of a 
function to compute distances between points in the vector space composed by the 
response data. We used the standardized Euclidean distance function. 
 
 
 

(1) 
 
 
Equation (1) computes the inter-algorithm distance in 45-dimension space, where each 
dimension m represents one response. Here, Yi and Yj represent the response vectors for 
the ith and jth congestion control algorithms. (Note that we use a 28-dimension space 
when clustering aggregate results.) Distances for each response are normalized with 
respect to response variance. This enables distances to be placed on a similar scale. (Any 
response with zero standard deviation is excluded from the distance computation.) A pair 
of algorithms with close proximity may be linked together within a cluster. 

We measure the linkage between clusters of algorithms as the average distance 
between responses associated with each algorithm in each cluster. The linkage function, 
shown in (2), uses the Euclidean-distance function from (1). 
 
 
 

(2) 
 

Equation (2) computes the linkage between any two clusters r and s, containing nr and ns 
congestion control algorithms, respectively. Yk,r represents the response vector for the kth 
congestion control algorithm in cluster r; similarly, Yl,s represents the response vector for 
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the lth congestion control algorithm in cluster s. The linkage function is used to place 
binary clusters into larger clusters, forming a hierarchical tree. 

The final step in hierarchical clustering is to suggest which congestion control 
algorithms should be included within the same cluster. For this purpose, we use the 
MATLAB™ dendrogram ( ) function to color the lines on the hierarchical tree whenever 
the linkage value between two clusters falls below 70 % of the maximum linkage value. 
The net result from clustering is a diagram, such as Fig. 6-3, suggesting relationships 
among the congestion control algorithms. Identifiers for the seven congestion control 
algorithms (Table 6-1) are plotted on the x axis and the y axis displays standardized 
distances between algorithms in the subordinate cluster(s). Here, the clustering suggests 
algorithms 4 and 6 give similar results and algorithms 1 and 2 give similar results. The 
remaining algorithms are dissimilar, with algorithm 3 being most dissimilar from the 
others.  
 
 
 
 
 
 
 
 
 
Figure 6-3. Dendrogram Illustrating Clustering Based on Responses for Condition 4 During Time 
Period One (TP1) – x axis gives the algorithm identifier from Table 6-1 and y axis gives the standardized 
Euclidean distance between algorithms or clusters of algorithms 
 

Clustering must be performed individually on the various conditions because the 
conditions can yield results that are quite dissimilar. One may obtain an overall picture of 
clustering across conditions by plotting together 32 dendrograms, one per condition. Fig. 
6-4 shows such a plot for seven congestion control algorithms and related responses 
covering TP1. Review of the plot reveals that algorithm 3 appears distinctive under about 
23 of the 32 conditions. Further, the responses generated by the different algorithms are 
indistinguishable in six conditions – in fact, are identical for condition 12, where the 
corresponding dendrogram shows zero distance between the algorithms. The remaining 
three conditions (2, 27 and 32) find small distinctions among the algorithms. As Fig. 6-4 
illustrates, clustering analysis can reveal some significant overall patterns in the data. 

A natural next step is to consider why algorithm 3 (FAST) is distinctive in many 
of the conditions but not in all. In other words, can we determine properties that 
distinguish among the conditions and then map those properties into hypotheses 
regarding the operation of algorithm 3? Given the input factors (x1…x6) defining the 
conditions, we suspect that distinct conditions represent differing levels of congestion 
within the simulated network. To confirm our suspicion, we can sort the conditions using 
some property, such as loss rate or retransmission rate, which reflects congestion. Fig. 6-
5 displays a bar chart where conditions on the x axis are sorted in order of increasing 
retransmission rate (response y6) on the y axis. The bar chart shows that 16 conditions 
have much higher retransmission rates (reflecting higher congestion) than the others. 
Thus, half the conditions lead to significant congestion and half do not. To quantify the 
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difference, we include an inset bar chart in Fig. 6-5. The inset shows that the highest 
retransmission rate (for condition 11) among the uncongested conditions is an order of 
magnitude or more lower than the lowest retransmission rate (for condition 18) among 
the congested conditions. Examining the uncongested conditions in detail, one can 
declare somewhat arbitrary distinctions between conditions with no congestion (N), little 
congestion (L) and moderate congestion (M). We label Fig. 6-5 accordingly. 
  
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 6-4. Cluster Analysis for 32 Conditions Using Data from Time Period One 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Figure 6-5. Conditions (x axis) Ordered from Least to Most Congested vs. Retransmission Rate (y 
axis), which is the proportion of all sent packets that were retransmissions 
 

We can select one uncongested and one congested condition to examine more 
closely. Fig. 6-6 plots several time series that, taken together, show the distribution of 
flow states for (uncongested) condition 4 under standard TCP congestion control. The x 
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axis displays time over all three time periods measured for the simulated scenario. The y 
axis indicates the number of active (red curve) and connecting (yellow curve) flows. 
Additional curves decompose the active flows by congestion control state. For TP1 
(3000-4500) the plot shows that most of the active flows operate in initial slow-start 
(green curve). This means that the network is sufficiently uncongested that most file 
transfers complete without a lost packet. Things change during TP2 (4500-6000) as 
jumbo file transfers induce congestion in the directly connected access routers. 
Congestion leads to losses, which increases the number of flows operating under normal 
congestion control procedures (brown curve). As jumbo file transfers diminish during 
TP3 (6000-7500), congestion ebbs so that, by time 6500, most active flows again 
complete file transfers without a lost packet. The same curves plotted for the other 15 
uncongested conditions show similar patterns.  
 
 
 
 
 
 
 
 
  
 
 
 
 
 
 
 
 
Figure 6-6. Distribution of Flow States over Three Time Periods under Condition 4 for Standard 
TCP – x axis shows time in 200 ms increments and y axis shows number of active flows in each state 

 
The situation is much different for congested conditions. Fig. 6-7 plots the 

distribution of flow states for condition five under standard TCP congestion control. 
Notice that the number of active flows (red) averages about 125 x 103. Here, the vast 
majority (about 105 x 103) of those flows are operating under normal congestion control 
procedures (brown), which means these flows have suffered lost packets. Notice also that 
network congestion is sufficiently high so that introducing jumbo file transfers during TP 
2 (4500-6000) makes very little difference in the overall distribution of flow states. The 
same curves plotted for the other 15 congested conditions show similar patterns. 

Combining this new information with the previous cluster analysis provides 
substantial insight about conditions that lead to the distinctive behavior of algorithm 3. 
Fig. 6-8 reproduces an augmented version of Fig. 6-4. Here, we annotate the cluster plot 
for each condition with a character indicating the relative level of associated congestion. 
Reviewing the plot reveals that algorithm 3 is distinctive under conditions showing 
moderate to heavy congestion. The distinctiveness of algorithm 3 fades under conditions 
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with little or no congestion. Further, under the least congested condition (12), all seven 
congestion control mechanisms produced identical responses. 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Figure 6-7. Distribution of Flow States over Three Time Periods under Condition 5 for Standard 
TCP– x axis shows time in 200 ms increments and y axis shows number of active flows in each state 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 6-8. Cluster Analysis for Time Period One – Conditions Labeled with Congestion Level 
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Clustering, combined with some supplementary data analyses, can provide us 
with a useful overall view of differences among the congestion control algorithms. In our 
example, during TP1, algorithm 3 shows a distinctive behavior that appears tied to the 
level of congestion in the network. Further, under little or no congestion, the congestion 
control algorithms are largely indistinguishable. Unfortunately, cluster analysis does not 
identify the precise nature of the distinctions among the various alternative congestion 
control algorithms. For more insight, we need to apply a technique for the detailed 
analysis of individual responses. We next explain the technique we used to investigate 
each response.    

6.3.2 Detail Analysis of Individual Responses 
For each time period, we subjected each response to a statistical analysis for each of the 
32 conditions simulated, and we then generated a corresponding plot displaying the 
relevant information. Such a plot shows, for each condition, which algorithm produced 
the largest difference (compared to the average for all algorithms) in the response 
variable. The plot also reports the results of a numerical test to determine whether the 
largest difference was statistically significant. In addition, the plot reports the absolute 
and relative magnitudes of the largest effect. We produced (45 x 3 =) 135 plots; each plot 
represents a single response for a single time period. The best approach to explaining the 
analysis is to discuss a sample plot, such as Fig. 6-9. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Figure 6-9. Sample Plot Analyzing the Influence of Condition and Congestion Control Algorithm on 
the Average Number of Active Flows (y1) – y axis gives residuals around the mean value for each 
condition and x axis gives conditions ordered by increasing range of residuals 
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 The x axis in Fig. 6-9 shows the 32 conditions. Here, conditions are sorted by 
increasing magnitude of the largest difference in the response variable produced by a 
congestion control algorithm. The upper left corner of the plot gives the minimum and 
maximum values for the raw responses when considering the data across all algorithms 
and conditions. The y axis gives the spreads of residuals about the mean. Here, each 
residual is computed by subtracting the mean response for all algorithms for a given 
condition from the response for a given algorithm and the same condition. For each 
condition, we plot a box within which we place algorithm identifiers (1-7). The location 
of each identifier indicates the distance of the response generated by that algorithm (i.e., 
the residual) from the mean response over all algorithms for the same condition. Here, the 
residuals range from zero (all algorithms in condition 12) to about negative 5500 (for 
algorithm 3 in condition 22). 

Below each box we display vertically the settings (+/-) for each input factor 
(x1…x6) that generated the relevant condition. The remainder of the plot consists of four 
32-column rows of quantitative information, where each column gives four statistics 
applicable to the algorithms and responses for the related condition. The first statistic 
identifies the extreme algorithm – that is the algorithm with the largest residual. The 
identifier is listed as -1 when the algorithms cannot be distinguished numerically. This 
arises for condition 12 in Fig. 6-9. Explicitly listing the extreme algorithm is helpful 
when the residuals are too close together to be visible in the box – for example in 
conditions 12 to 26. 

The second statistic reports the absolute magnitude (log 10) associated with the 
maximum residual. The exponent of the absolute magnitude can be reported concisely on 
the plot at the cost of some numerical precision. The third statistic reports the relative 
effect as a percentage of the mean response. A domain analyst can consider both the 
absolute and relative differences when judging whether an effect is significant from an 
engineering view. 

The fourth statistic reports G, which results from a Grubbs’ test for outlying 
observations [91] associated with the extreme residual for each condition. The Grubbs’ 
test computes G by dividing the largest residual by the sample standard deviation. 
 

(3) 
 

 
Assuming no significant differences among congestion control algorithms, we 

would expect measured residuals to be normally distributed. For this reason, residuals 
that deviate too far from the mean could be characterized as statistically significant 
outliers. For our plots we declare an outlier significant (5 %) when G > 2.08. The entire 
column (factors and statistics) is highlighted for conditions where the Grubbs’ test 
identifies an outlier. Green identifies positive outliers (e.g., conditions 16, 28 and 7 in 
Fig. 6-9) and red identifies negative outliers (e.g., conditions 23, 17, 30, 5, 29 and 22 in 
Fig. 6-9). Columns are printed in black when no numerical difference could be detected 
among the responses (e.g., condition 12 in Fig. 6-9). The remaining columns are printed 
in blue. 

What can we conclude from Fig. 6-9 alone? Not much. Algorithm 3 appears as a 
significant negative outlier under six conditions (all congested). This result could occur 
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by chance with a probability of about 0.17. Algorithm 3 also appears as a statistically 
significant positive outlier under three conditions (one congested). This result has about a 
0.70 probability of occurring by chance. We selected Fig. 6-9 as an example because it 
illustrates most traits of such plots. We defer more interesting findings until we discuss 
pattern seeking in Sec. 6.3.4.2 and overall results in Sec. 6.4. Next, we discuss a 
technique to summarize our detailed analyses of individual responses. The summary 
considers all responses and all conditions for each time period.     

6.3.3 Condition-Response Summary Analysis 
The plots associated with detailed analysis of individual responses can be quite revealing, 
but they do not give a broad view across responses and conditions in a form similar to 
that provided by the dendrogram plots from cluster analysis. We can, however, extract 
information from analyzing individual responses and then present a condensed overview 
across responses and conditions. Fig. 6-10 shows such a condition-response summary 
plot for TP1. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Figure 6-10. Summary of Statistically Significant Outliers in Time Period One – plot displays for each 
Factor Combination (row) vs. Response Variable (column) the Identifier of the Algorithm manifesting a 
Statistically Significant Outlier, where blank cells mean there was no significant outlier  
  

Each row in Fig. 6-10 corresponds to a specific condition (identified on the left). 
The first six columns report settings (+/-) for the six input factors defining the condition. 
The remaining columns represent individual responses. Vertical blue lines group related 
responses. For example, responses 1 through 8 relate to macroscopic behavior, responses 
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9 through 12 relate to goodput on DD flows, responses 42 through 45 relate to 
distribution of flow states and so on. Cells, formed by condition-response intersections, 
contain an algorithm identifier when there is a statistically significant outlier – red 
denotes low outliers and green denotes high outliers. 

 A scan of Fig. 6-10 shows that algorithm 3 arises as a statistically significant 
outlier in many cells. The highest concentration of outliers appears for congested 
conditions; fewer outliers appear for less congested conditions. No algorithm appears as 
an outlier for condition (i.e., row) 12. These results agree with the cluster analysis (recall 
Fig. 6-4) for the same time period. Both analyses identify algorithm 3 as distinctive under 
congested conditions. Fig. 6-10 has the advantage of identifying precisely the particular 
responses for which algorithm 3 exhibits different behavior. 

To focus analysis on the most significant behavioral differences, we can apply 
various filters when generating a condition-response summary plot. For example, Fig. 6-
11 shows a summary plot reporting statistically significant outliers that also achieve a 
relative difference greater than 10%. The pattern of outliers is now sparser, so we can 
focus our analysis on responses y2 (congestion window increase rate), y6 (retransmission 
rate), y42 (average number of connecting flows), y44 (average number of active flows in 
normal congestion control mode) and y45 (average number of active flows in alternate 
congestion control mode). The responses measuring buffer usage (y36 – y41) exhibit 
outliers but there is no evident pattern. 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
 
 

Figure 6-11. Filtered Summary Plot for Time Period One Identifying Statistically Significant Outliers 
with Associated Relative Effect > 10% 
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We can exclude y44 and y45 from further consideration because algorithm 3 
(FAST) never operates in normal congestion control mode. This means that we should 
expect algorithm 3 to be an outlier exhibiting a large effect for responses y44 and y45. 
This is certainly the case in all the analyses we conducted. With this knowledge, we 
completed a revised cluster analysis with responses y44 and y45 excluded. The revised 
clustering results (reported in Sec. 6.4) continue to identify algorithm 3 as distinctive. 

Fig. 6-11 suggests that algorithm 3 is most different with respect to response y6 – 
retransmission rate. Here, algorithm 3 produces retransmission rates more than 10 % 
higher than the other algorithms in 21 of the 32 conditions. In 12 conditions the 
retransmission rate for algorithm 3 is more than 30 % higher – more than 50 % higher in 
five conditions. Clearly, this is a significant finding, which we discuss more fully in later 
sections. 

Fig. 6-11 also shows that for 14 conditions algorithm 3 (FAST) produces more 
than a 10 % higher rate of window increase than the other algorithms. All 14 conditions 
are among the most congested. Recall from Chapter 5 that FAST aims to provide a stable 
congestion window that reaches equilibrium, changing very little over time. The 
simulations in Chapter 5 also showed that when FAST had insufficient buffers a rapid 
oscillating behavior ensued where the congestion window was cut in half on a loss and 
then quickly increased up to another loss and so on. Under these rapid oscillations, FAST 
would tend to increase congestion windows very frequently. Thus, under FAST, the 
larger the retransmission rate, the higher the rate of window increases. 

 What about y42 (average number of connecting flows)? A high retransmission 
rate arises from a high loss rate. To establish flows, a source and receiver must exchange 
SYN and SYN+ACK packets. Since these packets are also subject to being lost, we 
expect that a high loss rate can impede connection establishment. This means that on 
average more SYNs must be sent to connect a flow. Thus, given a higher retransmission 
rate for algorithm 3, we should expect more flows to be pending in the connecting state.  

This discussion illustrates that condition-response summary plots can be quite 
powerful – allowing an analyst to identify key differences separating algorithms. In Sec. 
6.4 we report summary plots for all three time periods, as well as for the aggregate 
responses. As we will demonstrate, the summary plots impart substantial insight 
regarding system behavior. 

6.3.4 Data Exploration 
In previous sections we introduced the main techniques we used to analyze system 
behavior. We augmented these analysis techniques with some exploratory approaches 
that allowed us to investigate specific questions. In this section we briefly describe and 
illustrate selected augmentations. 
 
6.3.4.1 Extrapolating from Time Series. MesoNet samples responses at each 
measurement interval and produces related time series. We generate our summary 
responses by averaging time series of interest over particular intervals. As discussed in 
Sec. 6.3.1, an analyst may examine raw time series as necessary to gain additional 
insight. Here, we give an example that illustrates pitfalls that may arise when focusing on 
time series for only a few selected conditions. 
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Fig. 6-12 plots seven time series (one for each congestion control algorithm) for 
condition 4, a lightly congested condition. Each time series reports the average goodput 
for DD flows (y9) over the final three time periods (15 minutes total) of the experiment 
scenario. The plot shows the general effect of the scenario on DD flows. During the first 
time period (3000-4500) average per-flow goodputs fluctuate in the neighborhood of 500 
pps. Jumbo flows commence at time 4500, which leads to a rapid increase in average 
goodput up to around 104 pps. As additional jumbo flows arrive, average goodput falls as 
bandwidth must be shared among more flows. New jumbo flows cease to arrive starting 
at time 6000, which enables average goodput to increase as residual jumbo flows are 
cleared. As the mix of flows moves away from jumbo flows and back to normal Web 
traffic, average goodput trails off. Had the scenario continued, all residual jumbo flows 
would eventually clear the system and average goodput would return to levels seen in the 
first time period. This general behavior is representative of the time varying scenario 
across all conditions. Fig. 6-13 plots seven time series for the number of active DD flows 
(y10) over the same time periods and under the same condition. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Figure 6-12. Average Per-Flow Goodput on DD Flows (y9) for Seven Congestion Control Algorithms 
under Condition 4 over Three Time Periods – x axis gives time in 200 ms increments and y axis gives 
goodput in packets per second 
 

Fig. 6-12 indicates that Scalable TCP (black curve) provided higher average 
goodput during the period of jumbo file transfers. Recall that in Chapter 5 we found that 
under a restricted topology with few flows, Scalable TCP tended to provide unfair 
allocation of bandwidth. Does relative unfairness relate to the behavior shown in Fig. 6-
12? The current simulation scenario was set up to ensure that a concentration of jumbo 
files would be transferred on DD flows between times 4500 and 6000. Yet, Fig. 6-13 
reveals that Scalable TCP (black curve) has the fewest number of active DD flows in that 
time period; BIC (red curve) has second fewest. Given a finite (bottleneck) capacity to 
deliver packets, each flow will naturally receive higher average goodput when the 
bottleneck is shared by fewer flows. Fig. 6-14 shows that a bottleneck capacity exists, as 
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the total rate of packets delivered on DD flows (y12) during the second time period 
reaches a level of just under 2 million pps for each of the congestion control algorithms. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Figure 6-13. Number of Active DD Flows (y10) for Seven Congestion Control Algorithms under 
Condition 4 over Three Time Periods – x axis gives time in 200 ms increments and y axis number of 
active flows 
  
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Figure 6-14. Aggregate Packet Delivery Rate DD Flows (y12) for Seven Congestion Control 
Algorithms under Condition 4 over Three Time Periods – x axis gives time in 200 ms increments and y 
axis packet delivery rate in packets per second 
 

 How can we explain the fact that fewer jumbo flows are active simultaneously 
under condition 4 in TP2 for Scalable TCP? The answer can be found by examining the 
completion rate for DD flows (y11) during TP2, as shown in Table 6-31. Scalable TCP 
completes slightly more (.3 to .4) DD flows per measurement interval than other 
congestion control algorithms. Remember that the measurement interval is only 200 ms 
in duration. Considered over the entire 5 minutes (1500 measurement intervals) 
comprising TP2, Table 6-31 shows that Scalable TCP completes 500 to 600 more DD 
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flows. More flows completed per unit time leads to fewer active flows, which yields 
higher goodput per flow. 

 
Table 6-31. Flows Completed per 200 ms interval and Total Completions for DD Flows in Time 
Period Two under Condition 4 

Algorithm DD Flow Completion Rate DD Flows Completed in Time Period 2

BIC 7.74 11.610 x 103

CTCP 7.60 11.401 x 103

FAST 7.57 11.353 x 103

HSTCP 7.42 11.133 x 103

HTCP 7.54 11.307 x 103

SCALABLE 7.88 11.814 x 103

TCP 7.53 11.296 x 103

 
 

Does this behavior repeat across a wide range of conditions? In selected 
uncongested conditions (such as 8 and 12) Scalable TCP provides the worst goodput for 
DD flows during TP2. An overall examination of y9 across all conditions (see Fig. 6-15) 
reveals no particular pattern, which illustrates why we must rely on comprehensive 
results and not focus in detail on particular conditions to the exclusion of others. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
.  

 
          
 
Figure 6-15. Analyzing the Influence of Condition and Congestion Control Algorithm on the Average 
Goodput (pps) for DD Flows (y9) during Time Period Two – y axis gives residuals around the mean 
value for each condition and x axis gives conditions ordered by increasing range of residuals 
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In summary, examining time series for individual conditions can provide 
interesting and useful information regarding the movement of system responses over 
time. Unfortunately, one must examine a response across all conditions in order to reveal 
general trends and patterns. Comprehensive examination across responses and conditions 
can best be achieved through cluster analysis and condition-response summary plots. 
Examination of individual time series must be used for focused purposes, such as 
causality analysis, and not to draw general inferences. 

 
6.3.4.2 Seeking Patterns. Above, we characterized Fig. 6-15 as revealing no particular 
pattern. This implies that we will be seeking patterns not only in the dendrogram and 
condition-response summary plots but also in plots giving detailed analyses of individual 
responses. Such patterns correspond to columns in a condition-response summary plot 
where identical algorithms are reported as statistically significant outliers across a 
substantial number of conditions. For example, Fig. 6-16 illustrates a pattern in a detailed 
analysis plot for congestion window size (y4) during TP3. Comparing Fig. 6-15 and Fig. 
6-16 illustrates the difference between a non-pattern and a pattern. The pattern in Fig. 6-
16 reports that during TP3 algorithm 2 (CTCP) yields a congestion window significantly 
larger than the other algorithms. This result occurs in 30 of the 32 conditions (in 
conditions 3 and 32 algorithm 3 is the outlier) and is statistically significant (5 %) in 28 
of the 30 conditions, and nearly significant in the other two (i.e., in conditions 19 and 29 
the Grubbs’ test statistic is 2, which is just below the 2.08 cutoff for 5 % significance). 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Figure 6-16. Analyzing the Influence of Condition and Congestion Control Algorithm on Congestion 
Window Size (y4) in packets during Time Period Three – y axis gives residuals around the mean value 
for each condition and x axis gives conditions ordered by increasing range of residuals 
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6.3.4.3 Investigating Data Subsets. In cases where a summary plot reveals one particular 
algorithm as distinctive, an analyst may naturally wonder whether the distinction might 
be sufficient to mask more subtle distinctions among the remaining algorithms. To 
investigate such questions, one can exclude response data for the distinctive algorithm 
and then reconsider the analysis on the remaining subset of response data. For example, 
Fig. 6-17 gives dendrograms resulting from a cluster analysis for TP1 when response data 
for algorithm 3 is omitted. The resulting plot reveals that the responses are very similar 
across the remaining algorithms in about half the conditions. For some conditions there 
appears to be a slight tendency for algorithms 1 (BIC) and 6 (Scalable TCP) to cluster 
together, while algorithm 5 (HTCP) is somewhat distinctive under four conditions. 
Overall, the cluster analysis for TP1 with algorithm 3 excluded shows the behavior 
among the remaining algorithms to be largely indistinguishable. There appears some 
tendency for algorithms 1 and 6 to exhibit slightly similar behaviors somewhat different 
from other algorithms. A condition-response summary plot for the same subset of data 
identifies few statistically significant outliers.  
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 6-17. Cluster Analysis Using Data from Time Period One – Algorithm 3 Excluded 
 
6.3.4.4 Interactive Animation. MesoNet produces a large amount of data – simulation of a 
congestion control algorithm under one condition can produce about 165 Mbytes of 
measurements. Much of the data relates to temporal behavior in individual routers in the 
network topology. Such data naturally lends itself to animation within a layout of the 
network topology. To accommodate such animation, as well as to support abstract 
analysis of multidimensional data, colleagues produced DiVisa [86], an interactive 
system for multidimensional data visualization. DiVisa, freely available for public use, 
requires only access to a Java™ run-time environment, so DiVisa is portable to a range of 
operating systems. 
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Fig. 6-18 depicts a sample screenshot where we used DiVisa to monitor packet 
losses throughout the network topology for algorithm 1 (BIC) under condition 10. The 
screenshot shows three main panels: a (leftmost) visualization-control panel and two 
plots. The control panel permits a user to define plot characteristics. In this case, we 
assigned the leftmost plot panel to hold the network topology (routers and links only), 
while the rightmost plot panel graphs packet losses over time. Further, in the topology 
panel we assign color to represent the rate of packet losses – from orange for minimal 
losses to red for high losses. The particular screenshot shows one frame from an 
animation of the evolution of packet losses – the animation has reached time 5510, which 
is within TP2. At that time, only two routers in the topology show any appreciable losses: 
access router I0a (yellow) and access router K0a (blue). We can select specific routers in 
the topology and the related curve in the time plot will be emphasized. We can also 
interactively explore other router characteristics, such as utilization and buffer saturation. 
DiVisa animations helped us discover that backbone routers could be overrun under some 
conditions in TP2. Using this information, we increased the simulated speed of our 
backbone routers. DiVisa animations also helped us to determine that access router K0a 
was the most heavily utilized of the access routers during TP2. In summary, availability 
of a data exploration tool and animator, such as DiVisa, can help an analyst gain global 
views of spatiotemporal patterns in a simulated system. Of course, one must remember 
that looking at animations of individual time series does not provide sufficient 
information to discern significant overall patterns across conditions and responses 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Figure 6-18. Screenshot from DiVisa Animation of the Temporal Evolution of a MesoNet Simulation 
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6.4 Results 
In this section, we report salient results from our analysis of summarized response data 
(described in Sec. 6.2.2). As necessary, we provide brief commentaries to explain the 
results presented. We give results in four segments: one for each of the three 5-minute 
time periods and one for response data aggregated over the entire 25-minute scenario. We 
follow a similar plan for each segment: (1) present results from cluster analysis, (2) 
present results from condition-response summaries, (3) present detailed analysis of 
significant responses and (4) give a summary of the results for the segment. We defer 
drawing inferences from the results until Sec. 6.5, where we report our findings. 

6.4.1 Time Period One (TP1) 
Recall that TP1 comprises a five-minute period where three long-lived flows commence 
within an overall background of normal Web traffic, which includes downloading Web 
pages, and occasionally documents. As for any time period, we consider seven 
congestion control algorithms under a range of 32 conditions, where half the conditions 
can be considered uncongested and half congested. 
 
6.4.1.1 Cluster Analysis for TP1. We present two dendogram plots for TP1. Fig. 6-19 
gives the cluster analysis for all seven congestion control algorithms. We annotate the 
individual dendograms with a 3 when algorithm 3 appears distinctive. Fig. 6-20 gives the 
cluster analysis after omitting response data for algorithm 3. 
   
      
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 6-19. Clustering for Time Period One – Annotated to Identify Distinctive Algorithm 3 
 
6.4.1.2 Condition-Response Summary for TP1. Fig. 6-21 gives the condition-response 
summary for TP1. Fig. 6-22 shows the same summary after applying a filter showing 
only statistically significant outliers for which the relative effect exceeds 10 %. 
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Figure 6-20. Clustering for Time Period One – Algorithm 3 Omitted 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Figure 6-21. Condition-Response Summary for Time Period One – plot displays for each Factor 
Combination (row) vs. Response Variable (column) the Identifier of the Algorithm manifesting a 
Statistically Significant Outlier 
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Figure 6-22. Filtered Summary Plot for Time Period One Identifying Statistically Significant Outliers 
with Associated Relative Effect > 10% 
 
6.4.1.3 Analysis of Significant Responses for TP1. Based on Figs. 6-21 and 6-22 we 
selected several responses for more detailed analysis. Specifically, in Figs. 6-23 to 6-27, 
we report analyses for congestion window increase rate (y2), flow completion rate (y5), 
retransmission rate (y6), completion rate for NN flows (y31), and average number of 
connecting flows (y42). We omitted y44 and y45 because (as we explained earlier) they 
provide little insight into differences in behavior among the congestion control 
algorithms. We selected y5 and y31 based on Fig. 6-21 even though they did not pass the 
10 % filter required for reporting in Fig. 6-22. We made these additional selections 
because the absolute magnitude of each effect within an individual measurement interval 
appears large enough to influence system behavior when accumulated over time. While 
we could have chosen completion rates for other flow classes (e.g., y19 or y25), NN 
flows make up the largest proportion of all flows active at any given time, so the 
significance of this flow class appears to be highest. 
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Figure 6-23. Detailed Analysis for Congestion Window Increase Rate Per Flow (increases per 200 ms) 
in Time Period One – y axis gives residuals around the mean value for each condition and x axis gives 
conditions ordered by increasing range of residuals 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
Figure 6-24. Detailed Analysis for Flow Completion Rate (flows per 200 ms) in Time Period One – y 
axis gives residuals around the mean value for each condition and x axis gives conditions ordered by 
increasing range of residuals 
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Figure 6-25. Detailed Analysis for Retransmission Rate (proportion of packets retransmitted) in 
Time Period One – y axis gives residuals around the mean value for each condition and x axis gives 
conditions ordered by increasing range of residuals 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Figure 6-26. Detailed Analysis for NN Flow Completion Rate (flows per 200 ms) in Time Period One 
– y axis gives residuals around the mean value for each condition and x axis gives conditions ordered by 
increasing range of residuals 
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Figure 6-27. Detailed Analysis for Number of Connecting Flows in Time Period One – y axis gives 
residuals around the mean value for each condition and x axis gives conditions ordered by increasing range 
of residuals 
 
6.4.1.4 Summary of Results for TP1. Given normal Web traffic, FAST (algorithm 3) 
exhibits distinctive behavior, which appears to grow more distinctive with increasing 
congestion. The other algorithms behave quite similarly under most conditions, though 
BIC (algorithm 1) and Scalable TCP (algorithm 6) appear to cluster together under some 
conditions. When faced with congestion, FAST exacerbates the situation, as shown by 
the higher rate of increase in congestion windows, which leads to more packet losses and 
then to a higher rate of retransmissions. Increased losses under FAST also appear to 
increase the difficulty for establishing flows because more SYN and SYN+ACK packets 
are lost – as a result, on average more flows are pending in the connecting state. 
Increased retransmissions also cause flows to send more packets in order to ensure all 
data is successfully received. This means that flows take longer to finish, as shown by the 
lower completion rate for flows in general and for NN flows in particular. 

6.4.2 Time Period Two (TP2) 
During TP2 DD flows become jumbo file transfers, which lead to increased congestion 
within directly connected routers and also increases packet load on the network 
backbone. The remaining flow classes continue to generate normal Web traffic during 
TP2, but the net effect of adding the jumbo flows is to increase network-wide congestion.  
 
6.4.2.1 Cluster Analysis for TP2. Fig. 6-28 shows an annotated set of 32 dendrograms for 
TP2. Since the level of congestion has increased throughout the network and algorithm 3 
appears sensitive to congestion, one might expect the behavior of algorithm 3 to become 
more distinctive. Note that algorithm 3 now appears as distinctive in 28 of the conditions 
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– versus only 23 conditions in TP1. Fig. 6-29 gives dendrograms for TP2 but with the 
data for algorithm 3 omitted – none of the other algorithms stand out. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
  
Figure 6-28. Clustering for Time Period Two – Annotated to Identify Distinctive Algorithm 3 

 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 6-29. Clustering for Time Period Two – Algorithm 3 Omitted 
 

6.4.2.2 Condition-Response Summary for TP2. Fig. 6-30 gives the condition-response 
summary for TP2. Fig. 6-31 shows the same summary after applying a filter showing 
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only statistically significant outliers for which the relative effect exceeds 30 %. 
Algorithm 3 stands out in both figures. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Figure 6-30. Condition-Response Summary for Time Period Two – plot displays for each Factor 
Combination (row) vs. Response Variable (column) the Identifier of the Algorithm manifesting a 
Statistically Significant Outlier 
 

  
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Figure 6-31. Filtered Summary Plot for Time Period Two Identifying Statistically Significant 
Outliers with Associated Relative Effect > 30% 
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6.4.2.3 Analysis of Significant Responses for TP2. Based on Figs. 6-30 and 6-31 we 
selected several responses for more detailed analysis. Specifically, in Figs. 6-32 to 6-37, 
we report analyses for congestion window increase rate (y2), flow completion rate (y5), 
retransmission rate (y6), average goodput for DF flows (y13), average number of active 
DF flows (y14), and average number of connecting flows (y42). In Figs. 6-38 and 6-39 
we show the analyses for average goodput on the long (L1) and medium (L2) distance 
long-lived flows. We selected y5 based on Fig. 6-30 even though it did not pass the 30 % 
filter required for reporting in Fig. 6-31. We made this additional selection because the 
absolute magnitude of the effect within an individual measurement interval appears large 
enough to influence system behavior when accumulated over time. 
 
  
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Figure 6-32. Detailed Analysis for Congestion Window Increase Rate (increase per 200 ms) in Time 
Period Two – y axis gives residuals around the mean value for each condition and x axis gives conditions 
ordered by increasing range of residuals 
 
6.4.2.4 Summary of Results for TP2. FAST (algorithm 3) exhibits most of the same 
distinctive behaviors seen during TP1. The increased congestion in TP2 seems to enhance 
these effects, most of which now show up as relative differences of 30 % or more. A new 
pattern of behavior arises with respect to DF flows. The number of active DF flows 
accumulates for algorithm 3 during TP2, which leads to lower average goodput on those 
flows. We can again attribute this to the congestion sensitivity demonstrated by FAST. 
Under normal Web traffic, network parameter settings for the experiment tend to 
generate congestion at fast access routers. During TP2, DD flows experience jumbo file 
transfers, so DF flows are affected by the normal congestion pattern as well as increased 
congestion due to jumbo files. Given this increased congestion, algorithm 3 has more 
trouble completing DF flows than the other algorithms – increased retransmissions on DF 
flows lead to longer holding times to complete the flows. 
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Figure 6-33. Detailed Analysis for Flow Completion Rate (flows per 200 ms) in Time Period Two – y 
axis gives residuals around the mean value for each condition and x axis gives conditions ordered by 
increasing range of residuals 
 

A new behavior appears in TP2 with respect to the long and moderate distance 
long-lived flows. Algorithm 6 (Scalable TCP) tends to achieve higher average goodput. 
We consider this a tendency because there is no widespread pattern of statistical 
significance. We attribute this tendency to unfairness inherent in Scalable TCP. Under 
Scalable TCP (during TP1) long-lived flows establish a high congestion window. DD 
flows arising during TP2 have difficulty claiming a fair share of bandwidth from the 
entrenched long-lived flows. 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 



Study of Proposed Internet Congestion Control Mechanisms NIST  

Mills, et al. Special Publication 500-282 225 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
 
 
 

Figure 6-34. Detailed Analysis for Retransmission Rate (proportion of packets retransmitted) in 
Time Period Two – y axis gives residuals around the mean value for each condition and x axis gives 
conditions ordered by increasing range of residuals 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Figure 6-35. Detailed Analysis for Average Goodput (pps) on DF Flows in Time Period Two – y axis 
gives residuals around the mean value for each condition and x axis gives conditions ordered by increasing 
range of residuals 
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Figure 6-36. Detailed Analysis for Average Number of Active DF Flows in Time Period Two – y axis 
gives residuals around the mean value for each condition and x axis gives conditions ordered by increasing 
range of residuals 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Figure 6-37. Detailed Analysis for Average Number of Connecting Flows in Time Period Two – y axis 
gives residuals around the mean value for each condition and x axis gives conditions ordered by increasing 
range of residuals 
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Figure 6-38. Detailed Analysis for Average Goodput (pps) on Long-lived Flow L1 in Time Period 
Two – y axis gives residuals around the mean value for each condition and x axis gives conditions ordered 
by increasing range of residuals 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Figure 6-39. Detailed Analysis for Average Goodput (pps) on Long-lived Flow L2 in Time Period 
Two – y axis gives residuals around the mean value for each condition and x axis gives conditions ordered 
by increasing range of residuals  



Study of Proposed Internet Congestion Control Mechanisms NIST  

Mills, et al. Special Publication 500-282 228 

6.4.3 Time Period Three (TP3) 
During TP3 no new jumbo file transfers are initiated on DD flows; what remains is for 
residual jumbo transfers to complete as the network transitions back toward normal Web 
traffic. The degree to which normal conditions can be restored depends upon the number 
and size of jumbo transfers created during TP2.  
 
6.4.3.1 Cluster Analysis for TP3. Fig. 6-40 shows an annotated set of 32 dendrograms for 
TP3. Since the level of congestion stays relatively high, as residual jumbo file transfers 
drain from the system, algorithm 3 remains distinctive. When omitting responses for 
algorithm 3, cluster analysis (Fig. 6-41) identifies no distinctive algorithm. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 6-40. Clustering for Time Period Three – Annotated to Identify Distinctive Algorithm 3 
 
6.4.3.2 Condition-Response Summary for TP3. Fig. 6-42 gives the condition-response 
summary for TP3. Fig. 6-43 shows the same summary after applying a filter showing 
only statistically significant outliers for which the relative effect exceeds 30 %. 
Algorithm 3 stands out in both figures – the distinctiveness is quite similar to that seen 
for TP2. Fig. 6-43 also reveals two new patterns. First, algorithm 2 (CTCP) shows a large 
increase in the average congestion window, which is pervasive over many conditions 
during TP3. Second, average goodput lags on the higher propagation, long-lived TCP 
flows (L1 and L2) as the DD paths recover from the period of jumbo file transfers.  
 
6.4.3.3 Analysis of Significant Responses for TP3. Based on Figs. 6-42 and 6-43 we 
selected several responses for more detailed analysis. Specifically, in Figs. 6-44 to 6-49, 
we report analyses for congestion window increase rate (y2), flow completion rate (y5), 
retransmission rate (y6), average goodput on DF flows (y13), number of active DF flows 
(y14) and number of connecting flows (y42). Fig. 6-50 illustrates the substantial increase 
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in congestion window size (y4) for algorithm 2. Fig. 6-51 illustrates (with flow L2) how 
goodput on long-lived flows tends to lag under standard TCP (algorithm 7). 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 6-41. Clustering for Time Period Three – Algorithm 3 Omitted 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Figure 6-42. Condition-Response Summary for Time Period Three – plot displays for each Factor 
Combination (row) vs. Response Variable (column) the Identifier of the Algorithm manifesting a 
Statistically Significant Outlier 



Study of Proposed Internet Congestion Control Mechanisms NIST  

Mills, et al. Special Publication 500-282 230 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Figure 6-43. Filtered Summary Plot for Time Period Three Identifying Statistically Significant 
Outliers with Associated Relative Effect > 30% 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Figure 6-44. Detailed Analysis for Congestion Window Increase Rate (increases per 200 ms) in Time 
Period Three – y axis gives residuals around the mean value for each condition and x axis gives conditions 
ordered by increasing range of residuals 



Study of Proposed Internet Congestion Control Mechanisms NIST  

Mills, et al. Special Publication 500-282 231 

 
 
 
 
 
 
 
 
 
 
  
 
 
 
 
 
 
 
 
 
 
Figure 6-45. Detailed Analysis for Flow Completion Rate (flows per 200 ms) in Time Period Three – 
y axis gives residuals around the mean value for each condition and x axis gives conditions ordered by 
increasing range of residuals 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Figure 6-46. Detailed Analysis for Retransmission Rate (proportion of packets retransmitted) in 
Time Period Three – y axis gives residuals around the mean value for each condition and x axis gives 
conditions ordered by increasing range of residuals 



Study of Proposed Internet Congestion Control Mechanisms NIST  

Mills, et al. Special Publication 500-282 232 

  
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Figure 6-47. Detailed Analysis for Average Goodput (pps) on DF Flows in Time Period Three – y axis 
gives residuals around the mean value for each condition and x axis gives conditions ordered by increasing 
range of residuals 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Figure 6-48. Detailed Analysis for Average Number of Active DF Flows in Time Period Three – y axis 
gives residuals around the mean value for each condition and x axis gives conditions ordered by increasing 
range of residuals 



Study of Proposed Internet Congestion Control Mechanisms NIST  

Mills, et al. Special Publication 500-282 233 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Figure 6-49. Detailed Analysis for Average Number of Connecting Flows in Time Period Three – y 
axis gives residuals around the mean value for each condition and x axis gives conditions ordered by 
increasing range of residuals 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Figure 6-50. Detailed Analysis for Average Congestion Window Size (packets) in Time Period Three 
– y axis gives residuals around the mean value for each condition and x axis gives conditions ordered by 
increasing range of residuals 
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Figure 6-51. Detailed Analysis for Average Goodput (pps) on Long-lived Flow L2 in Time Period 
Three – y axis gives residuals around the mean value for each condition and x axis gives conditions 
ordered by increasing range of residuals 
 
6.4.3.4 Summary of Results for TP3. FAST (algorithm 3) exhibits the same distinctive 
behaviors seen during TP1 and TP2. Residual congestion from TP2 maintains these 
effects at an enhanced level; most effects continue to show relative differences of 30 % or 
more. A new pattern of behavior arises with respect to average congestion window size, 
where algorithm 2 (CTCP) shows a substantial increase over other algorithms – this 
difference is limited to TP3. Results also show that average goodput for long-lived flows 
using algorithm 7 (TCP) tends to lag when recovering from the congested period (TP2). 
This trait of standard TCP congestion control was an initial stimulus for many of the 
proposals for alternate congestion control mechanisms.  

6.4.4 Aggregated Responses (Totals) 
Here we present analyses for the 28 responses collected over the entire 25-minute 
scenario. Recall that most of these responses are aggregated counts, but SYN rate on 
connected flows and goodput on completed flows are averages. Whereas the previous 
analyses focused on differences in instantaneous behavior averaged over 5-minute 
intervals, the current analysis examines the effects of behavioral differences viewed over 
a longer period. 
 
6.4.4.1 Cluster Analysis for Totals. Fig. 6-52 shows the usual annotated set of 32 
dendrograms, but this time clustering based on the 28 aggregate responses. Similar to the 
cluster analyses for the three time periods, algorithm 3 appears distinctive in many (24) 
of the conditions. Fig. 6-53 shows the results from clustering with algorithm 3 responses 
excluded. No significant difference appears among the remaining algorithms, though 
algorithms 1 and 6 exhibit some tendency to be paired. 
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6.4.4.2 Condition-Response Summary for Totals. Fig. 6-54 gives the condition-response 
summary for the aggregate responses. One finding from the figure is that algorithm 3 
(FAST) tends to input more packets but not to output more packets – this is congruent 
with a higher loss rate, and consequent increased retransmission rate. For path classes 
prone to congestion, algorithm 3 (FAST) provides lower average goodput, which means 
these flows require more retransmissions and take longer to complete. In addition, 
algorithm 3 (FAST) connects and completes fewer flows – among a wide range of flow 
classes and across the entire set of backbone routers. As expected, based on analysis of 
the time periods, algorithm 3 (FAST) shows a higher average SYN rate over most 
conditions. This is congruent with a larger number of flows pending in the connecting 
state, and with a higher retransmission rate due to lost packets. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
Figure 6-52. Clustering for Totals – Annotated to Identify Distinctive Algorithm 3 

 
6.4.4.3 Analysis of Significant Responses for Totals. Based on Fig. 6-54 we selected two 
responses for detailed analysis. Algorithm 3 completed fewer flows under most 
conditions for most flow classes – including DF flows (T.y8), DN flows (T.y10), FF 
flows (T.y12), FN flows (T.y14) and NN flows (T.y16). For these flow classes, algorithm 
3 also usually exhibited lower average goodput. Algorithm 3 completed fewer flows 
across all backbone routers in the network. Rather than show detailed analyses for all of 
these categories, we present, in Fig. 6-55, an analysis of the aggregate number of flows 
completed (T.y4), where algorithm 3 underperforms under most conditions. We also 
show, in Fig. 6-56, a detailed analysis of the average SYN rate. In all but two conditions 
(the least and most congested), algorithm 3 leads to more SYNs being sent on average to 
establish flows. This supports earlier observations that algorithm 3 tends to have 
substantially more flows pending in the connecting state at any instant in time.   
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Figure 6-53. Clustering for Totals – Algorithm 3 Omitted 
 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Figure 6-54. Condition-Response Summary for Totals – plot displays for each Factor Combination 
(row) vs. Response Variable (column) the Identifier of the Algorithm manifesting a Statistically Significant 
Outlier 
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Figure 6-55. Detailed Analysis for Aggregate Number of Flows Completed over 25-minute Scenario – 
y axis gives residuals around the mean value for each condition and x axis gives conditions ordered by 
increasing range of residuals 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Figure 6-56. Detailed Analysis for Average SYN Rate (count of SYNs sent per connection attempt) 
for Connecting Flows over 25-minute Scenario – y axis gives residuals around the mean value for each 
condition and x axis gives conditions ordered by increasing range of residuals 
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6.4.4.4 Summary of Results for Totals. Under the conditions investigated in this 
experiment, FAST (algorithm 3) completes fewer flows during the 25-minute scenario. 
While FAST completes only up to 2 % fewer flows, this amounts to between a million 
and 10 million flows over 25 minutes – 40 x 103 to 400 x 103 flows a minute. In addition, 
FAST impedes the ability of flows to establish connections. 

6.5 Findings 
From the results reported in Sec. 6.4, we identified four main findings, as discussed 
below. In addition, detailed analysis of individual responses, when excluding algorithm 3, 
identified some tendencies, which we outline in Sec. 6.5.5. 

6.5.1 Finding #1 
Setting aside algorithm 3 (FAST), for the experiment scenario and conditions examined 
in this section, the alternate congestion control algorithms exhibited indistinguishable 
macroscopic behavior and modest differences in user experience. In other words there 
was no overall advantage to be gained in switching the entire network to a particular 
alternate congestion avoidance scheme, nor was there any overall disadvantage in 
switching. (Remember we are excluding FAST from this finding.) Selected users could 
experience somewhat higher throughputs when using alternate congestion control 
algorithms during periods of competing large file transfers, but no widespread 
improvement in user experience should be expected.  

To understand this finding, recall that slow-start procedures are unaffected by 
alternate congestion control mechanisms, which define replacements only for the TCP 
congestion avoidance phase. No matter what congestion control mechanism is used, a 
flow commences operating in initial slow-start and switches to congestion avoidance only 
after a packet loss (because we used a high initial slow-start threshold). Aside from FAST 
and TCP Reno, the alternate congestion avoidance procedures specify an activation 
threshold (either a certain congestion window size or duration since the most recent loss). 
Below that threshold, a flow adopts standard TCP congestion avoidance procedures; 
above that threshold the flow adopts alternate congestion avoidance procedures. 

Recall that in our experiment we simulated 32 conditions covering a range of 
congestion patterns, which could be classified roughly into 16 uncongested and 16 
congested conditions. Condition 12 created the least congestion, while condition 21 
created the most congestion. Of course, even uncongested conditions include localized 
congestion arising from the onset of jumbo file transfers during TP2, as well as from hot 
spots appearing from time-to-time at particular access routers. For example, in Fig. 6-57, 
we plot data under condition 12 for algorithm 1 (we chose to plot BIC because it has the 
lowest activation threshold: congestion-window > 14 packets). Note that most of the 1.2 x 
104 or so active flows (red) in TP1 (3000 – 4500) and TP3 (6000 – 7500) operate in 
initial slow start (green). This means that these active flows complete their file transfers 
without packet loss. For flows of this nature, congestion avoidance is never activated, so 
one would expect alternate congestion avoidance procedures to make no difference. 
During TP2 (4500 – 6000), jumbo file transfers on DD flows cause concentrated 
congestion at directly connected access routers. As Fig. 6-57 shows, even during TP2 the 
number of flows operating in congestion avoidance reached a level of around 103 (under 
10 %) out of 1.3 x 104 active flows. Half of the flows operated in normal (brown) 
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congestion control mode (i.e., congestion window < 14) and half operated using BIC 
(blue) congestion avoidance procedures. One would expect DD flows operating in 
alternate congestion control mode to achieve higher throughput than the DD flows 
operating in normal congestion control mode. So, selected users could experience 
improved throughput over others during TP2. 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Figure 6-57. Five Time Series Showing the Distribution of Flow States over Three Time Periods for 
Algorithm 1 (BIC) under Condition 12 – x axis shows time in 200 ms increments and y axis shows 
number of active flows in each state 

 
In Fig. 6-58, we plot the equivalent distribution of flow states for BIC under the 

most congested condition: 21. Of the 1.45 x 105 active flows (red) in TP1 and TP3 about 
1.4 x 105 flows (brown) operate in normal congestion control mode and the rest (green) 
operate in initial slow start. Under these conditions, alternate congestion avoidance 
procedures are not activated. During TP2, the onset of jumbo file transfers leads to about 
1.5 x 103 flows (blue) (around 1 %) using alternate congestion avoidance procedures. 
This small proportion of flows adopting alternate procedures cannot be expected to make 
a large difference in macroscopic network behavior. 

What about user experience? Most flows in a heavily congested network, or in 
heavily congested portions of a network, will be sharing paths with many other flows. For 
this reason, one should expect most flows to be operating within normal congestion 
control mode; these flows cannot achieve a large enough congestion window size (or 
avoid losses for long enough) to activate alternate congestion avoidance procedures. On 
the other hand, flows transiting very fast (DD) paths may be able to benefit from alternate 
congestion control procedures. Overall pattern analysis found that average goodput on 
DD flows in TP2 showed statistically significant improvement for the extreme algorithm 
in only three (4, 15 and 28) of 32 conditions; the three conditions were all uncongested. 
On the other hand, Table 6-32 gives, for each congestion control algorithm, the average 
goodput on DD flows when averaged across all conditions during TP2, as well as the 
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minimum and maximum average goodputs. The figures in Table 6-32 suggest that the 
alternate congestion control mechanisms do, on average, provide better user experience 
on DD flows during TP2. In fact, during TP2 TCP yields lowest average goodput, but this 
is only 1 % to 7 % lower than for the other algorithms. The detailed analysis of average 
goodput on DD flows (y9) during TP2 also shows that a particular alternate congestion 
control algorithm can improve goodput by 2 % to 19 % over the average for specific 
conditions. However, there is no particular pattern as to which alternate congestion 
control algorithm provides best goodput. From this, we conclude that under some 
conditions users can experience higher goodput when using alternate congestion control 
algorithms on DD flows that compete to complete large file transfers. The overall 
improvement when averaged across a wide range of conditions would, however, likely be 
below 10 %. 
  
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Figure 6-58. Five Time Series Showing the Distribution of Flow States over Three Time Periods for 
Algorithm 1 (BIC) under Condition 21 – x axis shows time in 200 ms increments and y axis shows 
number of active flows in each state 
 
 
Table 6-32. Average, Minimum and Maximum Goodput (pps) on DD Flows for Each Congestion 
Control Algorithm during TP2 when Averaged over All 32 Conditions 
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In summary, switching the entire network from standard TCP congestion control 
to BIC, CTCP, HSTCP, HTCP or Scalable TCP should not cause large shifts in 
macroscopic network behavior. Further, Web-browsing users would see little difference 
in their experience. Under uncongested conditions typical file transfers complete in initial 
slow start. Under heavily congested conditions typical file transfers enter normal 
congestion avoidance mode. On the other hand, switching to an alternate congestion 
control mechanism could modestly benefit selected users with high capacity access paths 
during periods where large file transfers compete for bandwidth on shared, high-capacity 
paths. These findings are limited to cases where all users on the network: (a) have a high 
initial slow-start threshold and (b) adopt the same congestion control mechanism. In 
Chapter 7 we investigate the case of a lower initial slow-start threshold. We address the 
case of heterogeneity among congestion control mechanisms in Chapters 8 and 9.  

6.5.2 Finding #2 
When deployed network wide, alternate congestion control algorithm 3 (FAST) can 
produce macroscopic changes in network behavior at congested places in the topology 
and during congested periods. Further, these changes can present Web-browsing users 
with lower average goodputs and longer connection times. The influence of these effects 
increases with increasing congestion. These findings suggest that deploying FAST on a 
wide scale could incur significant risk. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Figure 6-59. Reproduction of Fig. 5-22, Showing Change in cwnd for Two FAST Flows ( F = 200, rtt = 
42 ms) – x axis gives time in 200 ms increments and y axis gives congestion window in packets ranging 
from 0 to 1200 
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as Fig. 6-59. In this figure, two FAST flows are attempting to maintain 100 packets each 
through a bottleneck router that has buffers for only 176 packets. Insufficient buffer space 
results in packet losses, followed by (50 %) window reduction, followed by rapid 
increase in congestion window. This cycle repeats quite rapidly because FAST flows 
update their target congestion window frequently (every 20 ms here). This rapid 
oscillation in congestion window appears to be the source for the deleterious behavior 
exhibited by FAST in congested locations and at times of significant network-wide 
congestion, as we elaborate below. 

 When a large number of flows simultaneously transit a network router, the 
overall effect can be to flood the router with many packets. When the number of flows is 
sufficient to overrun the available buffers in the router, FAST flows exhibit an oscillatory 
behavior that can create additional congestion that causes the flows to remain in 
oscillation for an extended time. For example, Fig. 6-60 shows the evolution of the 
congestion window for long-lived FAST flow L2 during 500 measurement intervals 
within TP2 under (the most congested) condition 21. For comparison, Fig. 6-61 gives the 
behavior of standard TCP Reno under the same circumstances. Faced with congestion, 
the other alternate congestion control algorithms we simulated oscillate with a frequency 
closer to TCP than to FAST. Figs. 6-62 through 6-66 show the behavior for the remaining 
congestion control algorithms under condition 21 for the same measurement intervals in 
TP2.  
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Figure 6-60. Change in Congestion Window (packets) under FAST for Long-Lived Flow L2 during 
500 Measurement Intervals (200 ms each) within TP2 under Condition 21 
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higher loss rate also causes a higher SYN rate (as shown in Fig. 6-56), which leads to a 
larger number of flows pending in a connecting state (as shown in Figs. 6-27, 6-37 and 6-
49) because flows take longer to connect. Flows also take longer to complete because a 
larger number of packets must be retransmitted. This effect can be seen in Figs. 6-24, 6-
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26, 6-33 and 6-45, which show that FAST flows have a significantly lower completion 
rate. The net effect of a lower completion rate appears in Fig. 6-55, which shows that 
FAST completes many fewer flows (than other algorithms) over a 25-minute period of 
network operation. A lower rate of flow completions also means that more flows can be 
active simultaneously in congested locations in the topology. See, for example, Figs. 6-36 
and 6-48. As a result, the average goodput will be lower for flows transiting congested 
areas, as shown in Figs. 6-35 and 6-47. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Figure 6-61. Change in Congestion Window (packets) under TCP Reno for Long-Lived Flow L2 
during 500 Measurement Intervals (200 ms each) within TP2 under Condition 21 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Figure 6-62. Change in Congestion Window (packets) under BIC for Long-Lived Flow L2 during 500 
Measurement Intervals (200 ms each) within TP2 under Condition 21 
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Figure 6-63. Change in Congestion Window (packets) under CTCP for Long-Lived Flow L2 during 
500 Measurement Intervals (200 ms each) within TP2 under Condition 21 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Figure 6-64. Change in Congestion Window (packets) under HSTCP for Long-Lived Flow L2 during 
500 Measurement Intervals (200 ms each) within TP2 under Condition 21 
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Figure 6-65. Change in Congestion Window (packets) under HTCP for Long-Lived Flow L2 during 
500 Measurement Intervals (200 ms each) within TP2 under Condition 21 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Figure 6-66. Change in Congestion Window (packets) under Scalable TCP for Long-Lived Flow L2 
during 500 Measurement Intervals (200 ms each) within TP2 under Condition 21 
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In summary, a large network with many simultaneously active flows can induce 
congestion at various times and locations within the topology. When congestion is 
sufficient to induce losses, flows using the FAST algorithm can enter a rapid oscillatory 
behavior that exacerbates congestion. As a result, the network can exhibit a higher overall 
loss rate with consequent increase in retransmissions. Flows can take longer to connect 
and complete. The number of flows completed in such a network can be significantly 
reduced over long time spans. Should FAST be deployed throughout a network, typical 
Web-browsing users could experience lower average goodput on flows transiting through 
congested areas. These findings are limited to cases where all users on the network: (a) 
adopt FAST and (b) FAST is configured as discussed in Sec. 5.2.3 with fixed F = 200. 
In Chapter 7 we also investigate the case of FAST configured with -tuning enabled. 

6.5.3 Finding #3 
Under certain conditions, CTCP (algorithm 2) can drive congestion window size to 
substantially higher values than the other congestion control algorithms we simulated. In 
our experiment, this behavior arose during TP3, as shown in Fig. 6-50, which analyzes 
average congestion window size. Detailed examination of the relevant time series 
revealed that this increase in congestion window size can be attributed solely to DD 
flows. 

Recall that during TP2 jumbo file transfers were initiated on DD flows, which 
introduced substantial congestion within directly connected access routers. At the onset 
of TP3 no further jumbo transfers are initiated and congestion eases as residual jumbo 
transfers complete. During this easing period, the congestion window on DD flows can 
increase – the rate of increase depends upon the level of congestion created during TP2. 
For example, Fig. 6-67 plots, for six congestion control algorithms, the increase in 
average congestion window for DD flows during TP3 under condition 12.  

 

 

 

 

 

 

 

 
 
 
Figure 6-67. Average Congestion Window Size (packets) of DD Flows during TP3 (spanning 1500 200 
ms measurement intervals) under Condition 12 for BIC, FAST, HSTCP, HTCP, Scalable TCP and 
TCP Reno  
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Fig. 6-67 shows that five of the congestion control algorithms provide a linear 
increase (with a small slope) in average congestion window size, up to a maximum of 
about 4 x 103 packets. The increase for FAST, which also appears approximately linear 
but with larger slope, peaks at around 25 x 103 packets. The situation for CTCP is much 
different, as shown in Fig. 6-68, where under the same conditions the average congestion 
window size increases exponentially, reaching a peak of about 1 million packets. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Figure 6-68. Average Congestion Window Size (packets) of DD Flows during TP3 (spanning 1500 200 
ms measurement intervals) under Condition 12 for CTCP  
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Equation (17) specifies a periodic algorithm used by CTCP to adjust the delay window as 
needed every round-trip time (RTT). The CTCP delay window augments the congestion 
window. The highlighted line in (17) shows that CTCP will increase the delay window 
exponentially when no congestion has been detected and the actual congestion window is 
within ( C =) 30 packets of the expected congestion window. In other words, if there is no 
congestion and the actual window is close to what is expected from previous 
measurements, then perhaps the window can be increased because congestion is easing. 

In our scenario, DD flows that start during TP2 are likely to face stiff congestion, 
which implies that the initial minimum RTT for these flows will be somewhat high. At 
the onset of TP3, congestion eases as residual jumbo transfers complete. Easing 
congestion causes measured SRTT (smoothed RTT) to fall, thus minimum RTT recorded 
on these flows will be driven down. As a result, the minimum RTT and the measured 
SRTT will be identical, or nearly so. Thus, the difference in expected and actual 
congestion window, as computed by the CTCP algorithm, will be around zero.  As SRTT 
continues to fall, and minimum RTT falls with it, the highlighted line in (17) will be 
executed during each RTT. Naturally, this leads to an exponential increase in the 
congestion window. 

Under our scenario, this exponential congestion window increase has little 
practical implication because a source cannot transmit faster than its maximum interface 
speed (or the maximum interface speed of a slower receiver). Note, however, that under 
easing congestion and no packet losses the CTCP congestion window continues to 
increase exponentially until a transfer completes even though the source is unable to 
increase its transmission rate. This situation is analogous to initial slow start, which also 
increases the congestion window exponentially. Given an arbitrarily high initial slow-
start threshold, a large file transfer that proceeds without packet loss will likely remain in 
initial slow start until the transfer completes. Under these circumstances the congestion 
window grows exponentially even though the source is unable to increase its transmission 
speed beyond a physical maximum. In theory, a CTCP flow (or any flow operating within 
initial slow start) could achieve a very high window (e.g., millions of packets). A 
subsequent loss on a flow that has achieved such a high window could require many 
losses to reduce the window (by 50 % per loss) to a point where the transmission rate is 
throttled sufficiently to respond to the congestion signal. The possibility for such an 
outcome suggests that some practical upper limit should be placed on delay window size, 
though most TCP implementations place an upper limit on the size of the congestion 
window. 

6.5.4 Finding #4 
Focusing on longed-lived flows reveals several points of interest. First, during TP1 all 
congestion control algorithms showed nearly identical goodput on the three long-lived 
flows – the less the congestion, the closer the goodput. This occurs because the initial 
slow-start threshold was set to an arbitrarily high value. During TP1, when the long-lived 
flows commenced amid a background of Web traffic, initial slow-start was typically able 
to carry the long-lived flows to the maximum achievable transmission rate (960 Mbps). 
Since all congestion control algorithms adopted identical initial slow-start procedures, 
this finding should not be surprising. (In Chapter 7 we investigate effects from a lower 
initial slow-start threshold.) 
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When heavy congestion strikes, as jumbo file transfers commence in TP2, 
algorithm 6 (Scalable TCP) exhibited a tendency to provide higher goodput on the long-
lived flows than did the other congestion control algorithms. This comparative advantage 
of Scalable TCP tended to increase with increasing propagation delay and decrease with 
increasing congestion. Detailed analyses of long-lived flows (e.g., 6-38 and 6-39) did not 
find the goodput advantage of Scalable TCP to be statistically significant (5 %) under 
many conditions, but this appears influenced by the wide range of goodputs exhibited. 
The reason that Scalable TCP tended to provide higher goodputs on long-lived flows 
during TP2 is that newly arriving flows have more difficulty claiming their share of 
bandwidth when the competing flows are all using the Scalable congestion avoidance 
algorithm. This difficulty was illustrated in Chapter 5 (see Figs. 5-31 to 5-33). Further 
evidence of this effect is shown in Fig. 6-69, which compares algorithms 3 (FAST) and 6 
(Scalable TCP) with respect to decrease in congestion window size for all three long-
lived flows at the onset of TP2 under condition 27 (light-to-moderate congestion). 
  
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Figure 6-69. Comparing Congestion Window Size (packets) of Scalable TCP (STCP) and FAST with 
respect to Falling Congestion Window for Three Long-Lived Flows during the First 100 
measurement intervals (200 ms each) of TP2 under Condition 27 
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abated and most of the alternate congestion control algorithms recovered well. The most 
notable effect for long-lived flows during TP3 is that standard TCP lags in recovering 
peak goodput. This finding is as expected. In fact, the sluggishness shown by standard 
TCP when recovering from congestion provides motivation for researchers to propose 
alternate congestion control algorithms.  
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6.5.5 Tendencies 
Given that algorithm 3 showed several distinctive behaviors, we discarded its response 
data and then conducted our detailed analyses a second time on the remaining congestion 
control algorithms. As already demonstrated, the remaining algorithms could not be 
distinguished using tests for statistically significant differences. On the other hand, we 
noted earlier that algorithms 1 (BIC) and 6 (Scalable TCP) showed some tendency to 
behave similarly to each other and distinctly from other algorithms. Based on our 
supplementary analyses, we identified some tendencies that, though they cannot be 
considered findings, might illuminate differences among alternate congestion control 
algorithms (excluding FAST). The tendencies we identify are from rather small 
differences in relative and absolute effect. If nothing else, these tendencies help to 
explain why BIC and Scalable TCP clustered together under many conditions. 

The first observation to note is that BIC and Scalable TCP behaved more 
similarly under congested conditions. In part this is due to the fact that all the algorithms 
tended to behave similarly under uncongested conditions, so behavioral distinctions 
appeared only with increasing congestion. We note that BIC and Scalable TCP tended to 
push more packets through the network, while completing fewer flows. Algorithms 5 
(HTCP) and 7 (TCP) exhibited the opposite tendencies (i.e., fewer packets pushed 
through and more flows completed). One factor affecting these trends is that BIC and 
Scalable TCP tended to complete fewer NN flows, which were most numerous and also 
had the lowest potential for goodput, while CTCP (algorithm 2), HTCP (algorithm 5) and 
TCP tended to complete more of such flows. From this, we conclude that BIC and 
Scalable TCP showed a tendency to push more packets through the network for flows 
that could achieve higher goodputs (e.g., long-lived flows and other flows over fast and 
very fast paths). Another way to look at this is that (in this experiment) CTCP, HTCP and 
TCP provided fairer bandwidth sharing under heavy congestion than either BIC or 
Scalable TCP. This confirms differences demonstrated earlier in Sec. 5.4. These 
differences led to some distinctions in network-wide behavior. 

The average congestion window size tended to be higher under BIC and Scalable 
TCP; this higher average was due largely to bigger windows on advantaged flows. 
Pushing more packets into the network also led BIC and Scalable TCP to have higher 
retransmission rates, larger queuing delays and higher SYN rates (along with more flows 
pending in the connecting state). While not statistically significant in this experiment, the 
differences we highlight provide some tendencies that might separate BIC and Scalable 
TCP qualitatively from the other congestion control algorithms.  

6.6 Conclusions 
In this section we described an experiment comparing alternate congestion control 
algorithms deployed in a large, fast network with typical Web traffic, a few long-lived 
flows and a period of large file transfers between selected locations, followed by easing 
congestion. The specific experiment design we described follows a general approach that 
we will apply repeatedly in subsequent chapters to compare congestion control 
algorithms under various circumstances. In addition, we defined a data analysis approach 
that allowed us to find key differences, where they existed, among various congestion 
control algorithms. We applied the experiment design and data analysis approaches to 
compare seven alternate congestion control algorithms within a simulated network. In a 
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given simulation, all sources in the network used the same congestion control algorithm. 
This unrealistic assumption of homogeneity aided our analysis and allowed us to identify 
differences among the algorithms we compared. We subjected each congestion control 
algorithm to the same 32 conditions, which provided a range of congestion levels. 

We demonstrated that (aside from FAST) under our scenario and conditions the 
alternate congestion control algorithms exhibited indistinguishable macroscopic behavior 
and modest differences in user experience. We showed that the behaviors were more 
similar in uncongested conditions. We also explained why this was the case. We showed 
that FAST can exhibit distinctive, undesirable network-wide behavior, which grows more 
distinctive under increasing congestion. We described the root cause of this distinctive 
behavior, and we argued that deploying FAST throughout the Internet might entail 
significant risk. We identified an element of the CTCP delay-window adjustment 
algorithm that can lead to an exponential increase in congestion window under particular 
circumstances associated with easing congestion. We showed that Scalable TCP tends to 
retain a higher congestion window for a longer time on long-lived flows under periods of 
increasing congestion. We identified some tendencies for BIC and Scalable TCP to 
provide higher goodputs on large flows with high available bandwidth, while providing 
lower quality of service on more numerous, typical flows with lower available 
bandwidth. 

In the next section, we repeat the current experiment while changing only a few 
parameters. We scale down the network by one order of magnitude in size (number of 
sources and receivers) and speed. We intend to show that a scaled-down simulation, 
which requires much less computing resources, can reveal findings similar to a larger 
simulation. We also lower the initial slow-start threshold to a relatively small number of 
packets. Decreasing the initial slow-start threshold will allow flows to enter congestion 
avoidance earlier. More frequent activation of congestion avoidance under low 
congestion might reveal additional information about differences among congestion 
control algorithms. Finally, we add the -tuning variant of FAST as an eighth congestion 
control algorithm to consider. Here, we seek to understand whether activating -tuning 
might lead to improved behavior for FAST.    
 



Chapter 7 – Comparing Congestion Control  
                    Regimes in a Scaled-Down Network  
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7 Comparing Congestion Control Regimes in a Scaled- 
    Down Network 
In this section, we repeat the previous experiment (from Chapter 6) making a few 
parameter changes and including an additional congestion control regime: FAST with -
tuning enabled. Our parameter changes include reducing network size (number of sources 
and receivers) and speed by about an order of magnitude and reducing the initial slow-
start threshold to a relatively low value. As shown in Table 7-1, we retain the algorithm 
identifiers from Chapter 6, adding FAST with -tuning enabled (FAST-AT) as algorithm 
number eight. We also retain the topology (Fig. 6-1), scenario (Fig. 6-2), path classes 
(Table 6-2), and fixed parameters for the network (Table 6-4), for simulation control 
(Table 6-10), for user traffic (Table 6-11) and for long-lived flows (Table 6-12). In 
addition, we measure the same responses defined in Chapter 6 (recall Tables 6-15 
through 6-25). We collect data in the same fashion as described in Sec. 6.2.2. We also 
adopt the same fundamental approach to data analysis (as described in Sec. 6.3). 
 

Table 7-1. Congestion Control Mechanisms Compared 
 

Identifier Label Name of Congestion Avoidance Algorithm
1 BIC Binary Increase Congestion Control
2 CTCP Compound Transmission Control Protocol

3 FAST Fast Active-Queue Management Scalable 
Transmission Control Protocol

4 HSTCP High-Speed Transmission Control Protocol

5 HTCP Hamilton Transmission Control Protocol
6 Scalable Scalable Transmission Control Protocol

7 TCP Transmission Control Protocol (Reno)
8 FAST-AT FAST with -tuning Enabled

 
 

We expect the scaled-down network simulation to require an order of magnitude 
fewer resources, while confirming the main findings from simulating a large, fast 
network. Scaling down network size and speed by a similar factor should generate 
conditions with relative congestion aligned to those described in Chapter 6 (recall Figs. 6-
5 through 6-8). We also expect FAST-AT to exhibit similar response to congested 
conditions as FAST. This expectation arises from the fact that FAST and FAST-AT 
showed similar oscillatory behavior when simulated in a single-path topology with 
insufficient buffers. We also expect that lowering the initial slow-start threshold from 
231/2 to 100 packets will have only a limited effect on our results. This expectation arises 
from the fact that Web objects retain an average size of no more than 100 packets, which 
should enable the transfer of Web objects to complete under initial slow start during 
uncongested conditions. In uncongested conditions, document transfers, with average size 
of up to 103 packets, might be affected by the lower initial slow-start threshold, but such 
flows make up only about 1 % of all transfers. During congested conditions initial slow 
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start tends to end before the congestion window reaches the initial slow-start threshold. 
We do expect a lower initial slow-start threshold to have a negative influence on long-
lived flows that use standard TCP congestion avoidance. Long-lived flows have an 
infinite size, so congestion avoidance procedures are activated before such flows reach a 
maximum achievable transfer rate. Since standard TCP congestion avoidance procedures 
lead to a linear increase in the congestion window, long-lived TCP flows transiting high-
delay paths should take quite some time to achieve maximum rate. 

We organize what follows into six sections. Sec. 7.1 describes the experiment 
design, concentrating on changes from the previous experiment where we simulated a 
large, fast network. Sec. 7.1 also explains how the revised experiment design influences 
the domain view of the simulated network. Sec. 7.2 compares resource requirements for 
simulating a large, fast network against resource requirements for simulating a scaled-
down network. Sec. 7.3 explains the nature of (and rationale for) a tactical change in the 
data analysis approach we used to investigate the scaled-down network. Sec. 7.4 presents 
selected results from simulating a scaled-down network, while Sec. 7.5 discusses key 
findings from the results. We conclude in Sec. 7.6.   

7.1 Experiment Design 
We adopt the same 26-1 orthogonal fractional factorial design template (see Table 6-13) 
used in Chapter 6. As discussed below, we change only one robustness factor and two 
fixed parameters and then instantiate the design template to create 32 simulated 
conditions. 

7.1.1 Changes in Robustness Factors and Fixed Factors 
Table 7-2 specifies the robustness factors and values we used for this experiment. Recall 
that robustness factors define the range of parameter combinations over which 
experiment conclusions will hold. We highlight (in red) our changes (from Table 6-3) to 
robustness factor x1 (network speed). These changes result in a network that operates at 
only 15 % of the speed we simulated in Chapter 6. 
 

Table 7-2. Robustness Factors Adopted for Comparing Congestion Control Mechanisms 
 

Identifier Definition PLUS (+1) Value Minus (-1) Value
x1 Network Speed 1200 packets/ms 600 packets/ms
x2 Think Time 5000 ms 2500 ms
x3 Source Distribution Uniform (.33/.33/.33) Skewed (.1/.6/.3)
x4 Propagation Delay 2 1

x5 File Size 100 packets 50 packets
x6 Buffer Sizing Algorithm RTTxCapacity RTTxCapacity/SQRT(N)

 
 

We make only two other parameter changes from our previous experiment. The 
changes, shown below in red in Table 7-3, affect fixed parameters related to sources and 
receivers. We reduce the base number of sources under an access router from 1000 to 100 
and we reduce the initial slow-start threshold from 231/2 to 100 packets. 
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7.1.2 Orthogonal Fractional Factorial Design of Robustness  
         Conditions 
We inject the robustness factors from Table 7-2 into the design template from Table 6-13 
to yield 32 instantiated robustness conditions, as shown in Table 7-4. Changes in the 
robustness conditions (from Table 6-14) are emphasized in red. 
 

Table 7-3. Fixed Parameters Related to Sources and Receivers 

Parameter Definition Value

Bsources Basic unit for sources per access router 100

U Avg. sources per access router = Bsources x U 2

P(Nr) Probability receiver under normal access router 0.6

P(Nrf) Probability receiver under fast access router 0.2

P(Nrd) Probability receiver under directly connected access router 0.2

sstINT Initial slow-start threshold (packets) 100
 

 
Table 7-4. Instantiated Robustness Conditions 

 
Factor-> X1 X2 X3 X4 X5 X6

Condition -- -- -- -- -- --
1 600 2500 .1/.6/.3 1 50 RTTxCapacity/SQRT(N)
2 1200 2500 .1/.6/.3 1 50 RTTxCapacity
3 600 5000 .1/.6/.3 1 50 RTTxCapacity
4 1200 5000 .1/.6/.3 1 50 RTTxCapacity/SQRT(N)
5 600 2500 .3/.3/.3 1 50 RTTxCapacity
6 1200 2500 .3/.3/.3 1 50 RTTxCapacity/SQRT(N)
7 600 5000 .3/.3/.3 1 50 RTTxCapacity/SQRT(N)
8 1200 5000 .3/.3/.3 1 50 RTTxCapacity
9 600 2500 .1/.6/.3 2 50 RTTxCapacity

10 1200 2500 .1/.6/.3 2 50 RTTxCapacity/SQRT(N)
11 600 5000 .1/.6/.3 2 50 RTTxCapacity/SQRT(N)
12 1200 5000 .1/.6/.3 2 50 RTTxCapacity
13 600 2500 .3/.3/.3 2 50 RTTxCapacity/SQRT(N)
14 1200 2500 .3/.3/.3 2 50 RTTxCapacity
15 600 5000 .3/.3/.3 2 50 RTTxCapacity
16 1200 5000 .3/.3/.3 2 50 RTTxCapacity/SQRT(N)
17 600 2500 .1/.6/.3 1 100 RTTxCapacity
18 1200 2500 .1/.6/.3 1 100 RTTxCapacity/SQRT(N)
19 600 5000 .1/.6/.3 1 100 RTTxCapacity/SQRT(N)
20 1200 5000 .1/.6/.3 1 100 RTTxCapacity
21 600 2500 .3/.3/.3 1 100 RTTxCapacity/SQRT(N)
22 1200 2500 .3/.3/.3 1 100 RTTxCapacity
23 600 5000 .3/.3/.3 1 100 RTTxCapacity
24 1200 5000 .3/.3/.3 1 100 RTTxCapacity/SQRT(N)
25 600 2500 .1/.6/.3 2 100 RTTxCapacity/SQRT(N)
26 1200 2500 .1/.6/.3 2 100 RTTxCapacity
27 600 5000 .1/.6/.3 2 100 RTTxCapacity
28 1200 5000 .1/.6/.3 2 100 RTTxCapacity/SQRT(N)
29 600 2500 .3/.3/.3 2 100 RTTxCapacity
30 1200 2500 .3/.3/.3 2 100 RTTxCapacity/SQRT(N)
31 600 5000 .3/.3/.3 2 100 RTTxCapacity/SQRT(N)
32 1200 5000 .3/.3/.3 2 100 RTTxCapacity  
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7.1.3 Domain View of Robustness Conditions 
Changes in simulated speed and size influence the domain view of our simulated 
network. Table 7-5 shows the simulated router speeds for this experiment, which are 
reduced by about an order of magnitude over the values given in Table 6-5. Changes in 
router speeds are highlighted in red in Table 7-5. Reduction in Bsources (base number of 
sources) leads to an order of magnitude fewer sources, as shown in Table 7-6, which 
highlights in red changes from Table 6-9. 
 

Table 7-5. Domain View of Router Speeds 
 

 
 
 
 
 
 
 
 
 
 

Table 7-6. Number of Simulated Sources 

PLUS (+1) Minus (-1)
27.8 x 103 17.46 x 103

 
 

We use the same topology as the previous experiment and we simulate the same 
propagation delays (shown in Table 6-6). Recall, though, that buffer sizing is influenced 
by up to three factors: network speed, propagation delay and number of sources. Since we 
have changed two of these factors, simulated buffer sizes also change, as shown in Table 
7-7, which highlights in red changes in buffer sizes from the previous experiment (see 
Table 6-7). 
 

Table 7-7. Buffer Sizes Simulated 

Router
PLUS (+1) Minus (-1)

Min Avg Max Min Avg Max
Backbone 48.830 x 103 109.866 x 103 195.317 x 103 547 1.236 x 103 2.208 x 103

POP 6.104 x 103 13.734 x 103 24.415 x 103 105 240 431
Access 971 2.184 x 103 6.104 x 103 44 99 105

 
 

Overall, the order of magnitude reduction in network speed and number of 
sources should scale the network model so that simulated conditions exhibit about the 
same relative congestion levels as the previous experiment. Fig. 7-1 plots the 
retransmission rates (y axis) for each of the 32 simulated conditions. The x axis is plotted 
in order of increasing retransmission rate. Comparing this plot with Fig. 6-5, we see that 
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the order of the conditions shifts around slightly. Congestion levels in the scaled-down 
network are reduced somewhat, as can be seen by the fact that the most congested 
condition (21) has a retransmission rate of around 30 % as compared with 50 % for the 
larger network. Uncongested conditions in the scaled-down network have retransmission 
rates two orders of magnitude lower than exhibited by the larger network. Selected 
conditions with moderate congestion (4, 10, 16, 28 and 11) exhibit increased 
retransmission rates in the scaled-down network, as compared with the larger network. In 
fact, condition 11 can now be considered congested – implying that the scaled-down 
network has 17 congested conditions, labeled C in Fig. 7-1, as compared with 16 
congested conditions in the previous experiment (see Fig. 6-5). As one can see, condition 
11 exhibits a substantially higher retransmission rate than condition 28 but a substantially 
lower rate than condition 22. We arbitrarily divide the remaining conditions into three 
categories reflecting no (N), limited (L) and moderate (M) congestion. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Figure 7-1. Retransmission Rate (proportion of retransmitted packets) vs. Simulated Conditions 
Ordered from Least to Most Congested 
 

The range of retransmission rates in Fig. 7-1 spans about six orders of magnitude, 
as was the case in Fig. 6-5. On the other hand, the two least congested conditions (8 and 
12) in Fig. 7-1 show no retransmissions. In the large, fast network (Fig. 6-5) condition 12 
had 6 retransmissions in 109 packets and condition 8 had 6 retransmissions in 107 
packets. This difference can be attributed to the fact that the larger network typically had 
an order of magnitude more active flows and a higher slow-start threshold, both of which 
increase the likelihood of lost packets. 

As with the previous experiment, we select one uncongested and one congested 
condition to examine more closely. For the large, fast network we examined conditions 4 
(Fig. 6-6) and 5 (Fig. 6-7) under standard TCP congestion control. For the scaled-down 
network we also examine congested condition 5, but we select uncongested condition 3 
because condition 4 has moved from the category of little congestion (in Fig. 6-5) to 
moderate congestion (in Fig. 7-1). 
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Fig. 7-2 plots several time series that show the change in flow states for 
uncongested condition 3 under standard TCP congestion control. The x axis displays time 
(in 200 ms intervals since the beginning of the simulation) over the three time periods 
(final 15 simulated minutes) measured for the scenario. The y axis indicates the number 
of active (red curve) and connecting (yellow curve) flows. Additional curves decompose 
active flows by congestion control states: initial slow start (green curve) and normal 
congestion control (brown curve). Fig. 7-2 resembles Fig. 6-6, which plots the change in 
flow states for uncongested condition 4 in the large, fast network. The network is 
sufficiently uncongested that most transfers during TP1 (3000-4500) complete in initial 
slow start. Things change during TP2 (4500-6000) as jumbo transfers induce congestion 
in directly connected access routers. Congestion leads to losses, which increases the 
number of flows operating under normal congestion control procedures. As jumbo 
transfers diminish during TP3 (6000-7500), congestion decreases so that, by time t = 
6600, most active flows again complete transfers without packet loss. Plots for other 
uncongested conditions show similar patterns. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Figure 7-2. Change in Flow States over Three Time Periods under Condition 3 for Standard TCP – x 
axis gives time in 200 ms increments from the beginning of the simulation, covering the final 15 minutes of 
the simulated scenario, and y axis gives the number of flows  
 

Fig. 7-3 illustrates the change in flow states for condition 5, a representative 
congested condition. The number of active flows (red curve) shows an order of 
magnitude increase over uncongested condition 3. Comparing Fig. 7-3 with Fig. 6-7 
reveals some similarities and some differences. Both plots show that network congestion 
is sufficiently high that introducing jumbo transfers in TP2 (4500-6000) makes little 
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difference in the overall distribution of flow states. In the scaled-down network, about 60 
% of active flows operate under normal congestion control (brown curve) and 40 % 
operate in initial slow start (green curve). On the other hand, Fig. 6-7 shows that under 
the large, fast network about 85 % of active flows operate in normal congestion control. 
This difference occurs over the range of all congested conditions until the three most 
congested conditions (13, 31 and 21). Under these highest levels of congestion, the 
relative proportion of active flows using normal congestion control appears similar for 
both the large and scaled-down network. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Figure 7-3. Change in Flow States over Three Time Periods under Condition 5 for Standard TCP – x 
axis gives time in 200 ms increments from the beginning of the simulation, covering the final 15 minutes of 
the simulated scenario, and y axis gives the number of flows 
 

To further understand similarities and differences in conditions created by the 
scaled-down network versus the large, fast network, we can plot a cluster analysis 
(similar to Fig. 6-8) for each of the 32 conditions and eight congestion control algorithms 
across all response variables and then label each condition with the congestion class 
identified in Fig. 7-1. We show the annotated cluster analysis as Fig. 7-4, which 
encompasses the first time period (TP1). Comparing Fig. 7-4 and Fig. 6-8 we find that 27 
of the 32 conditions retain the same classification in both figures. Three conditions (9, 26 
and 32) remain classified as uncongested but fall into the next lower congestion category 
as we scale down the network simulation. One condition (4) remains classified as 
uncongested but with a movement to the next higher congestion category (from L to M). 
Only condition 11 becomes congested from uncongested (M). 
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The foregoing analysis demonstrates that scaling down the network model leads 
to congestion conditions that show reasonable alignment with the large, fast network. 
Overall, conditions, especially uncongested conditions, tend to be less congested under 
the scaled-down network. This lessening of congestion can be attributed to a lower initial 
slow-start threshold and a decrease in the number of active flows throughout the network. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
Figure 7-4. Cluster Analysis for Time Period One – x axis on each sub-plot gives algorithm identifier 
from Table 7-1 and y axis shows distance in the response space between pairs of algorithms and clusters of 
algorithms as indicated - each sub-plot also labeled with Congestion Level 

7.2 Experiment Execution and Data Collection 
Table 7-8 compares processing and memory requirements for simulating the FAST 
congestion control algorithm in the scaled-down network against resource requirements 
for simulating FAST in a large, fast network (Chapter 6). All simulations compared in 
Table 7-8 were executed on identical compute servers (ws11 through ws14, described in 
Table 6-26). As expected, scaling down the network simulation by an order of magnitude 
leads to a similar reduction in the processing time and memory usage. Table 7-9 shows 
that this reduction in resource usage arises because the scaled-down network simulates 10 
times fewer flows and packets per run. We collect data as described in Sec. 6.2.2, so 
reducing the scale of the simulation does not reduce the amount of data collected.  

7.3 Data Analysis Approach 
While we use the same fundamental data analysis approach described in Sec. 6.3, we 
adopt a tactical change in order to enhance clarity. Careful review of Fig. 7-4 reveals that 
algorithms 3 (FAST) and 8 (FAST with -tuning enabled) exhibit similar performance 
under all conditions. In fact, the cluster analysis groups the two algorithms together into 
the same exclusive cluster for each of the 32 conditions. This indicates that the two 
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algorithms respond similarly to similar conditions. This should come as no surprise 
because algorithms 3 and 8 share the same underlying FAST procedures, differing only 
with respect to treatment of the  parameter. 
 
Table 7-8. Comparing Resource Requirements for Simulating the FAST Congestion Control 
Algorithm in a Large, Fast Network and a Scaled-Down Network 

Large, Fast 
Network

Scaled-Down 
Network

CPU hours 
(32 Runs) 2241.6 197.3

Avg. CPU hours
(per run) 70.1 6.2

Min. CPU hours
(one run) 34.6 2.52

Max. CPU hours
(one run) 124.1 12.3

Avg. Memory 
Usage (Mbytes) 1250 139

 
 
Table 7-9. Comparing Number of Simulated Flows and Packets for a Large, Fast Network and a 
Scaled-Down Network under All Congestion Control Algorithms 

Large, Fast Network
Chapter 6

Scaled-Down Network
Chapter 7

Statistic
Flows 

Completed
Data 

Packets Sent
Flows 

Completed
Data 

Packets Sent
Avg. Per Condition 74.033 x 106 6.912 x 109 8.329 x 106 897.379 x 106

Min. Per Condition 40.966 x 106 3.146 x 109 4.329 x 106 380.349 x 106

Max. Per Condition 154.915 x 106 11.917 x 109 16.730 x 106 1.749 x 109

Total All Runs 16.583 x 109 1.548 x 1012 2.132 x 109 229.729 x 109

 
 

Similarity in responses for algorithms 3 and 8 lead to paired, extreme response 
values under many conditions. As a result, responses for the two algorithms are not 
necessarily distinguished as significant outliers by a Grubbs’ test. For example, examine 
Fig. 7-5, which gives a detailed analysis of the retransmission rate among all algorithms 
and conditions during the first time period (TP1). The figure shows that algorithms 3 and 
8 have extreme, high retransmission rates under congested conditions. Note, however, 
that in none of these conditions does a response satisfy our selected cutoff (> 2.08 
deviations from the residual mean) for the Grubbs’ test. The existence of two, similar, 
extreme values for two related congestion control algorithms inflates the mean, which 
causes the Grubbs’ value to reach only 1.6. This prevents automated highlighting (green 
for high and red for low) of either algorithm as an outlier. Without highlighting, the 
detailed analyses become more difficult to interpret, especially because similar response 
values for algorithms 3 and 8 can lead to an overstrike of the two numbers on the plots, as 
shown in Fig. 7-5. 
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Figure 7-5. Detailed Analysis of Retransmission Rate (proportion of packets retransmitted) in Time 
Period One for All Algorithms – y axis gives residuals around the mean value for each condition and x 
axis gives conditions ordered by increasing range of residuals 
 

  To enhance clarity, we adopt an approach that enables algorithm 8 to be 
highlighted as an outlier wherever both algorithms exhibit similar extreme responses. We 
omit responses for algorithm 3 from the detailed analyses. Omitting responses for 
algorithm 3 reduces the values of the mean residuals and thus enables responses for 
algorithm 8 to exceed our chosen 2.08 cutoff under the Grubbs’ test for outliers. For 
example, Fig. 7-6 shows the result of using our tactic to reconsider retransmission rate 
under all conditions for TP1. Note that numerous responses for algorithm 8 are now 
highlighted in green, which signifies a statistically significant increase in retransmission 
rate over the other algorithms (excluding algorithm 3). 

To justify this, we point out that the cluster analyses grouped together algorithm 3 
and algorithm 8 as a pair for each of the 32 conditions. We chose to omit algorithm 3 
rather than algorithm 8 because results for algorithm 3 were analyzed and discussed 
previously in Sec. 6.4. By focusing in this section on algorithm 8, we will be better 
positioned to identify significant similarities in the behavior of the two algorithms. 
Should we wish to seek significant differences, we could conduct the detailed analyses 
excluding responses for algorithm 8 instead of algorithm 3 and compare the two analyses. 
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Figure 7-6. Detailed Analysis of Retransmission Rate (proportion of packets retransmitted) in Time 
Period One when Excluding Responses for Algorithm 3 – y axis gives residuals around the mean value 
for each condition and x axis gives conditions ordered by increasing range of residuals 

7.4 Results 
In this section, we report the key results from our analysis of summarized response data 
(described in Sec. 6.2.2). We provide brief commentaries to explain the results presented. 
We give results in four segments: one for each of the three time periods and one for 
response data aggregated over the entire 25-minute scenario. We follow a similar plan for 
each segment: (1) present results from cluster analysis, (2) present results from condition-
response summaries, (3) present detailed analysis of significant responses and (4) give a 
summary of the results for the segment. We defer drawing inferences from the results 
until Sec. 7.5, where we give our findings. 

7.4.1 Time Period One (TP1) 
TP1 comprises a five-minute period (200 ms measurement intervals 3000-4500) where 
three long-lived flows commence within an overall background of normal Web traffic, 
which includes downloading Web pages and documents. In this experiment, each long-
lived flow exits initial slow-start once the congestion window passes 100 packets, so 
maximum transfer rate can only be achieved after entering congestion avoidance. For this 
reason, TP1 should reveal any differences (among the eight congestion control 
algorithms) in the time needed to achieve maximum transfer rate. In the previous 
experiment (Chapter 6), no such differences arose because the initial slow-start threshold 
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was set arbitrarily high (at 232/2 packets) and all long-lived flows achieved maximum 
transfer rate within initial slow-start.  
 
7.4.1.1 Cluster Analysis for TP1. Fig. 7-7 presents a cluster analysis comparing all eight 
algorithms (recall Table 7-1) under each of the 32 simulated conditions. We annotate the 
individual dendrograms with the algorithm identifier of a congestion control algorithm 
that stands out. Where more than one algorithm (usually 3 and 8) stands out we include 
all relevant algorithms separated by slashes, e.g., 3/8. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Figure 7-7. Clustering for Time Period One – x axis on each sub-plot gives algorithm identifier from 
Table 7-1 and y axis shows distance in the response space between pairs of algorithms and clusters of 
algorithms as indicated – each sub-plot Annotated to Identify Distinctive Algorithms 3/8  
 
7.4.1.2 Condition-Response Summary for TP1. Fig. 7-8 gives the condition-response 
summary for TP1 – but with the data for algorithm 3 excluded in order to highlight 
specific responses for which algorithm 8 may be distinguished.  Fig. 7-9 gives the same 
summary after applying a filter showing only statistically significant outliers for which 
the relative effect exceeds 10 %. 
 
7.4.1.3 Analysis of Significant Responses for TP1. Based on Figs. 7-8 and 7-9, we 
selected responses for more detailed analysis. In Figs. 7-10 to 7-15, we report analyses 
for congestion window increase rate (y2), flow completion rate (y5), retransmission rate 
(y6), goodput (y29) and flows completed (y31) on typical (NN) paths and average 
number of connecting flows (y42). We selected y5 and y31 based on Fig. 7-8 even 
though they did not pass the 10 % filter applied to generate Fig. 7-9. When accumulated 
over time, the absolute magnitude of each effect within a measurement interval appears 
large enough to affect overall system performance. 
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In Figs. 7-16 to 7-18, we provide additional, detailed analyses selected using the 
condition-response summaries shown in Figs. 7-8 and 7-9. Fig. 7-16 reveals that 
algorithm 7 (TCP Reno) lags significantly in the average rate at which packets exit the 
network. Fig. 7-17 shows a similar lag by algorithm 7 in average goodput provided on the 
moderate-distance long-lived flow (L2). We omit similar analyses for the short- and long-
distance long-lived flows. Finally, Fig. 7-18 explores average buffer utilization in directly 
connected access router K0a. We selected this analysis to show a tendency for differences 
in buffer utilization among the various congestion control algorithms. 

 
 

  
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
 
Figure 7-8. Condition-Response Summary for Time Period One – plot displays for each Factor 
Combination (row) vs. Response Variable (column) the Identifier of the Algorithm (from Table 7-1) 
manifesting a Statistically Significant Outlier (green high and red low) 
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Figure 7-9. Condition-Response Summary for Time Period One – 10% Filter Applied – plot displays 
for each Factor Combination (row) vs. Response Variable (column) the Identifier of the Algorithm (from 
Table 7-1) manifesting a Statistically Significant Outlier (green high and red low) 
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Figure 7-10. Detailed Analysis for Congestion Window Increase Rate Per Flow (increases per 200 ms) 
in Time Period One  – y axis gives residuals around the mean value for each condition and x axis gives 
conditions ordered by increasing range of residuals 

  
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Figure 7-11. Detailed Analysis for Flow Completion Rate (flows per 200 ms) in Time Period One – y 
axis gives residuals around the mean value for each condition and x axis gives conditions ordered by 
increasing range of residuals  
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Figure 7-12. Detailed Analysis for Retransmission Rate (proportion of packets retransmitted)  in 
Time Period One – y axis gives residuals around the mean value for each condition and x axis gives 
conditions ordered by increasing range of residuals 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Figure 7-13. Detailed Analysis for Average Goodput (packets per second) on NN Flows in Time 
Period One – y axis gives residuals around the mean value for each condition and x axis gives conditions 
ordered by increasing range of residuals 
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Figure 7-14. Detailed Analysis for NN Flow Completion Rate (flows per 200 ms) in Time Period One 
– y axis gives residuals around the mean value for each condition and x axis gives conditions ordered by 
increasing range of residuals  

  
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Figure 7-15. Detailed Analysis for Number of Connecting Flows in Time Period One – y axis gives 
residuals around the mean value for each condition and x axis gives conditions ordered by increasing range 
of residuals  
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Figure 7-16. Detailed Analysis for Average Packets Output Per 200 ms Interval in Time Period One – 
y axis gives residuals around the mean value for each condition and x axis gives conditions ordered by 
increasing range of residuals   
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Figure 7-17. Detailed Analysis for Average Goodput (packets per second) on Long-lived Flow L2 in 
Time Period One – y axis gives residuals around the mean value for each condition and x axis gives 
conditions ordered by increasing range of residuals   
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Figure 7-18. Detailed Analysis for Average Buffer Utilization (percentage of buffers occupied) at 
Router K0a in Time Period One  – y axis gives residuals around the mean value for each condition and x 
axis gives conditions ordered by increasing range of residuals 
 
7.4.1.4 Summary of Results for TP1. Given normal Web traffic, FAST with -tuning 
enabled (FAST-AT, i.e., algorithm 8) – exhibits distinctive behavior, which appears to 
grow more distinctive with increasing congestion. When faced with congestion, FAST-
AT exacerbates the situation (as shown by the higher rate of increase in congestion 
window), which leads to more packet losses and then to a higher rate of retransmissions. 
Increased losses under FAST-AT also appear to increase the difficulty for establishing 
flows because more SYN and SYN+ACK packets are lost. As a result, on average more 
flows are pending in the connecting state. Increased retransmissions also cause flows to 
send more packets (y4) in order to ensure all data is successfully received. This means 
that flows take longer to finish, as shown by the lower completion rate for flows in 
general and for NN flows in particular. This mirrors the findings for FAST with -tuning 
disabled, as reported previously (Sec. 6.4.1). 

Two additional results for TP1 should be mentioned. First, as expected, when the 
initial slow-start threshold is set small, standard TCP Reno (algorithm 7) provides 
substantially lower (compared with the other algorithms) average goodput on long-lived 
flows. This result occurs during the period when each long-lived flow attempts to achieve 
maximum transmission rate using congestion avoidance increase procedures. Since most 
packets exiting the network during TP1 are associated with long-lived flows, the lower 
goodput provided by TCP Reno also leads to a lower aggregate rate of packet output. 
Finally, our results show that buffer utilization in routers supporting long-lived flows 
appears highest for Scalable TCP (algorithm 6), followed by BIC (algorithm 1) and 
HSTCP (algorithm 4). HTCP (algorithm 5) tends to follow next, while the other 
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algorithms (CTCP, FAST-AT and TCP Reno) appear to utilize the smallest proportion of 
buffers. 

7.4.2 Time Period Two (TP2) 
During the five minutes (200 ms intervals 4500 to 6000) of TP2, DD flows (explained in 
Sec. 6.1) become jumbo file transfers, which lead to increased congestion within directly 
connected access routers, and also to increased packet load on the network backbone. 
Jumbo file transfers compete with the three long-lived flows transiting the same directly 
connected access routers. The remaining flow classes continue to generate normal Web 
traffic and occasional document downloads during TP2.  
 
7.4.2.1 Cluster Analysis for TP2. Fig. 7-19 shows an annotated set of 32 dendrograms for 
TP2. Since the level of congestion increases throughout the network during this period 
and algorithms 3 and 8 appear sensitive to congestion, one might expect the behavior of 
those algorithms to become more distinctive when compared with TP1. Note that 
algorithms 3 and 8 now standout under 28 of the conditions – compared with only 20 
conditions in TP1. Fig. 7-19 also shows algorithm 6 (Scalable TCP) standing out in a 
couple of conditions. 
 
7.4.2.2 Condition-Response Summary for TP2. Fig. 7-20 gives the condition-response 
summary for TP2. Fig. 7-21 gives the same summary after applying a filter showing only 
statistically significant outliers for which the relative effect exceeds 30 %. Remember 
that these figures omit data for algorithm 3. Algorithm 8 stands out in both figures and 
algorithms 4 (HSTCP) and 6 (Scalable TCP) tend to stand out with respect to buffer 
utilization (y36 through y41). 
 
7.4.2.3 Analysis of Significant Responses for TP2. Guided by Figs. 7-20 and 7-21, we 
selected several responses for detailed analyses, which are reported in Figs. 7-22 through 
7-30. We provide analyses for congestion window increase rate (y2), average packets 
output per measurement interval (y3), flow completion rate (y5), retransmission rate (y6), 
average goodput (y25) and completions (y27) for FN flows, average goodput for the 
moderate-distance (L2), long-lived flow (y34) and average number of connecting flows 
(y42). Taken together, these analyses highlight the key similarities and differences in 
behavior between TP1 and TP2. Fig. 7-30 reports the average buffer utilization for 
directly connected router I0a. 
 
7.4.2.4 Summary of Results for TP2. FAST-AT exhibits the same distinctive behaviors 
seen during TP1. Increased congestion in TP2 enhances these effects, most of which now 
show up as relative differences of 30 % or more. Under congestion associated with jumbo 
file transfers, FAST-AT outputs the fewest packets per measurement interval under most 
conditions. This represents a change from TP1, when TCP Reno output the fewest 
packets. During TP1, the packet output rate is dominated by long-lived flows, which are 
attempting to achieve maximum transfer rate. Here, TCP Reno lags. During TP2, packet 
output rate is dominated by jumbo flows and long-lived flows, which share bandwidth at 
directly connected routers. Here, FAST-AT lags. Congestion also causes FAST-AT to 
provide lower goodput on other flows, such as FN and NN flows. FAST-AT also 
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completes fewer FN and NN flows per interval. Note that Scalable TCP provides highest 
goodput on long-lived flows and continues its tendency to use the most buffers in directly 
connected routers. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Figure 7-19. Cluster Analysis for Time Period Two – x axis on each sub-plot gives algorithm identifier 
from Table 7-1 and y axis shows distance in response space between pairs of algorithms and clusters as 
indicated – each sub-plot Annotated to Identify Distinctive Algorithms 3/8 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Figure 7-20. Condition-Response Summary for Time Period Two – plot displays for each Factor 
Combination (row) vs. Response Variable (column) the Identifier of the Algorithm (from Table 7-1) 
manifesting a Statistically Significant Outlier (green high and red low) 
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Figure 7-21. Condition-Response Summary for Time Period Two – 30% Filter Applied – plot displays 
for each Factor Combination (row) vs. Response Variable (column) the Identifier of the Algorithm (from 
Table 7-1) manifesting a Statistically Significant Outlier (green high and red low) 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
Figure 7-22. Detailed Analysis for Congestion Window Increase Rate (increases per 200 ms) in Time 
Period Two – y axis gives residuals around the mean value for each condition and x axis gives conditions 
ordered by increasing range of residuals  
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Figure 7-23. Detailed Analysis for Packet Output Rate (packets per 200 ms) in Time Period Two – y 
axis gives residuals around the mean value for each condition and x axis gives conditions ordered by 
increasing range of residuals 
  
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Figure 7-24. Detailed Analysis for Flow Completion Rate (flows per 200 ms) in Time Period Two – y 
axis gives residuals around the mean value for each condition and x axis gives conditions ordered by 
increasing range of residuals 



Study of Proposed Internet Congestion Control Mechanisms NIST  

Mills, et al. Special Publication 500-282 276 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Figure 7-25. Detailed Analysis for Retransmission Rate (proportion of packets retransmitted) in 
Time Period Two – y axis gives residuals around the mean value for each condition and x axis gives 
conditions ordered by increasing range of residuals 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Figure 7-26. Detailed Analysis for Average Goodput (packets per second) on FN Flows in Time 
Period Two – y axis gives residuals around the mean value for each condition and x axis gives conditions 
ordered by increasing range of residuals 
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Figure 7-27. Detailed Analysis for Average FN Flow Completion Rate (flows per 200 ms) during 
Time Period Two – y axis gives residuals around the mean value for each condition and x axis gives 
conditions ordered by increasing range of residuals 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Figure 7-28. Detailed Analysis for Average Goodput (packets per second) on Long-lived Flow L2 in 
Time Period Two – y axis gives residuals around the mean value for each condition and x axis gives 
conditions ordered by increasing range of residuals 
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Figure 7-29. Detailed Analysis for Average Number of Connecting Flows during Time Period Two – 
y axis gives residuals around the mean value for each condition and x axis gives conditions ordered by 
increasing range of residuals  
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Figure 7-30. Detailed Analysis for Buffer Utilization (percentage of buffers occupied) at Router I0a 
during Time Period Two – y axis gives residuals around the mean value for each condition and x axis 
gives conditions ordered by increasing range of residuals 
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7.4.3 Time Period Three (TP3) 
During TP3 (200 ms intervals 6000 to 7500) no new jumbo file transfers are initiated on 
DD flows. What remains is for residual jumbo transfers to complete as the network 
transitions back toward normal Web traffic. The degree to which normal conditions can 
be restored depends upon how many jumbo transfers were created during TP2 and on 
how well a congestion control algorithm can recover from periods of intense congestion. 
 
7.4.3.1 Cluster Analysis for TP3. Fig. 7-31 shows an annotated set of 32 dendrograms for 
TP3. Since the level of congestion stays relatively high, as residual jumbo file transfers 
drain from the network, algorithms 3 and 8 remain distinctive. The cluster analysis also 
finds algorithms 6 (Scalable TCP) and 7 (TCP Reno) to be somewhat distinctive under 
some conditions. 
 
7.4.3.2 Condition-Response Summary for TP3. Fig. 7-32 gives the condition-response 
summary for TP3. Fig. 7-33 shows the same summary after applying a filter passing only 
statistically significant outliers for which the relative effect exceeds 30 %. These 
condition-response summaries confirm the findings from the cluster analysis: algorithms 
3 and 8 stand out, along with algorithms 6 and 7 for selected responses and conditions. 
Figs. 7-32 and 7-33 also identify that algorithm 2 (CTCP) obtains a larger average 
congestion window size under selected conditions. 
 
7.4.3.3 Analysis of Significant Responses for TP3. Guided by Figs. 7-32 and 7-33, we 
selected eight responses for detailed analysis, as reported in Figs. 7-34 to 7-41. 
Specifically, we show detailed analyses for rate of congestion window increases (y2), 
average packet output rate (y3), average congestion window size (y4), flow completion 
rate (y5), retransmission rate (y6), average goodput on the long-distance (L1), long-lived 
flow (y33), average buffer utilization on router C0a (y37) and average number of flows 
attempting to connect (y42). 
 
7.4.3.4 Summary of Results for TP3. FAST-AT (algorithm 8) exhibits most of the same 
distinctive behaviors seen during TP1 and TP2. The results for TP3 also show that FAST-
AT and TCP Reno (algorithm 7) both lag in recovering from the congestion of TP2. This 
shows up, for example, when examining detailed analyses for average packet output rate 
and for average goodput on the long- and moderate-distance, long-lived flows. The effect 
is more muted for the short-distance, long-lived flow. Scalable TCP (algorithm 6), BIC 
(algorithm 1) and HSTCP (algorithm 4) continue to use a higher proportion of buffers in 
the directly connected routers. In a previous experiment (Sec. 6.4.3), we found that CTCP 
exhibits a large congestion window size during easing congestion. This effect also 
appears in the current experiment but is somewhat attenuated. 

7.4.4 Aggregated Responses (Totals) 
Here we present analyses for the 28 responses collected over the entire 25-minute 
scenario. Recall that most of these responses are aggregated counts. Selected responses 
augment those counts with average values, specifically SYN rate on connected flows and 
goodput on completed flows. The analysis of totals examines the effects of behavioral 
differences when viewed over a longer period. 
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Figure 7-31. Cluster Analysis for Time Period Three – x axis on each sub-plot gives algorithm identifier 
from Table 7-1 and y axis shows distance in response space between pairs of algorithms and clusters as 
indicated – each sub-plot Annotated to Identify Distinctive Algorithms 3/8 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Figure 7-32. Condition-Response Summary for Time Period Three – plot displays for each Factor 
Combination (row) vs. Response Variable (column) the Identifier of the Algorithm (from Table 7-1) 
manifesting a Statistically Significant Outlier (green high and red low) 
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Figure 7-33. Condition-Response Summary for Time Period Three – 30% Filter Applied – plot 
displays for each Factor Combination (row) vs. Response Variable (column) the Identifier of the Algorithm 
(from Table 7-1) manifesting a Statistically Significant Outlier (green high and red low) 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Figure 7-34. Detailed Analysis of Congestion Window Increase Rate (increases per 200 ms) for Time 
Period Three – y axis gives residuals around the mean value for each condition and x axis gives conditions 
ordered by increasing range of residuals 
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Figure 7-35. Detailed Analysis of Packet Output Rate (packets per 200 ms) for Time Period Three – y 
axis gives residuals around the mean value for each condition and x axis gives conditions ordered by 
increasing range of residuals 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Figure 7-36. Detailed Analysis of Congestion Window Size (packets) for Time Period Three – y axis 
gives residuals around the mean value for each condition and x axis gives conditions ordered by increasing 
range of residuals 
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Figure 7-37. Detailed Analysis of Flow Completion Rate (flows per 200 ms) for Time Period Three – 
y axis gives residuals around the mean value for each condition and x axis gives conditions ordered by 
increasing range of residuals 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Figure 7-38. Detailed Analysis of Retransmission Rate (proportion of packets retransmitted) for 
Time Period Three – y axis gives residuals around the mean value for each condition and x axis gives 
conditions ordered by increasing range of residuals 



Study of Proposed Internet Congestion Control Mechanisms NIST  

Mills, et al. Special Publication 500-282 284 

 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Figure 7-39. Detailed Analysis of Average Goodput (packets per second) on Long-lived Flow L1 in 
Time Period Three – y axis gives residuals around the mean value for each condition and x axis gives 
conditions ordered by increasing range of residuals 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Figure 7-40. Detailed Analysis of Buffer Utilization (percentage of buffers occupied) in Router C0a 
during Time Period Three – y axis gives residuals around the mean value for each condition and x axis 
gives conditions ordered by increasing range of residuals 
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Figure 7-41. Detailed Analysis of Average Number of Connecting Flows during Time Period Three – 
y axis gives residuals around the mean value for each condition and x axis gives conditions ordered by 
increasing range of residuals 
 
7.4.4.1 Cluster Analysis for Totals. Fig. 7-42 shows a set of 32 annotated dendrograms 
with clustering based on the 28 aggregate responses. Similar to the cluster analyses for 
the three time periods, algorithms 3 and 8 appear distinctive in many (23) conditions. 
Also, as was true for TP2 and TP3, algorithm 6 stands out under condition 26. In 
addition, we note that cluster analyses for each of the time periods and the totals tend to 
suggest an affinity among some of the algorithms. For example, under selected 
conditions, algorithms 1, 4 and 6 (BIC, HSTCP and Scalable TCP) tend to cluster 
together and algorithms 2, 5 and sometimes 7 (CTCP, HTCP and TCP Reno) tend to 
cluster together.   
 
7.4.4.2 Condition-Response Summary for Totals. Fig. 7-43, which gives the condition-
response summary for the aggregate responses, proves quite revealing. First, standard 
TCP Reno (algorithm 7) pushes the fewest packets through the network. This occurs 
because TCP Reno increases its transmission rate slowly in congestion avoidance after 
leaving initial slow start. Second, FAST-AT (algorithm 8) provides the highest average 
goodput for DD, DF and FF flows (explained in Sec. 6.1), which transit very fast and fast 
paths, respectively. On the other hand, under most conditions, FAST-AT provides lowest 
average goodput for DN, FN and NN flows, which transit typical paths. Under 
uncongested conditions (e.g., 2, 12, 20 and 32) FAST-AT tends to provide highest 
throughput for DN, FN and NN flows. FAST-AT also sends more SYN packets, which 
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means flows have a more difficult time making connections. As a result FAST-AT 
connects and completes fewer flows.  
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Figure 7-42. Cluster Analysis for Totals – x axis on each sub-plot gives algorithm identifier from Table 
7-1 and y axis shows distance in response space between pairs of algorithms and clusters as indicated – 
each sub-plot Annotated to Identify Distinctive Algorithms 3/8  
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Figure 7-43. Condition-Response Summary for Totals – plot displays for each Factor Combination 
(row) vs. Response Variable (column) the Identifier of the Algorithm (from Table 7-1) manifesting a 
Statistically Significant Outlier (green high and red low)  
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7.4.4.3 Analysis of Significant Responses for Totals. Based on Fig. 7-43 we selected five 
responses for detailed analysis. Specifically, Figs. 7-44 to 7-48 provide results for 
aggregate packets input (T.y1) and output (T.y2), aggregate number of flows completed 
(T.y4), average number of SYNs sent per flow (T.y5) and average goodput on completed 
DD flows (T.y7). 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Figure 7-44. Detailed Analysis for Number of Packets Input during 25-minute Scenario – y axis gives 
residuals around the mean value for each condition and x axis gives conditions ordered by increasing range 
of residuals 
 
7.4.4.4 Summary of Results for Totals. Under most conditions investigated in this 
experiment, FAST-AT connects and completes on the order of 105 to 106 fewer flows 
during the 25-minute scenario. For flows that complete over fast and very fast paths, 
FAST-AT provides higher average goodput than the other algorithms. In some cases, this 
could be attributed to the fact that FAST-AT has fewer active flows sharing such paths 
because it is harder for flows to connect. In other cases, this can be attributed to the 
ability of FAST-AT to quickly achieve maximum transfer rate. TCP Reno injects fewer 
packets into the network (and thus outputs fewer packets). This can be attributed to the 
slow rate of increase in the congestion window during TCP Reno congestion avoidance. 
The results also show another a change over the previous experiment, where FAST input 
more packets into the network. In this experiment we excluded FAST data from the 
analyses, which then revealed that FAST-AT does not input as many packets per second 
into the network as FAST. This appears attributable to the ability of FAST-AT to lower 
the  parameter under congestion, and to increase  only slowly as congestion eases. 
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Figure 7-45. Detailed Analysis for Number of Packets Output during 25-minute Scenario – y axis 
gives residuals around the mean value for each condition and x axis gives conditions ordered by increasing 
range of residuals 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Figure 7-46. Detailed Analysis for Number of Flows Completed over 25-minute Scenario – y axis 
gives residuals around the mean value for each condition and x axis gives conditions ordered by increasing 
range of residuals 
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Figure 7-47. Detailed Analysis for Average SYN Rate (number of SYNs sent per flow) for Connecting 
Flows over 25-minute Scenario – y axis gives residuals around the mean value for each condition and x 
axis gives conditions ordered by increasing range of residuals 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
Figure 7-48. Detailed Analysis for Average Goodput (packets per second) on Completed DD Flows 
over 25-minute Scenario – y axis gives residuals around the mean value for each condition and x axis 
gives conditions ordered by increasing range of residuals 
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7.5 Findings 
We draw four main findings from our experimental results. First, all congestion control 
algorithms (except FAST and FAST-AT, algorithms 3 and 8, respectively) provided 
comparable network-wide behavior and user experience with respect to Web downloads 
and small file transfers over most path classes. This confirms similar findings from our 
previous experiment (discussed in Chapter 6) that adopted a large initial slow-start 
threshold. Modest differences (usually < 20 %) do appear with respect to throughputs on 
DD flows. We identify and discuss these differences below in Sec. 7.5.1. Second, as 
discussed below in Sec. 7.5.2, when deployed network wide, alternate congestion control 
algorithms 3 (FAST) and 8 (FAST-AT) can produce macroscopic changes in network 
behavior at congested places in the topology and during congested periods. This confirms 
findings from our previous experiment. Third, for long-lived flows, TCP provides 
significantly lower throughput during TP1. While other congestion control algorithms 
perform better than TCP during TP1, we did detect differences among the algorithms in 
time taken to achieve maximum transfer rate for long-distance, long-lived flows. 
Differences also occur during TP3, when attempting to recover from the excessive 
congestion in TP2. During TP2, the congestion control algorithms provide comparable 
throughput across all long-lived flows. Below in Sec. 7.5.3 we discuss findings relating to 
long-lived flows. Fourth, under certain conditions, CTCP (algorithm 2) can drive 
congestion window size to substantially higher values than the other congestion control 
algorithms we simulated. As with our previous experiment, this behavior arises during 
TP3. However, as discussed below in Sec. 7.5.4, in this experiment the CTCP congestion 
window reaches a much lower maximum size than in our previous experiment. Finally, in 
Sec. 7.5.5, we identify some tendencies that were apparent but that did not achieve 
statistical significance.  

7.5.1 Finding #1 
Setting aside FAST and FAST-AT, for the experiment scenario and conditions examined 
in this chapter, the alternate congestion control algorithms exhibited indistinguishable 
macroscopic behavior and modest differences in user experience. This suggests that there 
was no overall advantage to be gained in switching the entire network to a particular 
alternate congestion avoidance scheme, nor was there any overall disadvantage in 
switching. (Remember we are excluding FAST and FAST-AT from this finding.) 
Selected users could experience somewhat higher throughputs when using alternate 
congestion control algorithms to complete file transfers with a size exceeding the initial 
slow-start threshold, but no widespread improvement in user experience should be 
expected. 

The reasons underlying this finding are similar to the reasons identified in Sec. 
6.5.1. Slow-start procedures are unaffected by alternate congestion control mechanisms, 
which define replacements only for the TCP congestion avoidance phase. No matter what 
congestion control mechanism is used, a flow commences operating in initial slow-start 
and switches to congestion avoidance only after a packet loss or once the initial slow-start 
threshold is reached. Aside from FAST, FAST-AT and TCP Reno, the alternate 
congestion avoidance procedures specify an activation threshold. Below that threshold, a 
flow adopts standard TCP congestion avoidance procedures; above that threshold the 
flow adopts alternate congestion avoidance procedures. 
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Recall from Fig. 7-1 that we simulated 32 conditions covering a range of 
congestion patterns, which could be classified approximately into 15 uncongested and 17 
congested conditions. Condition 8 created the least congestion, while condition 21 
created the most congestion. Of course, even uncongested conditions include localized 
congestion arising from the onset of jumbo file transfers in TP2, as well as from hot spots 
appearing from time-to-time at particular access routers. For example, Fig. 7-2 plots the 
distribution of flow states under an uncongested condition (condition 3) for algorithm 7 
(TCP Reno). Note that most of the 700 or so active flows (red) in TP1 (t=3000 to t=4500) 
operate in initial slow start (green). This means that these active flows complete their file 
transfers without entering congestion avoidance. Only 20 or so (brown) flows enter 
congestion avoidance. Since condition 3 is uncongested, most of these 20 flows have 
likely entered congestion avoidance because they are larger than 100 packets, which is 
the initial slow-start threshold. This means that fewer than 3 % of active flows achieve 
any advantage from using alternate congestion avoidance procedures. This pattern also 
holds in TP3, after about t=6500, when the congestion (induced in TP2) abates. During 
the congested period (TP2) DD flows build up, as jumbo file transfers commence, and 
these flows contend for bandwidth, which leads to packet losses and thus to more flows 
operating under normal congestion control. Under such conditions, alternate congestion 
control algorithms do not offer any advantage. A similar story appears for congested 
conditions that extend over all three time periods. 

Fig. 7-3 plots the distribution of flow states for TCP Reno (algorithm 7) under a 
congested condition (condition 5). About 60 % of the nearly 8500 active flows (red) 
operate in normal congestion control mode (brown), while the remaining 40 % operate in 
initial slow start (green). Under such congested conditions, alternate congestion 
avoidance procedures are not much activated. Most flows in a heavily congested network, 
or in heavily congested portions of a network, will be sharing paths with many other 
flows. For this reason, one should expect most flows to be operating within normal 
congestion control mode; these flows cannot achieve a large enough congestion window 
size (or avoid losses for long enough) to activate alternate congestion avoidance 
procedures. On the other hand, flows transiting very fast (DD) paths may be able to 
benefit from alternate congestion control procedures during periods with little congestion. 

Table 7-10 reports the average, minimum and maximum per flow goodputs on 
DD flows (excluding long-lived flows), averaged over all conditions for each time period, 
for each of the eight congestion control algorithms. The table shows only modest 
differences in average goodput among most of the algorithms for TP1, though the 
average goodput lags somewhat for Scalable TCP. Note also that TCP Reno provides 
relatively high average goodput. Also notice that the average maximum goodput does not 
differ much in TP1 for most congestion control algorithms, though HSTCP seems to 
stand out somewhat on this metric. The average minimum goodputs are lower for BIC, 
HSTCP and Scalable TCP, which suggests that some flows are treated unfairly under 
these algorithms. On the other hand, TCP Reno provides the highest average minimum 
throughput, which suggests that these flows receive fairly equal treatment. During TP1 
and TP2, the average, minimum and maximum goodputs provided by FAST and FAST-
AT appear to be quite a bit higher than for the other algorithms, but this is due to the fact 
that fewer flows are actively transmitting under FAST and FAST-AT. As discussed 
previously, FAST flows have a more difficult time making connections. (This trait also 
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holds for FAST-AT.) The average goodputs among all the algorithms are relatively close 
in TP3. In general, for the conditions simulated, the alternate congestion control 
algorithms do not appear to provide a significant advantage over TCP Reno on DD flows 
with typical Web traffic. We consider the case of long-lived DD flows below in Sec. 
7.5.3. 
 

Table 7-10. Goodputs (pps) on DD Flows Averaged over all 32 Conditions for Each Time Period 
 
 
 
 
 
 
 
 
 
 
 
 
 

7.5.2 Finding #2 
In our previous experiment, we found (Sec. 6.5.2) that the FAST congestion control 
algorithm, when deployed throughout the network, produced macroscopic behavior 
changes at congested places in the topology and during congested periods. Further, we 
found that these changes could present Web-browsing users with lower average goodputs 
and longer connection times. The influence of these effects increased with increasing 
congestion. These findings suggested that deploying FAST on a wide scale could incur 
significant risk. Our current experiment reveals that FAST-AT (algorithm 8) shares these 
same undesirable traits, and for the same reasons. 

FAST-AT exhibits rapid oscillations in congestion window size when a path has 
insufficient buffers to contain the packets that the algorithm attempts to maintain queued 
at a bottleneck. When a large number of flows simultaneously transit a network router, 
the overall effect can be to flood the router with many packets. When the number of 
flows is sufficient to overrun the available buffers in the router, FAST-AT flows exhibit 
an oscillatory behavior that can create additional congestion that causes flows to remain 
in oscillation for an extended time. For example, Fig. 7-49 shows the change in the 
congestion window for long-lived FAST-AT flow L2 during 500 measurement intervals 
(100 s) within TP2 under condition 21. For comparison, Fig. 7-50 gives the behavior of 
standard TCP Reno under the same circumstances. (The reader may wish to compare 
these figures with Figs. 6-60 through 6-66 from the previous experiment.) 

The rapid oscillatory behavior of FAST-AT results in numerous packet losses, 
which leads to a large rate of congestion window increases (as shown in Figs. 7-10, 7-22 
and 7-34) and to a higher retransmission rate (as shown in Figs. 7-12, 7-25 and 7-38). 
The higher loss rate also causes a higher SYN rate (as shown in Fig. 7-47), which leads to 
a larger number of flows pending in a connecting state (as shown in Figs. 7-15, 7-29 and 
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7-41) because flows take longer to connect. Flows also take longer to complete because a 
larger number of packets must be retransmitted. This effect can be seen in Figs. 7-11, 7-
14, 7-24, 7-27 and 7-37, which show that FAST-AT flows have a significantly lower 
completion rate. The net effect of a lower completion rate appears in Fig. 7-46, which 
shows that FAST-AT completes many fewer flows than other algorithms, excluding 
FAST, over a 25-minute period. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Figure 7-49. Change in Congestion Window (packets) under FAST-AT for Long-Lived Flow L2 
during 500 Measurement Intervals (200 ms each) within TP2 under Condition 21 
 

In summary, a large network with many simultaneously active flows can induce 
congestion at various times and locations within the topology. When congestion is 
sufficient to induce losses, flows using the FAST-AT algorithm can enter a rapid 
oscillatory behavior that exacerbates congestion. As a result, the network can exhibit a 
higher overall loss rate with consequent increase in retransmissions. Flows can take 
longer to connect and complete. The number of flows completed in such a network can 
be significantly reduced over long time spans. Should FAST-AT be deployed throughout 
a network, typical Web-browsing users could experience lower average goodput on flows 
transiting through congested areas. These findings also apply to FAST, which showed 
similar behavior in the previous experiment. 

7.5.3 Finding #3 
The design of most alternate congestion control algorithms is motivated by a desire to 
improve on standard TCP congestion avoidance procedures by providing higher goodput 
when transmitting large files over long-delay, high-speed network paths. To investigate 
the degree to which alternate congestion control algorithms achieve this aim, we included 
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three long-lived flows in several of our experiments. The long-lived flows transmit 
(infinitely large) files over very fast (DD) paths between sources and receivers capable of 
operating at 80 x 103 packets per second. In the previous experiment, we found little 
difference in goodput among congestion control algorithms (including TCP Reno) 
because all long-lived flows achieved maximum transfer rate (in TP1) while operating in 
initial-slow start and because all long-lived flows were influenced by heavy congestion in 
TP2. In the current experiment, we expected TCP Reno to perform less well on long-
lived flows in TP1 because the initial slow-start threshold is low (100 packets). As in the 
previous experiment, we also expected TCP Reno to perform less well in TP3 during 
recovery from the heavy congestion in TP2. Further, we expected any differences in 
performance among the alternate congestion control algorithms to become apparent. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Figure 7-50. Change in Congestion Window (packets) under TCP Reno for Long-Lived Flow L2 
during 500 Measurement Intervals (200 ms each) within TP2 under Condition 21 
 

Table 7-11 reports the average, minimum and maximum goodputs (divided by 
1000) provided by each congestion control algorithm for the long-distance, long-lived 
flow (L1) averaged over all 32 conditions for each of the three time periods. As expected, 
during TP1 the standard TCP Reno congestion control algorithm underperforms all of the 
alternate congestion control algorithms. This demonstrates that the alternate algorithms 
can provide higher goodputs than TCP when transmitting large files over long-delay, 
high-speed network paths, provided there is a low initial slow-start threshold. This effect 
is also evident for the moderate-distance (L2) and short-distance (L3) long-lived flows, as 
shown in Tables 7-12 and 7-13, but the effect diminishes significantly with decrease in 
propagation delay. The effect is also evident in Fig. 7-17. The inability of TCP 
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BIC CTCP FAST HSTCP HTCP Scalable TCP FAST-AT

TP1
Average 59.822 62.497 64.857 58.513 64.617 62.087 15.859 64.840
Minimum 44.960 34.494 37.690 43.804 47.128 48.063 6.581 38.363
Maximum 73.204 77.051 78.899 72.038 74.466 73.150 25.151 78.899

TP2
Average 8.232 5.830 2.880 9.939 6.934 13.775 3.318 2.745
Minimum 0.604 0.260 0.240 0.508 0.494 0.660 0.320 0.191
Maximum 51.007 35.010 23.003 61.699 59.662 53.940 18.459 26.766

TP3
Average 23.232 23.461 27.237 22.525 22.964 27.472 6.335 16.164
Minimum 0.104 0.087 0.050 0.087 0.110 0.117 0.087 0.056
Maximum 79.593 79.675 76.994 79.588 79.079 78.140 37.658 78.903

BIC CTCP FAST HSTCP HTCP Scalable TCP FAST-AT

TP1
Average 70.304 69.200 70.526 69.110 66.900 70.560 43.070 70.479
Minimum 59.547 47.952 52.016 57.204 47.210 60.918 27.098 52.179
Maximum 77.929 78.896 79.707 77.441 76.236 77.431 65.462 79.707

TP2
Average 32.860 26.996 19.188 34.727 26.716 40.243 26.732 17.222
Minimum 2.981 1.706 1.850 3.189 1.706 2.394 2.444 1.466
Maximum 80.000 76.982 64.945 79.986 79.984 79.979 72.793 65.099

TP3
Average 61.447 58.343 53.823 60.902 57.718 61.121 51.106 54.677
Minimum 29.751 17.704 10.311 19.725 22.337 17.682 12.542 7.317
Maximum 80.000 80.000 80.000 80.000 80.000 80.000 80.000 80.000

BIC CTCP FAST HSTCP HTCP Scalable TCP FAST-AT

TP1
Average 73.219 72.681 71.735 72.298 67.693 73.039 63.519 71.673
Minimum 63.986 55.644 55.320 60.997 46.031 64.104 48.425 55.246
Maximum 79.331 79.558 79.907 79.904 77.613 78.975 76.185 79.907

TP2
Average 29.485 25.822 18.281 30.809 22.005 35.495 25.882 16.238
Minimum 2.030 1.925 1.672 1.632 1.063 1.152 1.424 1.150
Maximum 79.985 76.669 74.230 79.672 79.181 79.997 79.685 73.810

TP3
Average 61.066 57.312 55.706 59.204 56.872 61.321 57.438 55.849
Minimum 20.817 14.118 17.248 20.842 14.776 17.259 22.235 15.677
Maximum 80.000 80.000 79.988 80.000 80.000 80.000 80.000 79.992

congestion control to quickly reach maximum transfer rate is also responsible for the fact 
that TCP Reno outputs fewer packets per measurement interval in TP1 (see Fig. 7-16). In 
fact, when considered across the entire 25-minute scenario, TCP Reno inputs 
significantly fewer packets under most conditions (see Fig. 7-44). 
 
Table 7-11. Per Flow Goodputs (pps/1000) for Long-Lived Flow L1 Averaged over all 32 Conditions 
for Each Time Period 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Table 7-12. Per Flow Goodputs (pps/1000) for Long-Lived Flow L2 Averaged over all 32 Conditions 
for Each Time Period 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Table 7-13. Per Flow Goodputs (pps/1000) for Long-Lived Flow L3 Averaged over all 32 Conditions 
for Each Time Period 
 
 
 
 
 
 
 
 
 
 



Study of Proposed Internet Congestion Control Mechanisms NIST  

Mills, et al. Special Publication 500-282 296 

Considering TP3, we find that, on average, TCP Reno recovers significantly less 
well than the alternate congestion control algorithms for the long-distance (L1) and 
moderate-distance (L2) long-lived flows, but TCP Reno performs on a par with the 
alternate algorithms when recovering throughput on the short-distance (L3) long-lived 
flow. We also note that FAST-AT lags behind the other alternate congestion control 
algorithms when recovering on the long-distance (L1) long-lived flow. Further, FAST and 
FAST-AT tend to recover less well than other alternate congestion control algorithms on 
the moderate-distance (L2) and short-distance (L3) long-lived flows. In general, all 
congestion control algorithms provide similar goodputs across all time periods on the 
short-distance, long-lived flow, so differences in goodput arise only with sufficient 
propagation delay. 

Considering TP2, Scalable TCP, BIC and HSTCP retain higher average goodputs 
on the long-distance (L1) and moderate-distance (L2) long-lived flows, while FAST and 
FAST-AT yield lower average goodputs. This tendency also appeared in the previous 
experiment, as discussed in Sec. 6.5.4. 

In an effort to better understand similarities and differences among the congestion 
control algorithms, we next consider some of the detailed operations on long-lived flows, 
first under uncongested conditions and then under the most congested condition. We 
begin with the least congested condition (condition 8). 
 
Table 7-14. Time (seconds) until Long-Lived Flows Reach Maximum Transfer Rate in TP1 for 
Condition 8 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Table 7-14 shows for each long-lived flow, under the least congested condition, 
the time (in seconds) taken by each congestion control algorithm to reach its maximum 
transfer rate of 80 x 103 packets per second. The table reveals that TCP Reno takes much 
longer to achieve maximum rate than the other algorithms – in fact, TCP Reno does not 
reach the maximum rate on the long-distance, long-lived flow (L1) during TP1 (or any 
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other time period). Table 7-14 also reveals that FAST and FAST-AT converge most 
quickly to maximum rate, followed by CTCP. HTCP converges fairly quickly on the 
long-distance, long-lived flow but lags behind the other non-TCP algorithms in achieving 
maximum rate on the moderate- and short-distance, long-lived flows. 
 
Table 7-15. Time (seconds) until Long-Lived Flows Recover Maximum Transfer Rate in TP3 for 
Condition 8 
 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Table 7-15 reports for each long-lived flow, under the least congested condition, 

the time (in seconds) taken by each congestion control algorithm to recover its maximum 
transfer rate of 80 x 103 packets per second after TP3 begins (at t=6000). The table 
suggests that BIC and FAST-AT are somewhat sluggish in recovery and that CTCP is 
quite good. The table is difficult to interpret, however, because the numbers seem 
somewhat inconsistent. For example, FAST, HTCP and TCP require no time to recover 
maximum transfer rate on long-lived flow L2. This means that, for these congestion 
control algorithms, flow L2 had already recovered the maximum transfer rate before TP3 
began. Perhaps better insight can be provided by examining the time series of goodput for 
each flow over TP2 and the beginning of TP3, specifically between t=4500 and t=6500, 
which covers 400 seconds (i.e., 2000 200 ms intervals). We provide eight time series (one 
per congestion control algorithm) for each long-lived flow. 

Fig. 7-51 plots time series for goodput on long-lived flow L1. For the quickest 
recovering algorithm, CTCP, the plot reveals that goodput varies significantly during 
TP2, but goodput is generally improving after about t=5200. Further, by t=6000 CTCP 
has nearly regained its maximum transfer rate. Contrast this with HTCP (second quickest 
recovering) where goodput is trending generally down until t=6000, after which HTCP 
recovers quickly. Similarly, FAST shows widely varying goodput during TP2 and then 
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recovers quickly after t=6000. FAST-AT recovers less quickly because the -parameter 
had been auto-tuned to 20, whereas FAST used a fixed -parameter of 200. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Figure 7-51. Goodput (pps) from t=4500 to t=6500 for each Congestion Control Algorithm on Long-
Lived Flow L1 under Condition 8 – time is in 200 ms interval since beginning of simulation 
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Fig. 7-51 also shows that goodput for HSTCP is generally improving after about 
t=5400, while goodput for Scalable TCP is trending generally down until t=6000 and 
then begins to recover. On the other hand, goodput under BIC reaches a very low level by 
t=4800 and does not begin to recover until t=6250. Goodput under TCP bottoms at 
t=5500 and then begins to recover. While BIC does eventually recover its maximum 
transfer rate (not shown) during TP3, TCP never achieves the maximum transfer rate on 
flow L1 during any time period for condition 8. This highlights the fact that the alternate 
congestion control algorithms can provide substantial goodput improvement for large 
files on high-delay, high-speed paths. 

In thinking about the results for long-lived flows recall that the long-distance flow 
L1 also exhibits the highest congestion from jumbo file transfers during TP2. The 
moderate-distance flow L2 suffers least congestion from jumbo file transfers during TP2 
and the short-distance flow L3 suffers congestion at a level between that of L1 and L2. 
This factor helps explain why it takes less time in Table 7-15 to recover maximum 
transfer rate on flow L2 than on flow L3. We continue the analysis of results in Table 7-15 
with a consideration of flow L2. 

Fig. 7-52 plots time series for goodput on flow L2 between t=4500 and t=6500. 
Given that flow L2 traverses the least congested path during TP2, we expect quick 
recovery during TP3, as shown in Table 7-15, where four of the congestion control 
algorithms (including TCP Reno) have reestablished maximum transfer rate prior to 
t=6000. The time series plots reveal different behaviors during TP2 among the four 
congestion control algorithms in question. HSTCP goodput never falls below the 
maximum transfer rate.1 HTCP goodput briefly falls below the maximum transfer rate 
(around t=5900) and then recovers quickly. FAST goodput oscillates markedly 
throughout TP2 and recovers its equilibrium at the maximum transfer rate just prior to 
t=6000. FAST-AT behaves similarly to FAST but recovers its equilibrium somewhat past 
t=6000. On the other hand, TCP Reno reaches a lowest goodput of about 50 x 103 pps at 
about t=5400 and then improves steadily, reaching maximum transfer rate just prior to 
t=6000. Thus, while Table 7-15 reports similar recovery times for a number of alternate 
congestion control algorithms on flow L2 under condition 8, the time series reveal 
behavioral differences among these algorithms. 

Fig. 7-52 also shows that CTCP goodput varies somewhat like FAST (and FAST-
AT) but the evident oscillations tend to be less frequent with less change in amplitude. 
On the other hand, Scalable TCP retains maximum goodput until nearly t=5500, after 
which its goodput drops to about 50 x 103 pps, just before t=6000, and recovers to 80 x 
103 pps by about t=6200. BIC goodput drops generally to under 10 x 103 pps at about 
t=5400 and then rises steadily, reaching 80 x 103 pps at about t=6100. 

We continue this analysis by considering the temporal behavior of goodput for 
each congestion control algorithm on the short-distance, long-lived flow L3. Fig. 7-53 
displays the relevant time series. Recall that flow L3 faces moderate levels of congestion 
during TP2 due to competing jumbo file transfers. 

                                                 
1 Note that the noise around the maximum transfer rate (80 x 103 pps) is due to a measurement artifact. We 
measure goodput as the rate at which packets are received by the receiver. Since access routers typically 
operate much faster than sources and receivers, there are periods during which goodput oscillates around 
the maximum transfer rate due to packet clumping. This oscillation would not appear if we had instead 
measured the rate at which the receiver emits ACK and NAK packets in response to arriving data packets. 
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Figure 7-52. Goodput (pps) from t=4500 to t=6500 for each Congestion Control Algorithm on Long-
Lived Flow L2 under Condition 8 – time is in 200 ms intervals since beginning of simulation 
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Figure 7-53. Goodput (pps) from t=4500 to t=6500 for each Congestion Control Algorithm on Long-
Lived Flow L3 under Condition 8 – time is in 200 ms intervals since beginning of simulation 
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Long-Lived Flow

Algorithm L1 L2 L3

BIC 6.391 41.751 47.809
CTCP 34.488 69.332 75.435

FAST 18.068 64.444 53.162

FAST-AT 18.415 65.109 51.909

HSTCP 39.920 79.972 79.672

HTCP 24.794 79.845 73.935

Scalable 37.414 75.970 79.983

TCP 16.278 69.223 71.777

Fig. 7-53 shows that FAST and FAST-AT exhibit significant goodput oscillations 
during TP2, as also seen in Figs. 7-51 and 7-52. CTCP shows less frequent oscillations 
with lower amplitude. HSTCP and Scalable TCP tend to retain maximum transfer rate for 
most of TP2. HTCP goodput during TP2 looks very similar to goodput for TCP Reno. 
BIC appears to suffer two drops and recoveries in goodput during TP2. 

Table 7-16 shows the average goodput (divided by 1000) under each congestion 
control algorithm for each long-lived flow during TP2 given condition 8. Under this 
condition and time period, BIC actually underperforms TCP Reno on all long-lived 
flows. FAST and FAST-AT provide no better goodput than TCP Reno, except in the case 
of the long-distance flow L1. We cannot generalize from looking at a single uncongested 
condition, so we consider information from three additional uncongested conditions: 14, 
28 and 32. In this case, we limit our detailed analysis to consider only the long-distance, 
long-lived flow L1. Perhaps this additional analysis will suggest some patterns. 
 
Table 7-16. Average Goodput (pps/1000) for Each Congestion Control Algorithm on Three Long-
Lived Flows during TP2 under Condition 8 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Table 7-17 reports the lag time (in seconds) until each congestion control 
algorithm achieves maximum transfer rate on flow L1 under three uncongested 
conditions. The relative ordering is the same as appeared in Table 7-14: FAST and 
FAST-AT reach maximum rate soonest, followed by CTCP, HTCP, Scalable TCP, BIC 
and HSTCP. TCP Reno does not achieve maximum transfer rate during TP1. The 
measured time lags suggest that FAST, FAST-AT, CTCP and HTCP can be grouped 
together as the set of algorithms providing superior quickness in attaining maximum 
transfer rate. Scalable TCP, BIC and HSTCP achieve less impressive quickness. 

Table 7-18 reports the lag time until each congestion control algorithm recovers 
maximum transfer rate after TP2 on flow L1 under uncongested conditions 14, 28 and 32. 
As expected, TCP Reno does not achieve maximum transfer rate during TP3. 
Surprisingly, perhaps, FAST-AT also does not recover to the maximum transfer rate. 
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This occurs because during TP2 FAST-AT auto-tunes the -parameter from 200 to 20 to 
8 as throughput falls on flow L1. Over the course of TP3 the -parameter recovers as 
throughput rises but only reaches 20, which provides insufficient upward thrust on 
goodput. 
 
Table 7-17. Time (seconds) until Long-Lived Flow L1 Reaches Maximum Transfer Rate in TP1 for 
Three Uncongested Conditions 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Table 7-18. Time (seconds) until Long-Lived Flow L1 Recovers Maximum Transfer Rate in TP3 for 
Three Uncongested Conditions 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

---------------TCP
78.278.278.2Scalable
41.041.041.0HTCP

128.0128.0128.0HSTCP
26.226.226.2FAST-AT
26.226.226.2FAST
35.235.235.2CTCP

120.6120.6120.6BIC

C32C28C14Algorithm

Condition
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78.278.278.2Scalable
41.041.041.0HTCP
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26.226.226.2FAST
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120.6120.6120.6BIC

C32C28C14Algorithm

Condition

---------------TCP
175.4127.0135.2Scalable
125.0174.2145.2HTCP

190.6177.6205.8HSTCP
---------------FAST-AT

145.4109.0130.6FAST
122.296.6133.4CTCP
172.2186.8228.6BIC

C32C28C14Algorithm

Condition

---------------TCP
175.4127.0135.2Scalable
125.0174.2145.2HTCP

190.6177.6205.8HSTCP
---------------FAST-AT

145.4109.0130.6FAST
122.296.6133.4CTCP
172.2186.8228.6BIC

C32C28C14Algorithm

Condition
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Among the other congestion control algorithms, Table 7-18 reveals that recovery 
time lags cannot be grouped as clearly as occurred for the initial lag in attaining 
maximum transfer rate. This makes sense because flow L1 contends with great congestion 
during TP2. In general, Table 7-18 suggests that FAST and CTCP recover most quickly 
followed by Scalable TCP and HTCP. HSTCP and BIC appear to lag. Regarding the 
performance of FAST, the reader should remember that fewer flows operate 
simultaneously because under FAST flows have more difficulty connecting. 

Table 7-19 reports average goodput (divided by 1000) on flow L1 during TP2 
under each of three uncongested conditions: 14, 28 and 32. Here, Scalable TCP, HSTCP 
and BIC tend to retain higher goodput under the contention of an increasing number of 
jumbo files during TP2. This behavior, also evident in the previous experiment, indicates 
that newly arriving flows have more difficulty obtaining a fair share of goodput under 
these three congestion control algorithms. CTCP and HTCP show some ability to retain 
goodput during TP2. FAST and FAST-AT appear to reduce goodput significantly in the 
face of increased congestion. TCP Reno did not reach high levels of goodput and so it is 
not surprising that it provides low goodput during TP2. 

To better understand the measures reported in Tables 7-17, 7-18 and 7-19, we 
provide the related time series plots for each condition as Figs. 7-54 (condition 14), 7-55 
(condition 28) and 7-56 (condition 32). These figures reveal that FAST and FAST-AT 
quickly reduce goodput on L1 in reaction to congestion. Subsequently, as congestion 
clears (around t=6500) FAST quickly recovers maximum goodput. FAST-AT, on the 
other hand, recovers maximum goodput more slowly as the -parameter is auto-tuned 
upward only every 200 s. The figures also show that TCP Reno achieves only about 25 % 
of the maximum transfer rate prior to TP2 and then resumes its linear increase in goodput 
as congestion clears. CTCP takes longer to reduce goodput in reaction to congestion but 
then recovers to the maximum transfer rate quickly after congestion begins to clear. 
HTCP shows a pattern similar to CTCP. BIC reduces goodput on flow L1 slowly over a 
period of 200 s and then recovers over a period of about 100 s after congestion starts to 
clear. HSTCP shows a pattern similar to BIC. Scalable TCP loses goodput slowly on flow 
L1 over 200 s but the minimum goodput stays higher (around 20 x 103 pps) than is the 
case for the other congestion control algorithms. Once congestion begins to clear, 
Scalable TCP recovers maximum goodput somewhat quickly (within about 80 s). 

To conclude our analysis of the various congestion control algorithms performing 
on long-lived flows, we consider flow L1 under the most congested condition (21). We 
examine performance over all three time periods. We expect to learn how the congestion 
control algorithms react during TP1 where they face more intense competition than was 
the case under less congested conditions (e.g., conditions 8, 14, 28 and 32). Under TP2 
and TP3 we expect the congestion control algorithms to perform similarly because the 
congestion arising from jumbo files in TP2 is unlikely to clear during TP3. Table 7-20 
reports the average goodput (divided by 1000) on flow L1 for each congestion control 
algorithm in each of the three time periods. As expected, all algorithms provide very little 
goodput during TP3. The minor differences in goodput during TP2 appear due to 
variations in the rate at which the algorithms shed goodput in the face of intensifying 
congestion. These issues have been examined in earlier paragraphs. Here, we focus on 
TP1. To augment Table 7-20 we provide Fig. 7-57, which plots time series for goodput 
over all three time periods for each congestion control algorithm. 
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Figure 7-54. Goodput (pps) from t=4500 to t=7500 for each Congestion Control Algorithm on Long-
Lived Flow L1 under Condition 14 – time is in 200 ms intervals since beginning of simulation 
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Figure 7-55. Goodput (pps) from t=4500 to t=7500 for each Congestion Control Algorithm on Long-
Lived Flow L1 under Condition 28 – time is in 200 ms intervals since beginning of simulation 
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Figure 7-56. Goodput (pps) from t=4500 to t=7500 for each Congestion Control Algorithm on Long-
Lived Flow L1 under Condition 32 – time is in 200 ms intervals since beginning of simulation 
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Condition

Algorithm C14 C28 C32

BIC 9.533 6.391 16.951
CTCP 7.511 3.435 13.000
FAST 1.709 2.701 2.272

FAST-AT 1.505 2.859 2.690
HSTCP 15.114 7.792 29.338
HTCP 8.635 9.339 11.943
Scalable 24.756 10.085 38.446
TCP 3.160 2.737 5.333

Time Period

Algorithm TP1 TP2 TP3
BIC 50.154 0.909 0.116
CTCP 35.950 0.353 0.130
FAST 39.740 0.398 0.117
FAST-AT 40.368 0.375 0.086
HSTCP 50.880 0.540 0.117
HTCP 47.097 0.759 0.110
Scalable 55.591 1.061 0.117
TCP 25.106 0.546 0.112

Table 7-19. Average Goodput (pps/1000) on Long-Lived Flow L1 in Time Period 2 for Each 
Congestion Control Algorithm under Each of Three Uncongested Conditions 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Table 7-20. Average Goodput (pps/1000) on Long-Lived Flow L1 for Each Congestion Control 
Algorithm in Each of the Three Time Periods under Most Congested Condition 21 
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Figure 7-57. Goodput (pps) from t=3000 to t=7500 for each Congestion Control Algorithm on Long-
Lived Flow L1 under Condition 21 – time is in 200 ms intervals since beginning of simulation 
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Given heavy congestion from competing Web traffic and document downloads 
during TP1 under condition 21, the ability of Scalable TCP, HSTCP and BIC to resist 
losing goodput allows then to achieve higher average goodput. As show in Fig. 7-57, 
Scalable TCP keeps goodput within the range of about 50 x 103 to 65 x 103 pps, HSTCP 
within the range of about 45 x 103 to 60 x 103 pps and BIC within the range of 40 x 103 to 
65 x 103 pps. The higher, narrower goodput range of Scalable TCP accounts for higher 
average goodput. Fig. 7-57 shows that HTCP, with 4th highest average goodput, allows 
the range to vary between about 30 x 103 and 60 x 103 pps. CTCP, FAST and FAST-AT 
oscillate more frequently and with larger variation, ranging between about 15 x 103 and 
65 x 103 pps during TP1. TCP Reno linearly increases over TP1 from about 5 x 103 pps at 
t=3000 to about 50 x 103 pps at t=4500. 

Clearly, under many conditions and time periods for long-lived flows, and in the 
absence of a large initial slow-start threshold, the alternate congestion control algorithms 
provide improved goodput over TCP Reno. An exception to this occurs during TP2 when 
most of the algorithms cannot provide much goodput. Even in such cases, selected 
congestion control algorithms (Scalable TCP, HSTCP and BIC) tend to retain higher 
goodputs a bit longer than others. When ramping up toward maximum goodput under 
light to moderate Web traffic and document downloads, FAST, FAST-AT, CTCP and 
HTCP show some advantage in quickness over the other algorithms. When competing for 
goodput against heavy Web traffic and document downloads, Scalable TCP, HSTCP and 
BIC show some advantage in retaining higher goodput. When recovering from periods of 
intense jumbo file transfers, CTCP, FAST and HTCP show some advantage in recovering 
maximum goodput under uncongested conditions. These differences among the 
congestion control algorithms appear more readily under longer propagation delays, with 
differences shrinking along with falling propagation time. 

What might be the practical implications of these findings? First, for alternate 
congestion control algorithms to gain a significant advantage in goodput over standard 
TCP, the file to be transferred must be large, the initial slow-start threshold must be low 
(relative to the file size), the source and receiver must both have high-speed network 
connections, the propagation delay must be long and the network path must be fast 
enough and uncongested enough to support a stream of traffic at the rate of the high-
speed network connections between the source and receiver. This combination of 
conditions is likely to prove relatively rare within an operating network, as was the case 
for our simulated network. Of course, this combination of conditions is typically 
established (artificially) in support of attempts to show how fast a file can be transferred 
across a network path using a particular transport protocol. Second, any advantage for the 
alternate congestion control algorithms would likely be enhanced should the path show 
occasional packet losses due to noise (i.e., bit-error rate) or hardware malfunctions. This 
follows because some of the alternate congestion control algorithms (e.g., FAST, FAST-
AT, CTCP and HTCP) recover more quickly from sporadic packet losses, while others 
(e.g., Scalable TCP, HSTCP and BIC) exhibit smaller rate reduction on a sporadic loss. 
Third, regular patterns of packet losses due to high congestion would limit any advantage 
of the alternate congestion control algorithms, excepting that Scalable TCP, HSTCP and 
BIC tend to retain goodput a bit longer than other algorithms in the face of congestion. 
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7.5.4 Finding #4 
As in the previous experiment (see Sec. 6.5.3), CTCP (algorithm 2) can drive congestion 
window size to substantially higher values than the other congestion control algorithms 
we simulated. This behavior arose during TP3, as shown in Fig. 7-36, which analyzes 
average congestion window size. Detailed examination of the relevant time series 
revealed that this increase in congestion window size can be attributed solely to DD 
flows. The reason this occurs is the same as explained in Sec. 6.5.3. CTCP increases the 
delay window exponentially when no congestion had been detected and the actual 
congestion window is within 30 packets of the expected congestion window. This set of 
conditions can occur on DD flows as congestion eases at the onset of TP3. 

Recall that during TP2 jumbo file transfers were initiated on DD flows, which 
introduced substantial congestion in directly connected access routers. At the onset of 
TP3 no further jumbo transfers are initiated and congestion eases as residual jumbo 
transfers complete. During this easing period, the congestion window on DD flows can 
increase – the rate of increase depends upon the level of congestion created during TP2. 
For example, Fig. 7-58 plots, for seven congestion control algorithms, the increase in 
average congestion window for DD flows during TP3 under condition 8 (most 
uncongested). 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Figure 7-58. Average Congestion Window Size (packets) of DD Flows during TP3 under Condition 8 
for BIC, FAST, FAST-AT, HSTCP, HTCP, Scalable TCP and TCP Reno – time is in 200 ms intervals 
since the beginning of the simulation 
 

Fig. 7-58 shows that four (BIC, HSTCP, Scalable and TCP Reno) of the 
congestion control algorithms provide a linear increase (with a small slope) in average 
congestion window size, up to a maximum of about 103 packets. HTCP provides a similar 
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linear increase but with a higher slope and, thus, reaches a maximum congestion window 
size of about 4 x 103 packets. The increases for FAST-AT and FAST (which also appear 
approximately linear but with large slopes) peak at around 6 x 103 and 12 x 103 packets, 
respectively. The situation for CTCP is much different, as shown in Fig. 7-59, where 
under the same conditions the average congestion window size increases exponentially, 
reaching a peak of about 170 x 103 packets. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
  
 
 
 
 
 
 
 
Figure 7-59. Average Congestion Window Size (packets) of DD Flows during TP3 under Condition 8 
for CTCP – time is in 200 ms intervals since beginning of simulation 
 

Overall, the congestion window size on DD flows during TP3 under condition 8 is 
lower for all congestion control algorithms as compared with results for the most 
uncongested condition (condition 12) in the previous experiment (see Figs. 6-67 and 6-
68). The lower congestion window size is attributable to the order of magnitude lower 
network speeds used in the current experiment. While lower network speed bounds the 
ability of CTCP to increase the congestion window on DD flows under uncongested 
conditions during TP3, the general behavioral difference, first reported in Sec. 6.5.3, 
between CTCP and the other algorithms remains discernible. 

7.5.5 Tendencies 
While not consistently statistically significant across all conditions, buffer monitoring in 
the six directly connected access routers (B0a, C0a, E0a, F0a, I0a and K0a) revealed that 
Scalable TCP, BIC and HSTCP tend toward higher buffer utilizations than the other 
congestion control algorithms. For example, see Figs. 7-18, 7-30 and 7-40. This finding 
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appears consistent (at least with respect to Scalable TCP and BIC) with our 
measurements of buffer utilization when simulating the congestion control algorithms in 
a dumbbell topology (recall Sec. 5.4). This finding may also relate to tendencies of 
Scalable TCP to inject more packets into the network than other algorithms, to hold 
higher goodput on long-lived flows after the onset of jumbo file transfers in TP2 and to 
share goodput unfairly among competing flows. 

7.6 Conclusions 
In this section we described an experiment comparing alternate congestion control 
algorithms deployed in a scaled-down network with about an order of magnitude fewer 
sources and lower network speed than used in our previous experiment (described in 
Chapter 6). In addition, we reduced the initial slow-start threshold to a relatively low 
value and we added a congestion control regime: FAST with -tuning enabled. We 
subjected each of eight algorithms to the same 32 conditions, which covered a range of 
congestion levels. 

We demonstrated that FAST and FAST-AT exhibit similar influence on 
macroscopic network behavior and we showed that enabling -tuning caused FAST-AT 
to recover less quickly than FAST when congestion eases after periods of increased 
contention. We also showed that, under the scenario and conditions of this experiment, 
the congestion control algorithms (aside from FAST and FAST-AT) exhibited 
indistinguishable macroscopic behavior and modest differences in experience for typical 
users. We showed that FAST and FAST-AT can exhibit distinctive, undesirable network-
wide behavior, which grows more distinctive under increasing congestion. We also 
confirmed that the CTCP delay-window adjustment algorithm can lead to an exponential 
increase in congestion window size under particular circumstances associated with easing 
congestion. We identified some tendencies for Scalable TCP, BIC and HSTCP to utilize 
more buffers. 

We were able to show that under specific, constrained circumstances the alternate 
congestion control algorithms can provide higher goodput than TCP Reno. For alternate 
congestion control algorithms to gain a significant advantage in goodput over the 
standard TCP algorithm, the file to be transferred must be large, the initial slow-start 
threshold must be low (relative to the file size), the source and receiver must both have 
high-speed network connections, the propagation delay must be long and the network 
path must be fast enough and uncongested enough to support a stream of traffic at the rate 
of the high-speed network connections between the source and receiver. The advantage 
of alternate congestion control algorithms may be expected to increase in the presence of 
sporadic losses. We were also able to identify some specific circumstances where 
particular alternate congestion control algorithms performed similarly. Under a low initial 
slow-start threshold and competing with typical Web traffic, FAST, FAST-AT, CTCP 
and HTCP tended to attain maximum transfer rate more quickly on long-lived flows than 
other algorithms. Under heavy congestion, Scalable TCP, BIC and HSTCP tended to 
retain higher goodput for a longer time on long-lived flows. Under easing congestion for 
long-lived flows, FAST and CTCP tended to recover maximum transfer rate more 
quickly than other algorithms. Overall, for long-lived flows, Scalable TCP tended to 
provide highest goodput but at the cost of some unfairness with respect to competing 
flows. 
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In the next two chapters, we shift our assumptions to explore alternate congestion 
control algorithms with richer traffic classes in a network under relatively low 
congestion. We simulate a network with a mix of sources, some operating under standard 
TCP congestion control procedures and some operating under an alternate congestion 
control algorithm. We consider conditions where most of the network uses standard TCP 
as well as conditions where most of the network uses an alternate algorithm. We also 
extend our traffic classes beyond Web browsing to include some proportion of 
downloading for larger files, such as software service packs and movies. We simulate a 
full hour of network operation under 32 different conditions and then compare 
macroscopic network behavior among the algorithms. We also investigate relative 
goodputs experienced by comparable flows. In Chapter 8 we examine a scaled-down 
network in two different cases: (1) with a high initial slow-start threshold and (2) with a 
low initial slow-start threshold. In Chapter 9 we examine a large, fast network with a high 
initial slow-start threshold. In these experiments, we aim to understand whether alternate 
congestion control algorithms might prove beneficial for flows with specific 
characteristics. We also aim to determine if particular congestion control algorithms 
might have deleterious effects on competing flows using standard TCP.    



Chapter 8 – Comparing Congestion Control  
                    Regimes in a Heterogeneous Network  
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8 Comparing Congestion Control Regimes in a    
    Heterogeneous Network 
In this chapter, we investigate effects on macroscopic behavior and user experience when 
deploying various congestion control algorithms in a simulated, heterogeneous network, 
i.e., a network that includes flows operating under normal TCP congestion control 
procedures together with flows operating under one of seven proposed alternate 
congestion control algorithms, as identified in Table 8-1. Mixing alternate congestion 
control regimes together with standard TCP will enable us to investigate the influence of 
alternate congestion avoidance algorithms on the performance of TCP flows. We also 
introduce additional flow sizes to represent downloading movies and software updates 
(e.g., service packs). These file sizes augment the Web objects and document downloads 
used in previous experiments (Chapters 6 and 7). Here, we adopt a small-scale network, 
similar to that used in Chapter 7, because earlier experiments suggested that a small-scale 
network yields significant information while requiring fewer resources. Reducing 
computational cost allows us to repeat our experiments first with a large initial slow-start 
threshold and then with a small initial slow-start threshold. We take this step in light of 
the apparent significance of the initial slow-start threshold, as uncovered in earlier 
experiments.   
 

Table 8-1. Alternate Congestion Control Regimes Compared 

Identifier Label Name of Congestion Avoidance Algorithm
1 BIC Binary Increase Congestion Control
2 CTCP Compound Transmission Control Protocol

3 FAST Fast Active-Queue Management Scalable 
Transmission Control Protocol

4 FAST-AT FAST with -tuning Enabled

5 HSTCP High-Speed Transmission Control Protocol
6 HTCP Hamilton Transmission Control Protocol
7 Scalable Scalable Transmission Control Protocol

 
 
We exposed our simulated network to a range of congestion conditions, but we 

reduced overall congestion by an order of magnitude from previous experiments. We 
made this reduction in order to investigate behavior of the alternate congestion control 
algorithms under little to modest congestion, which should reveal any differences in user 
experience when large files are sent over fast paths between sources and receivers with 
high-speed network interfaces. In fact, we classified flows into groups based on four 
dimensions: (1) congestion control algorithm used; (2) characteristics of the network path 
transited; (3) minimum interface speed of the source and receiver pair; and (4) size of the 
transferred file. Such classification enabled us to compare relative performance among 
congestion control algorithms for specific flow groups. We collected and compared data 
representing the distribution of goodput for users of flows in each flow group. 
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We organize what follows into six sections. Sec. 8.1 describes the experiment 
design, including robustness factors, fixed factors, conditions simulated and responses 
measured. In describing the design, we explain how we controlled the generation of flows 
in each group. Sec. 8.1 also gives the domain view of the simulated conditions. Sec. 8.2 
details resource requirements for simulating the experiments and outlines how we 
collected and summarized experiment data. Sec. 8.3 explains the data analysis approach 
we used to investigate experiment responses. Sec. 8.4 presents the results from both sets 
of experiments, that is, with a large and a small initial slow-start threshold. Sec. 8.5 
discusses key findings from the results. We conclude in Sec. 8.6.   

8.1 Experiment Design 
We conducted these experiments within the same fixed, heterogeneous topology (see Fig. 
6-1) used in previous experiments. As discussed below, we employed nine robustness 
factors, which define the range over which our findings apply. We fixed the remaining 
model parameters and then created a design template to simulate 32 conditions. We 
repeated the 32 simulated conditions a second time after lowering the initial slow-start 
threshold, so the simulations yielded two sets of results. By mixing flows using alternate 
congestion control algorithms together with flows using standard TCP, we can examine 
the relative influence of the various alternate algorithms on normal TCP flows. Such 
information could be useful because the Internet is unlikely to cutover all at once to an 
alternate congestion control algorithm, but rather will experience a transition period 
during which TCP flows will coexist with flows using alternate algorithms. 

8.1.1 Robustness Factors and Fixed Factors 
Table 8-2 specifies the robustness factors and values we used for this experiment. 
Robustness factors included the most significant factors identified from our sensitivity 
analysis (see Chapter 4): network speed (x1), propagation delay (x2), number of sources 
(x9), think time (x4), file sizes (x5) and buffer sizes (x3). We introduced a new factor 
(x6) to control distribution of files sizes. In order to sample flows in each possible flow 
group, we included a factor controlling the network interface speed of sources and 
receivers (x7). Finally, to simulate a network in transition, we included a factor (x8) 
determining the proportion of sources adopting the alternate congestion control algorithm 
(the remainder of sources adopted standard TCP congestion control procedures). 
 

Table 8-2. Robustness Factors Adopted for Comparing Congestion Control Mechanisms 

Identifier Definition PLUS (+1) Value Minus (-1) Value
x1 Network Speed 1600 packets/ms 800 packets/ms

x2 Propagation Delay Multiplier 2 1
x3 Buffer Size Scaling Factor 1 0.5
x4 Think Time 7500 ms 5000 ms
x5 Average File Size for Web Objects 150 packets 100 packets
x6 Distribution for Sizing Large Files 2 1
x7 Probability of Fast Source .7 .3

x8 Probability of Alternate 
Congestion-Control Algorithm .7 .3

x9 Multiplier on Base Number of 
Sources ( U) 3 2
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The parameter values for x6 indicate which of two distributions to select for the 
probability of various file sizes. The distribution details are given in Table 8-3. A file that 
is not a document (D), service pack (SP) or movie (M) is a normal Web object (WO), so 
the sum of Fp, Sp and Mp can fall below, but must not exceed, one. The size of each Web 
object was drawn from a Pareto distribution with an average size of x5 and a shape 
parameter = 1.5. The average size for the other file types were multipliers applied to the 
size selected for a Web object. Table 8-4 gives the details.  
 

Table 8-3. Probability Distributions for Files of Various Sizes (Residual Files are Web Objects) 

Parameter Definition if x6 = 2 if x6 = 1

Fp Probability file is a Document 4 x 10-2 2 x 10-2

Sp Probability file is a Service Pack 4 x 10-3 2 x 10-3

Mp Probability file is a Movie 4 x 10-4 4 x 10-4

 
 

Table 8-4. Fixed Parameters for Sizing Files  

Parameter Definition Value

Shape parameter for Pareto distribution of file sizes 1.5

Fx Average Document size = x5 x Fx packets 10

Sx Average Service Pack size = x5 x Sx packets 103

Mx Average Movie size = x5 x Mx packets 104

 
 
The probabilities shown in Table 8-3 were used to determine the size of files sent 

on flows, subject to constraints (explained below) intended to ensure a minimum and 
maximum number of flows were active simultaneously in the network for each flow 
group. Table 8-5 shows the dimensions used to classify flow groups.  
 

Table 8-5. Four Dimensions Defining Flow Groups  

Path Class Interface Speed (min.) File Type Control Algorithm
VERY FAST FAST Document BIC

FAST NORMAL Movie CTCP
TYPICAL Service Pack FAST

Web Object FAST-AT
HSTCP
HTCP

Scalable

TCP Reno
 

 
One dimension of a flow group concerns path class, as described earlier in Table 

6-2. A given network flow may traverse a path between a pair of (so-called D-class) 
access routers directly connected to backbone routers, which would yield a very fast (VF) 
path. Other flows may transit combinations of D-class routers and fast (so-called F-class) 
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access routers, which yield fast (F) paths. Any flows traversing at least one normal (so-
called N-class) access router would travel on a typical (T) path. A second dimension of a 
flow group considers the speed with which a source-receiver pair connects to the 
network. A flow can operate no faster than the minimum speed of the source and 
receiver, which may connect at a normal speed (e.g., 100 Mbps) or fast speed (e.g., 1 
Gbps). If both source and receiver have fast network connections, then the interface 
speed is fast (F); otherwise, the interface speed is normal (N). A third dimension of a 
flow group is file type, which denotes file size. Flows with smaller files (e.g., Web 
objects) usually achieve lower goodputs because a larger portion of the flow lifetime is 
spent establishing the maximum transfer rate. In fact, sufficiently short files may end 
before a flow even reaches the maximum achievable transfer rate on a path. The fourth 
dimension of a flow group identifies the congestion control algorithm used by the source 
that originates the flow. Since each simulation had a mix of TCP sources and alternate 
sources, the fourth dimension in a given experiment execution took on two values: TCP 
Reno and one of the remaining congestion control algorithms. Flows, originated by TCP 
Reno sources and alternate sources, fell into one of 24 flow groups, depending on the 
values for the remaining three dimensions: path class, interface speed and file type. Table 
8-6 identifies these 24 flow groups. 

 
Table 8-6. Flow Group Identifiers Assigned Based on Three-Dimensional Classification 

 
 
 
 
 

 
 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 Web ObjectNORMALTYPICAL24

Web ObjectFASTTYPICAL23

Web ObjectNORMALFAST22

Web ObjectFASTFAST21

Web ObjectNORMALVERY FAST20

Web ObjectFASTVERY FAST19

DocumentNORMALTYPICAL18

DocumentFASTTYPICAL17

DocumentNORMALFAST16

DocumentFASTFAST15

DocumentNORMALVERY FAST14

DocumentFASTVERY FAST13

Service PackNORMALTYPICAL12

Service PackFASTTYPICAL11

Service PackNORMALFAST10

Service PackFASTFAST9

Service PackNORMALVERY FAST8

Service PackFASTVERY FAST7

MovieNORMALTYPICAL6

MovieFASTTYPICAL5

MovieNORMALFAST4

MovieFASTFAST3

MovieNORMALVERY FAST2

MovieFASTVERY FAST1

File TypeInterface SpeedPath ClassIdentifier

Web ObjectNORMALTYPICAL24

Web ObjectFASTTYPICAL23

Web ObjectNORMALFAST22
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8.1.1.1 Constraints on Flows of Large Size. Applying probabilities associated with factor 
x6 (distribution for sizing larger files) could lead to two undesirable consequences: too 
few samples on very fast paths and too many samples on typical paths. If the probabilities 
of very large files, e.g., movies and service packs, were sufficiently small, then a given 
experiment may generate few or no large files for some rarer combinations of flow traits, 
e.g., flows with fast interface speeds traveling over very fast paths. On the other hand, the 
probabilities of very large files may also cause a simulated network to be swamped with 
many large files that take much time to transfer on flows with normal interface speeds 
traversing typical paths. In such cases, large files flowing over slow paths can accumulate 
in the network because each of the file transfers takes a long time to complete and the 
more such flows in the network, the longer each takes to complete.1 

The problem of too few samples might be addressed by simulating longer network 
evolution, but the processing cost for the additional simulated time could prove 
prohibitive. The problem of too many samples cannot be solved by simulating longer 
network evolution; in fact, simulating longer evolution would increase accumulation of 
large files being transferred on flows transiting slow paths. For these reasons, we decided 
to place constraints on the generation of file types with large sizes. The aim of these 
constraints was to ensure a sufficient number of flow samples in each flow group, while 
not overwhelming the network with flows that accumulate in any particular group. 

In short, using factor x6 we computed a target maximum number of active flows 
for each file type, other than Web objects, i.e., for movies, service packs and documents. 
Based on relevant factors (x7 and x8) we also computed a target minimum number of 
active flows for each type. During simulation, each originating flow was assigned a 
preliminary file type of Web object. A file size was drawn from a Pareto distribution with 
a specified average (x5) and shape ( ). A check was then made to see if the minimum 
number of movies was active on flows with matching path class, interface speed and 
congestion control algorithm. If not, then the flow was assigned a file type of movie and 
the file size was increased by the appropriate multiplier taken from Table 8-4; otherwise, 
a similar check was made for service pack and then, if necessary, document. If the 
minimum number of flows was active in all three possible flow groups (designated by a 
specific path class, interface speed and congestion control algorithm in combination with 
one of the larger file types), then a file type was selected based on the specified 
probability distribution (x6). If the target maximum number of flows was already active 
for the selected file type, then the flow remained a Web object; otherwise, the flow size 
was increased by the appropriate multiplier. 

Computing the target maximum number of active flows for specific file types is 
straightforward. For example, given the total number (s) of sources in a simulation we 
computed the target number of active document flows as follows. 
 

(1) 
 

                                                 
1 In a real network the problem of too many large flows over specific paths could be ameliorated by users 
aborting flows observed to be running too slowly or taking too long. This would not be true for unattended 
flows, such as appear in typical peer-to-peer applications. The simulations used in these experiments 
include only unattended flows, so one cannot rely on users to abort slow flows. Note that MesoNet does 
include the possibility of user-attended flows in addition to unattended flows. 

sDCMAX max ceil s Fp×( ) 1000,( )≡
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Here, Fp is taken from x6 (and related Table 8-3) and 1000 is a selected minimum for the 
maximum number of active document transfers desired in the simulation. Ensuring a 
minimum maximum enables accumulation of sufficient samples when the specified 
probability of document transfers is low. Similar computations can be made for movies 
(2) and service packs (3). Note that since these file types are larger than documents, 
smaller minimum maximums were chosen to prevent very large files from accumulating 
in the network. 
 

(2) 
 
 

(3) 
 

Computing the minimum number of active flows in each flow group is somewhat 
more complicated. We began by selecting a target minimum for flows of each file type. 
We specified the target minimum as a percentage (10 % here) of the target maximum. In 
order to obtain sufficient samples in each flow group, we allocated the target minimum 
across flows based on path class, interface speed and congestion control algorithm. Table 
8-7 illustrates how the target minimums were computed for document flow groups. 
 
 Table 8-7. Computing Target Minimums for Document Transfers with Combinations of Flow Traits 

Path Class
Interface 

Speed
Control 

Algorithm
Minimum Number of Documents Being Sent

Per Flow Group
VERY FAST FAST TCP Reno

VERY FAST NORMAL TCP Reno

VERY FAST FAST Alternate

VERY FAST NORMAL Alternate

FAST FAST TCP Reno

FAST NORMAL TCP Reno

FAST FAST Alternate

FAST NORMAL Alternate

TYPICAL FAST TCP Reno

TYPICAL NORMAL TCP Reno

TYPICAL FAST Alternate

TYPICAL NORMAL Alternate

 
 

The computations in each row of Table 8-7 have a similar pattern. The target 
minimum number of active document transfers is 10 % of the target maximum (sDCMAX), 

sMV MAX max ceil s Mp×( ) 10,( )≡

sSPMAX max ceil s Sp×( ) 100,( )≡
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but multiplied by: (a) the probability that a flow transits a given path class2, e.g., 
Prob(DDflow), (b) the probability a flow connects with a particular interface speed (x7 or 
1-x7) and (c) the probability a flow uses a specified congestion control algorithm (x8 or 
1-x8). Similar computations can be made for movies and service packs. 

In cases where the probability of a specific file type is very small, the ceil function 
on the calculations in Table 8-7 (coupled with the target maximum) ensures that the 
minimum number of active flows for any flow group cannot go below one. In this way, 
samples can always be collected for each flow group as long as the probability assigned 
to each file type does not equal zero. 
 
8.1.1.2 Fixed Experiment Factors. We specified fixed values for model input parameters 
that were not chosen as robustness factors3. Table 8-8 shows the values specified for 
fixed network parameters. Most of these parameters remain the same as in previous 
experiments. The fixed network parameters defined speeds for POP routers and various 
access routers relative to the speed of backbone routers and also determined the speed (in 
packets per millisecond) for basic and fast sources and receivers. One change from 
previous experiments involves the buffer sizing algorithm. In the current experiment, 
buffers are sized using only the conventional computation (RTT x C). Variations in buffer 
sizes were controlled by factor x3, which specified a multiplier used to retain (x3 = 1) or 
halve (x3 = 0.5) the computed buffer size. 
 

Table 8-8. Fixed Network Parameters 

Parameter Definition Value

BBspeedup Backbone router speed = x1xBBspeedup 2
R2 POP routers speed = x1/R2 4
R3 Access routers speed = x1/R2/R3 10
Bdirect Directly connected access router speed = x1/R2/R3xBdirect 10
Bfast Fast access router speed = x1/R2/R3xBfast 2

Hbase Speed of basic sources (packets/ms) 8
Hfast Speed of fast sources (packets/ms) 80

QszAlg Algorithm to size buffers (in packets) RTT x C
 

 
Table 8-9 gives fixed values assigned to parameters influencing the number and 

distribution of sources and receivers. The basic unit of sources allocated under routers is 
100 (implying a base unit of 400 for receivers), which corresponds to our decision to 
simulate a small network. The base unit of sources (and receivers) is multiplied by the 
value for factor x9 to determine the actual number of base units for a given simulated 
condition. The next six parameters in Table 8-9 controlled placement of sources and 
receivers under specific access routers throughout the simulated topology. The 
probabilities listed were chosen to stimulate flow patterns consistent with a Web-centric 
network. Specifically, the probabilities for placing sources and receivers led to the 

                                                 
2 A method for computing such probabilities was explained in Sec. 3.2.4. 
3 Recall that the values of robustness factors establish the range of variation over which any experiment 
conclusions can be said to hold. 
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distribution4 shown in Table 8-10, where most sources were placed under fast access 
routers and a preponderance of receivers were placed under normal access routers. This 
led to a distribution of flows across flow classes with the approximate probabilities listed 
in Table 8-11. About 94 % of flows transited at least one N-class access router, with 
those flows partitioned as follows: 55 % transited FN paths, 32 % crossed NN paths and 
7 % traversed DN paths. 
 

Table 8-9. Fixed Source and Receiver Parameters 
Parameter Definition Value

Bsources Basic unit for sources per access router 100

P(Ns) Probability source under normal access router 0.1

P(Nsf) Probability source under fast access router 0.6

P(Nsd) Probability source under directly connected access router 0.3

P(Nr) Probability receiver under normal access router 0.6

P(Nrf) Probability receiver under fast access router 0.2

P(Nrd) Probability receiver under directly connected access router 0.2

sstINT Initial slow-start threshold (packets) 231/2 or 100
 

 
Table 8-10. Proportion of Sources and Receivers Placed under Specific Router Classes 

 
 
 
 
 
 
 

 
 

Table 8-11. Approximate Probability of Flows Transiting Specific Path Classes 

Path Class Flow Probability

Very Fast 1.070 x 10-3

Fast 61.479 x 10-3

Typical 937.451 x 10-3

 
 

Table 8-9 also indicates the values specified for the initial slow-start threshold. In 
this experiment, we selected two different values: one very large and one rather modest. 
We ran two sets of simulations encompassing all robustness conditions, as limited by the 
experiment design described below in Sec. 8.1.2. For the first set of simulations we used 
a large initial slow-start threshold. In this case, we invoked limited slow-start where the 
congestion window increased exponentially up to 100 packets and then logarithmically 
after that. We then repeated the same simulations but with a small initial slow-start 

                                                 
4 A method for computing the distribution of sources and receivers and also the probability of flows in 
various flow classes was explained in Sec. 3.2.4. 

9036Normal
858Fast
26Directly Connected

% Receivers% SourcesAccess Router Class

9036Normal
858Fast
26Directly Connected

% Receivers% SourcesAccess Router Class
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threshold. Repeating the simulations allowed us to assess differences among congestion 
control algorithms depending upon differences in initial slow-start thresholds. 

The remaining fixed parameters relate to simulation control, as defined in Table 
8-12. We set a simulation time step of one millisecond and chose to make measurements 
every 200 time steps. For each simulation run we collected 18 x 103 measurements, which 
equates to simulating network evolution for (18 x 103 intervals x .2 intervals/s =) 3600 s – 
or one hour. Differing somewhat from previous experiments, we defined individual 
random number streams for particular aspects of randomness within the simulation. We 
took this step to ensure that the experiments provided similar conditions for comparable 
aspects of the model when simulating different alternative congestion control algorithms. 
Table 8-12 gives the seeds used to initialize each random number seed. All seven seeds 
can be adjusted at one time by assigning a different value to parameter RandOffset. 
 

Table 8-12. Fixed Simulation Control Parameters 

Parameter Definition Value

M Measurement Interval Size in Time Steps 200
MI Number of Measurement Intervals Simulated 18000

MB Number of Measurement Intervals Buffered 1500

TSD Duration of Each Time Step in Seconds 0.001
RandOffset Random Number Seed Offset 0

CCseed Random Number Seed used to assign 
congestion-control algorithms to sources 100000

TTseed Random Number Seed used to assign think 
times between flows 200000

HSseed Random Number Seed used to assign network 
interface speeds to sources and receivers 300000

UPseed Random Number Seed used to determine when a 
source becomes active initially 400000

WOseed Random Number Seed used to assign basic file 
sizes for web objects 500000

FTseed Random Number Seed used to assign file types 
(web object, document, service pack, movie)

600000

RSseed Random Number Seed used to assign receiver 
for each flow started by a source 700000

 

8.1.2 Orthogonal Fractional Factorial Design of Robustness  
         Conditions 
Given nine robustness factors, a full factorial two-level experiment requires (29 =) 512 
simulations. Comparing seven congestion control algorithms under 512 conditions would 
require (7 x 512 =) 3584 simulation runs. Repeating the experiments with a different 
initial slow-start threshold would double the number of simulation runs to 7168. We 
estimated that running all these simulations, even for a small network, would require 
about 150 days given the 48 processors available for our experiments. We decided to 
constrain our simulation cost to be no more than 10 days, which implied that we could 
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run only 32 conditions for each congestion control algorithm under each of two initial 
slow-start thresholds. This led us to select a 29-4 orthogonal fractional factorial 
experiment design, as shown in Table 8-13. This is a resolution IV experiment design 
[89], which means that main effects are not confounded with each other or with any two-
factor interactions, though some two-factor interactions may be confounded with each 
other. Given previous experiments, MesoNet simulations appear to be driven by main 
effects, so a resolution IV design should prove adequate for our purposes. 
 

Table 8-13. Two-Factor 29-4 Orthogonal Fractional Factorial Design Template 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

To generate the experiment conditions, shown in Table 8-14, we combined the 
design template (from Table 8-13) with the robustness-factor values (from Tables 8-2 and 
8-3). We repeated these same 32 conditions for each combination of seven alternate 
congestion control algorithms and two initial slow-start thresholds to yield (32 x 7 x 2 =) 
448 individual simulation runs. 

8.1.3 Domain View of Robustness Conditions 
Changes in network speed and network size influence the domain view of our simulated 
network. Table 8-15 shows the simulated router speeds for this experiment, which are 
about an order of magnitude below speeds that might be seen in contemporary networks. 
Restricting Bsources (base number of sources) to be 100 scales the number of potentially 

Factor-> x1 x2 x3 x4 x5 x6 x7 x8 x9
Condition -- -- -- -- -- -- -- -- --

1 -1 -1 -1 -1 -1 +1 +1 +1 +1
2 +1 -1 -1 -1 -1 +1 -1 -1 -1
3 -1 +1 -1 -1 -1 -1 +1 -1 -1
4 +1 +1 -1 -1 -1 -1 -1 +1 +1
5 -1 -1 +1 -1 -1 -1 -1 +1 -1
6 +1 -1 +1 -1 -1 -1 +1 -1 +1
7 -1 +1 +1 -1 -1 +1 -1 -1 +1
8 +1 +1 +1 -1 -1 +1 +1 +1 -1
9 -1 -1 -1 +1 -1 -1 -1 -1 +1
10 +1 -1 -1 +1 -1 -1 +1 +1 -1
11 -1 +1 -1 +1 -1 +1 -1 +1 -1
12 +1 +1 -1 +1 -1 +1 +1 -1 +1
13 -1 -1 +1 +1 -1 +1 +1 -1 -1
14 +1 -1 +1 +1 -1 +1 -1 +1 +1
15 -1 +1 +1 +1 -1 -1 +1 +1 +1
16 +1 +1 +1 +1 -1 -1 -1 -1 -1
17 -1 -1 -1 -1 +1 -1 -1 -1 -1
18 +1 -1 -1 -1 +1 -1 +1 +1 +1
19 -1 +1 -1 -1 +1 +1 -1 +1 +1
20 +1 +1 -1 -1 +1 +1 +1 -1 -1
21 -1 -1 +1 -1 +1 +1 +1 -1 +1
22 +1 -1 +1 -1 +1 +1 -1 +1 -1
23 -1 +1 +1 -1 +1 -1 +1 +1 -1
24 +1 +1 +1 -1 +1 -1 -1 -1 +1
25 -1 -1 -1 +1 +1 +1 +1 1 -1
26 +1 -1 -1 +1 +1 +1 -1 -1 +1
27 -1 +1 -1 +1 +1 -1 +1 -1 +1
28 +1 +1 -1 +1 +1 -1 -1 +1 -1
29 -1 -1 +1 +1 +1 -1 -1 +1 +1
30 +1 -1 +1 +1 +1 -1 +1 -1 -1
31 -1 +1 +1 +1 +1 +1 -1 -1 -1
32 +1 +1 +1 +1 +1 +1 +1 +1 +1
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active flows to a level that matches the simulated network speeds. Table 8-16 shows the 
number of sources for each level of factor x9. The number of receivers is four times the 
number of sources. 
 
Table 8-14. The 32 Simulated Conditions used to compare Each Combination of Congestion Control 

Algorithm and Initial-Slow Start Threshold 
 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

We used the same topology as in previous experiments and we simulated the 
same propagation delays (shown in Table 8-16). Buffer sizing was influenced by three 
factors: network speed (x1), propagation delay (x2) and buffer-size adjustment (x3). 
Table 8-17 characterizes buffer sizes for each router level under both values for factor x3. 

Fig. 8-1 plots the retransmission rates for each of the 32 simulated conditions 
under a large initial slow-start threshold, while Fig. 8-2 plots retransmission rates under a 

Factor-> x1 x2 x3 x4 x5 x6 x7 x8 x9
Condition -- -- -- -- -- -- -- -- --

1 800 1 0.5 5000 100 0.04/0.004/0.0004 0.7 0.7 3
2 1600 1 0.5 5000 100 0.04/0.004/0.0004 0.3 0.3 2
3 800 2 0.5 5000 100 0.02/0.002/0.0002 0.7 0.3 2
4 1600 2 0.5 5000 100 0.02/0.002/0.0002 0.3 0.7 3
5 800 1 1 5000 100 0.02/0.002/0.0002 0.3 0.7 2
6 1600 1 1 5000 100 0.02/0.002/0.0002 0.7 0.3 3
7 800 2 1 5000 100 0.04/0.004/0.0004 0.3 0.3 3
8 1600 2 1 5000 100 0.04/0.004/0.0004 0.7 0.7 2
9 800 1 0.5 7500 100 0.02/0.002/0.0002 0.3 0.3 3
10 1600 1 0.5 7500 100 0.02/0.002/0.0002 0.7 0.7 2
11 800 2 0.5 7500 100 0.04/0.004/0.0004 0.3 0.7 2
12 1600 2 0.5 7500 100 0.04/0.004/0.0004 0.7 0.3 3
13 800 1 1 7500 100 0.04/0.004/0.0004 0.7 0.3 2
14 1600 1 1 7500 100 0.04/0.004/0.0004 0.3 0.7 3
15 800 2 1 7500 100 0.02/0.002/0.0002 0.7 0.7 3
16 1600 2 1 7500 100 0.02/0.002/0.0002 0.3 0.3 2
17 800 1 0.5 5000 150 0.02/0.002/0.0002 0.3 0.3 2
18 1600 1 0.5 5000 150 0.02/0.002/0.0002 0.7 0.7 3
19 800 2 0.5 5000 150 0.04/0.004/0.0004 0.3 0.7 3
20 1600 2 0.5 5000 150 0.04/0.004/0.0004 0.7 0.3 2
21 800 1 1 5000 150 0.04/0.004/0.0004 0.7 0.3 3
22 1600 1 1 5000 150 0.04/0.004/0.0004 0.3 0.7 2
23 800 2 1 5000 150 0.02/0.002/0.0002 0.7 0.7 2
24 1600 2 1 5000 150 0.02/0.002/0.0002 0.3 0.3 3
25 800 1 0.5 7500 150 0.04/0.004/0.0004 0.7 0.7 2
26 1600 1 0.5 7500 150 0.04/0.004/0.0004 0.3 0.3 3
27 800 2 0.5 7500 150 0.02/0.002/0.0002 0.7 0.3 3
28 1600 2 0.5 7500 150 0.02/0.002/0.0002 0.3 0.7 2
29 800 1 1 7500 150 0.02/0.002/0.0002 0.3 0.7 3
30 1600 1 1 7500 150 0.02/0.002/0.0002 0.7 0.3 2
31 800 2 1 7500 150 0.04/0.004/0.0004 0.3 0.3 2
32 1600 2 1 7500 150 0.04/0.004/0.0004 0.7 0.7 3
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small threshold. In each figure, the x axis is ordered by increasing retransmission rate. 
Overall, the simulated conditions exhibited about two orders of magnitude reduction in 
congestion when compared with previous experiments: recall Figs. 6-5 and 7-1. 

 
Table 8-15. Simulated Router Speeds 

 
 
 
 
 
 
 
 
 
 
 

 
Table 8-16. Number of Simulated Sources 

PLUS (+1) Minus (-1)
26.085 x 103 17.355 x 103

 
 
 

Table 8-17. Simulated Propagation Delays (ms) 
 
 
 
 
 
 
 

Table 8-18. Characterization of Simulated Buffer Sizes (packets) 

Router

x3  = 1.0 x3  = 0.5
Min Avg Max Min Avg Max

Backbone 65.105 x 103 146.487 x 103 260.422 x 103 32.553 x 103 73.244 x 103 130.211 x 103

POP 8.138 x 103 18.311 x 103 32.553 x 103 4.096 x 103 9.155 x 103 16.276 x 103

Access 1.294 x 103 2.912 x 103 5.176 x 103 647 1.456 x 103 2.588 x 103

 
 
Using visual guidance, as shown on Figs. 8-1 and 8-2, we divided congestion 

conditions into six categories moving from little congestion (C1) to relatively high 
congestion (C6). The range of congestion conditions is similar under either large (Fig. 8-
1) or small (Fig. 8-2) initial slow-start threshold. Using a high initial slow-start threshold 
appeared to increase overall congestion slightly, ranging from a low of 2 retransmissions 
per 104 packets to a high of about 25 per 103. For a small initial slow-start threshold the 
range goes from 4 in 106 to about 22 per 103. The number of conditions we placed in 

2.4 Gbps4.8 GbpsDirectly Connected Access

720 Mbps960 MbpsFast Access
240 Mbps480 MbpsNormal Access
2.4 Gbps4.8 GbpsPOP

19.2 Gbps38.4 GbpsBackbone
Minus (-1)PLUS (+1)Router

2.4 Gbps4.8 GbpsDirectly Connected Access

720 Mbps960 MbpsFast Access
240 Mbps480 MbpsNormal Access
2.4 Gbps4.8 GbpsPOP

19.2 Gbps38.4 GbpsBackbone
Minus (-1)PLUS (+1)Router

100416Minus (-1)
2008112PLUS (+1)
MaxAvgMin

100416Minus (-1)
2008112PLUS (+1)
MaxAvgMin
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particular categories varies slightly between the two figures. In addition, the order of the 
conditions varies somewhat between the two figures. Eight conditions changed categories 
when moving from a large to a small initial slow-start threshold. Seven of those 
conditions moved to a less congested category. Overall, however, the relative congestion 
generated by the same condition under either of the two initial slow-start thresholds 
appears similar.  
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 8-1. Conditions Ordered from Least to Most Congested (High Initial Slow-Start Threshold) 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 8-2. Conditions Ordered from Least to Most Congested (Low Initial Slow-Start Threshold) 
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To further explore the nature of congestion under the conditions simulated for this 
experiment, we examined six time series under each value of initial slow-start threshold. 
We chose one condition from each congestion class and we selected conditions that 
appeared in the same class under both initial slow-start thresholds. Fig. 8-3 plots related 
time series given a high initial slow-start threshold. Congestion increases with the 
following conditions: 4, 22, 26, 5, 29 and 1. The y axis indicates the number of flows in a 
particular state: connecting (gold) or active (red). Active flows may be operating in initial 
slow start (green), normal congestion avoidance (brown) or alternate congestion 
avoidance (blue). In these particular plots, CTCP flows were operating in the network 
along with flows using standard TCP congestion control procedures. The discussion 
considers only the relative distances between the curves on the graphs, so inability to read 
the axes will be immaterial. The number of active flows is generally on the order of 103. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Figure 8-3. Distribution of Flow States for Six Conditions (High Initial Slow-Start Threshold) – 
Connecting Flows (gold) and Active Flows (red) – with Active Flows subdivided by Congestion Control 
Phase: Initial Slow Start (green), Normal Congestion Avoidance (brown) and Alternate Congestion 
Avoidance (blue) 
 

Under the least congested condition (4), most active flows operate in initial slow-
start because few losses occur. A small number of flows with larger file sizes experience 
sporadic losses and operate under normal or alternate congestion control procedures 
depending upon whether the related source implements alternate procedures and on the 
value of the congestion window compared against the low-window threshold. As 
congestion increases with condition, the relative number of active flows in initial slow-
start decreases and the relative number under normal congestion control procedures 
increases. That is, the green and brown lines come closer together. The number of flows 
under alternate congestion control procedures (blue) shifts up or down slightly depending 
on whether a particular condition has 70 % of the sources equipped with an alternate 
congestion control algorithm or only 30 % so equipped. 
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Fig. 8-4 plots the same conditions as Fig. 8-3 but under a small initial slow-start 
threshold. Comparison of the figures reveals the fundamental influence of the value of 
initial slow-start threshold on the distribution of flow states. First, note that except for the 
most highly congested condition relatively fewer flows operate in initial slow-start. This 
stands to reason because flows must transition from initial slow-start once the threshold is 
reached, so relatively more flows will move to alternate or normal congestion avoidance 
mode. As congestion increases, the proportion of flows in initial slow-start converges 
with the proportion of flows in normal congestion control mode. The proportion of flows 
under alternate congestion control procedures shifts up or down slightly depending on 
whether a particular condition has more or fewer sources equipped with alternate 
congestion control procedures. This comparison further demonstrates that the same 
conditions produce similar congestion patterns no matter whether the initial slow-start 
threshold is large or small. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Figure 8-4. Distribution of Flow States for Six Conditions (Low Initial Slow-Start Threshold) – 
Connecting Flows (gold) and Active Flows (red) – with Active Flows subdivided by Congestion Control 
Phase: Initial Slow Start (green), Normal Congestion Avoidance (brown) and Alternate Congestion 
Avoidance (blue) 

8.1.4 Responses Measured 
As in previous experiments we measured responses in two categories: macroscopic 
behavior of the network and user experience. In the current experiment, however, we 
selected somewhat different responses in each category. Table 8-19 enumerates responses 
(y1 to y16) characterizing macroscopic behavior. We grouped the 16 responses into five 
subsets (color coded in Table 8-19) measuring: number of flows in a given state (blue); 
network-wide throughput in packets and flows (green); congestion window size and 
dynamics (yellow); congestion and delay (red); and proportion of completed flows by file 
type (orange). We used these responses to assess whether adopting a particular alternate 
congestion control algorithm alters global behavior in the simulated network. 

 Measuring user experience for the current experiment became more complicated 
than was the case for earlier experiments. First, in the current experiment we measured 
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user experience separately for each of the 24 flow groups identified in Table 8-6. Second, 
we measured 14 responses for each flow group. Table 8-20 specifies the responses – 
y1(u) to y14(u) – for a given flow group where all flows in that group use an alternate 
congestion control algorithm. We separately measured the same 14 responses in each 
flow group where all flows in that group use standard TCP congestion control 
procedures. Table 8-20 also lists this second set of 14 responses – y15(u) to y28(u). 
Isolating goodput on TCP flows enables us to investigate the relative influence of various 
alternate congestion control algorithms on the goodput of competing TCP flows. In 
summary, we collected 28 responses for goodput in each flow group. The first 14 
responses considered only flows using alternate congestion control procedures and the 
second 14 responses considered only flows using TCP congestion control procedures. 
Classifying responses with respect to flow group and congestion control procedures 
allowed us to compare flows with similar traits against each other with respect to user 
experience. The classification also enabled us to compare user experience on flows with 
similar traits where one set of flows used alternate congestion control procedures and one 
set used TCP congestion control. Among the 14 responses for each flow group we 
characterized the distribution with four summary statistics (average, standard deviation, 
minimum and maximum) as well as nine distributional statistics (deciles) and we 
captured the number of flows (samples) used to create the statistics. 
 
Table 8-19. Measured Responses Characterizing Macroscopic Network Behavior - colors indicate 
related responses: flow state (blue), network throughput (green), congestion window (yellow), losses and 
delay (red), and flows by file type (orange) 

Response Definition
y1 Average number of active flows
y2 Average number of flows in initial slow-start
y3 Average number of flows using normal congestion avoidance
y4 Average number of flows using alternate congestion avoidance
y5 Average number of flows attempting to connect
y6 Average aggregate packets output by the network every measurement interval
y7 Average number of flows completed per measurement interval
y8 Average size in packets of congestion window per flow
y9 Average number of congestion window increases per flow per measurement interval

y10 Average retransmission rate measured as proportion of packets resent
y11 Average smoothed round-trip time (ms)
y12 Aggregate number of flows completed
y13 Proportion of completed flows that were Web objects
y14 Proportion of completed flows that were document downloads
y15 Proportion of completed flows that were service-pack downloads
y16 Proportion of completed flows that were movie downloads

 

8.2 Experiment Execution and Data Collection 
Table 8-21 compares processing and memory requirements for simulating the network 
when the initial slow-start threshold was high versus low. The processing time and 
memory demands were comparable in both cases. The demands were slightly lower when 
the initial slow-start threshold was low. This appears to reflect the fact that network-wide 
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congestion was somewhat lower when the initial slow-start threshold was not extremely 
high. Table 8-22 gives evidence corroborating this hypothesis. Notice that about 7 million 
more flows were completed in the 224 simulated hours (about 30 x 103 flows per hour) 
when the initial slow-start threshold was set low. Also notice that completing those flows 
required about 42 billion fewer packets. This result is consistent with lower congestion 
when the initial slow-start threshold was set to the lower value. 
 
Table 8-20. Measured Responses Characterizing User Experience for Each Flow Group, inlcuding 
Flows using an Alternate Congestion Control Algorithm, y1(u) – y14(u), and Competing TCP Flows, 
y15(u) – y18(u) 

 
  

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

90th Percentile in goodputy14(u)
80th Percentile in goodputy13(u)
70th Percentile in goodputy12(u)
60th Percentile in goodputy11(u)
50th Percentile in goodputy10(u)
40th Percentile in goodputy9(u)
30th Percentile in goodputy8(u)
20th Percentile in goodputy7(u)
10th Percentile in goodputy6(u)
Maximum goodputy5(u)
Minimum goodputy4(u)
Standard deviation in goodputy3(u)
Average goodputy2(u)

Total number of flows in group 
that used alternate congestion 
avoidance

y1(u)

DefinitionResponse

90th Percentile in goodputy14(u)
80th Percentile in goodputy13(u)
70th Percentile in goodputy12(u)
60th Percentile in goodputy11(u)
50th Percentile in goodputy10(u)
40th Percentile in goodputy9(u)
30th Percentile in goodputy8(u)
20th Percentile in goodputy7(u)
10th Percentile in goodputy6(u)
Maximum goodputy5(u)
Minimum goodputy4(u)
Standard deviation in goodputy3(u)
Average goodputy2(u)

Total number of flows in group 
that used alternate congestion 
avoidance

y1(u)

DefinitionResponse

90th Percentile in goodputy28(u)
80th Percentile in goodputy27(u)
70th Percentile in goodputy26(u)
60th Percentile in goodputy25(u)
50th Percentile in goodputy24(u)
40th Percentile in goodputy23(u)
30th Percentile in goodputy22(u)
20th Percentile in goodputy21(u)
10th Percentile in goodputy20(u)
Maximum goodputy19(u)
Minimum goodputy18(u)
Standard deviation in goodputy17(u)
Average goodputy16(u)

Total number of flows in group 
that used standard TCP 
congestion avoidance

y15(u)

90th Percentile in goodputy28(u)
80th Percentile in goodputy27(u)
70th Percentile in goodputy26(u)
60th Percentile in goodputy25(u)
50th Percentile in goodputy24(u)
40th Percentile in goodputy23(u)
30th Percentile in goodputy22(u)
20th Percentile in goodputy21(u)
10th Percentile in goodputy20(u)
Maximum goodputy19(u)
Minimum goodputy18(u)
Standard deviation in goodputy17(u)
Average goodputy16(u)

Total number of flows in group 
that used standard TCP 
congestion avoidance

y15(u)



Study of Proposed Internet Congestion Control Mechanisms NIST 

Mills, et al. Special Publication 500-282 333 

8.2.1 Computing Macroscopic Responses  
We computed macroscopic responses in two general forms. In one form we counted 
events for each run over the simulated period (one hour). Specifically, for responses y12 
through y16 we counted the number of completed flows and categorized each completed 
flow by file type. Then we computed the proportion of completed files by type (y13 to 
y16) as the ratio of the count by type to total flows completed. 
 
Table 8-21. Comparing Resource Requirements for Simulating One Hour of Network Operation 
under 32 Conditions with High and Low Initial Slow-Start Thresholds 

Small Network with High 
Initial Slow-Start 

Threshold

Small Network with Low 
Initial Slow-Start 

Threshold
CPU hours 
(224 Runs) 5.857 x 103 5.639 x 103

Avg. CPU hours
(per run) 26.15 25.17

Min. CPU hours
(one run) 12.58 12.51

Max. CPU hours
(one run) 43.97 40.94

Avg. Memory 
Usage (Mbytes) 196.56 194.46

 
 
Table 8-22. Comparing Flows Completed and Data Packets Sent when Simulating One Hour of 
Network Operation under 32 Conditions with High and Low Initial Slow-Start Thresholds 

Small Network with High 
Initial Slow-Start Threshold

Small Network with Low 
Initial Slow-Start Threshold

Statistic Flows Completed Data Packets Sent Flows Completed Data Packets Sent

Avg. Per Condition 11.466 x 106 3.414 x 109 11.495 x 106 3.225 x 109

Min. Per Condition 7.258 x 106 2.139 x 109 7.263 x 106 2.055 x 109

Max. Per Condition 17.391 x 106 5.048 x 109 17.432 x 106 4.832 x 109

Total all Runs 2.568 x 109 764,740 x 109 2.575 x 109 722.466 x 109

 
 

For each of the responses y1 through y11 we computed average values from a 
time series of 9000 measurements. Figure 8-5 illustrates an example of such a 
computation for response y10, average retransmission rate. This example was taken from 
simulated condition 1 in the case where CTCP was the alternate congestion control 
algorithm and where the initial slow-start threshold was high. Notice that we discarded 
the first half of the time series, which avoided startup transients. We computed the mean 
of the second half of the time series; in this case the mean retransmission rate was 0.018. 

We organized all responses measuring macroscopic network behavior into a table, 
where each row contained the 16 responses under a given condition and alternate 
congestion control algorithm. Table 8-23 depicts the response format in the case when the 
initial slow-start threshold is high. We created a similar table for responses obtained 
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under a low initial slow-start threshold. These two tables served as the input data for our 
analysis of macroscopic behavior. 
  
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Figure 8-5. Illustration of Technique to Compute Means for Responses y1 to y11 - example for 
Retransmission Rate (y10), measured as the proportion of packets resent, vs. Time (200 ms intervals) under 
Condition 1 – CTCP – High Initial Slow-Start 
 

Table 8-23. Data Format Summarizing Responses y1 to y16 for All Algorithms and Conditions 
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8.2.2 Computing User Experience Responses 
We captured user experience directly during each simulation run. The general technique 
was to set a threshold for a minimum number of samples prior to reporting distributional 
information. At each measurement interval we computed and reported distributional 
information for each flow group where the number of samples exceeded the threshold. At 
the end of the simulation we also reported distributional information for residual flows, 
regardless of the sample threshold. As a result of this technique we generated one output 
file per flow group. The format of each output file is similar to Table 8-24. 
 
Table 8-24. Data Format Summarizing User Experience for One Flow Group – example for CTCP 
Flow Group 16 (Fast Path, Normal Interface Speed, Document) under Condition 1 
 
 
 
 
 
 
 
 

Given information such as shown in Table 8-24, we summed the number of 
samples (N) and computed a weighted average for each of the 13 remaining statistics. For 
a given simulation run (specified by condition and alternate congestion control 
algorithm), we performed this computation for each of the 24 flow groups under the 
alternate congestion control algorithm and under normal TCP congestion control 
procedures. Thus, we summarized 48 output files (24 flow groups x two congestion 
control algorithms) under each simulated condition (32 x 48 = 1536 files across all 
conditions) for each specified alternate congestion control algorithm (7 x 1536 = 10752 
files across all conditions and congestion control algorithms). 
 
Table 8-25. Data Format Summarizing User Experience for One Flow Group under All Algorithms 
and Conditions 
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For a given flow group, we concatenated the 14 responses on flows using 
alternate congestion control together with the 14 responses on flows using TCP 
congestion control and appended identifiers for the alternate algorithm and the condition 
to produce a 30 cell row for each combination, as illustrated in Table 8-25. Thus, we 
summarized user-experience responses into 24 files: one per flow group. Where needed 
to make data analysis more convenient, we concatenated all flow groups into a single file, 
adding a cell to each row to identify the flow group associated with the data. A single 
concatenated file contained (24 x 7 x 32 =) 5376 rows, one for each combination of flow 
group, alternate congestion control algorithm and simulated condition. 

8.3 Data Analysis Approach 
Most of the data analyses conducted for this experiment focused on user experience. 
Before explaining the techniques we applied to analyze user experience, we provide a 
brief summary of the single technique we applied to analyze macroscopic responses. 

8.3.1 Analyzing Macroscopic Behavior 
We considered each of the 16 macroscopic responses (recall Table 8-19) using a detailed 
analysis of the individual responses, as explained previously in Sec. 6.3.2. Here, we 
provide only a brief summary of the technique. Fig. 8-6 shows a sample plot displaying 
the analysis of retransmission rate (response y10) across all seven congestion control 
algorithms under the 32 conditions given a high initial slow-start threshold. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Figure 8-6. Detailed Analysis of Retransmission Rate (proportion of packets resent) under High 
Initial Slow-Start Threshold – y axis gives residuals around the mean value for each condition and x axis 
gives conditions ordered by increasing range of residuals; non-blue columns indicate statistically 
significant outliers, either high (green) or low (red) 
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For each condition, we computed the mean response and then reformulated the 
response for each algorithm as residuals around the condition mean by subtracting the 
response from the condition mean. We then sorted the conditions from the least to 
greatest extreme (by magnitude of the) residual and plotted the residuals (y axis) along 
with the factor settings associated with the related conditions (x axis). Below the factor 
settings we identified the algorithm exhibiting the most extreme residual. We also 
indicated the order of magnitude and percentage difference in the extreme residual from 
the mean. We applied a Grubbs’ test to determine if the extreme residual represented a 
statistically significant difference from the mean. If the difference was statistically 
significant on the positive side, then we colored the column green. If significant on the 
negative side, we colored the column red. Otherwise, the column remains blue. 

8.3.2 Analyzing User Experience 
We analyzed user experience with respect to the 24 flow classes identified in Table 8-6. 
In each class, we considered the experience of normal TCP users and also the experience 
of users under a competing alternate congestion control algorithm. We measured user 
experience as goodput (i.e., packets received per unit of time, excluding retransmissions). 
While we collected distributional data for each flow group (recall Table 8-20), the 
analyses described in this section focus solely on mean goodput for users under alternate 
congestion control – y2(u) – and under standard TCP congestion control – y16(u). 

We captured the average goodputs – y2(u) and y16(u) – in a tabular form, where 
goodputs are reported to the nearest packet per second (pps). From the table we extracted 
various graphs that compare goodputs of all congestion control algorithms for specific 
flow classes. For example, Fig. 8-7 shows two typical plots we used. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Figure 8-7. Average Goodput (packets per second and as proportion of interface speed) for Flows 
Using Alternate Congestion Control Algorithm – y2(u) – and Competing Flows Using TCP – y16(u) – 
when Transferring Movies on a Very Fast Path with a Fast Interface Speed Given a Low Initial 
Slow-Start Threshold. Leftmost bar graph plots raw average goodput (packets per second), while 
rightmost bar graph plots average goodput as a proportion of the maximum achievable transmission speed. 

VF-F
Legend

VF-FVF-FVF-F
LegendLegend

VF-FVF-F
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The legend in Fig. 8-7 shows the bar color associated with a particular alternate 
congestion control algorithm. When plotted in bar graphs we plot the algorithms by 
increasing identifier from 1 (BIC) to 7 (Scalable). Each bar graph is labeled with the path 
class (VF in Fig. 8-7) and interface speed (F in Fig. 8-7). The bar graphs in Fig. 8-7 plot 
average goodput when transferring movies over very fast paths with a fast interface speed 
(maximum of 80 x 103 pps) given a low initial slow-start threshold. The leftmost graph 
gives the raw average goodput (y axis) for each congestion control algorithm (one bar 
each). The first set of seven bars represents the goodput achieved on flows using a 
specific alternate congestion control algorithm. The second set of seven bars represents 
goodput achieved on flows using normal TCP congestion control but operating in a 
network where some flows use a specified, competing alternate congestion control 
algorithm. The rightmost graph is formulated in the same fashion except that the y axis 
expresses goodput as a fraction of the maximum achievable transfer rate (80 x 103 pps 
here). The leftmost graph illustrates differences in goodput among the various algorithms 
and also identifies differences in goodput between the alternate algorithms and normal 
TCP. The rightmost graph shows the degree to which the various flows were able to 
achieve the maximum available goodputs. 

To investigate causes of variation in goodputs, we employed principal 
components analyses (PCA) on the average goodput data – y2(u) and y16(u) – for each of 
the seven alternative congestion control algorithms under all 32 conditions. For each 
given algorithm a and condition c we collected 24 observations for y2(u) (one per flow 
group) and 24 for y16(u) (one per flow group) into a 48-dimension vector: (x1, x2, …, 
x48)a,c for a total of (32 x 7 =) 224 vector instances. We then conducted a PCA, as 
described earlier in Sec. 4.5, which yielded plots such as shown in Fig. 8-8. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Figure 8-8. Principal Components Analysis of Goodputs given High Slow-Start Threshold – three 
subplots give the weight vectors for the first three PCs and one bargraph indicates the proportion of 
variance explained by each of the first three PCs, as well as the variance explained by a combination of the 
first three PCs 
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As Fig. 8-8 demonstrates nearly all variation in the data could be accounted for by 
the first three principal components (PC). We plotted pairs of PCs against one another in 
biplots to investigate whether specific factors caused similarity among goodputs. Fig. 8-9 
gives an example of one such plot of PC1 (x axis) vs. PC 2 (y axis). The legend 
associates each congestion control algorithm with a particular colored symbol. Fig. 8-9 
clearly shows three groups of observations (circled). Two of the groups divide into two 
subgroups. As explained below in Sec. 8.4.2, we analyzed factors in common among 
observations in each group to provide information about the causes of these groupings. 
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                                 Figure 8-9. Illustration of Biplot of PC1 vs. PC2 and Related Clustering 
 

To compare goodputs provided on normal TCP flows against goodputs provided 
on flows using alternate congestion control algorithms, we adopted two main techniques. 
First, we created plots of y2(u) vs. y16(u) for all 32 conditions for a given flow group and 
alternate congestion control algorithm. For example, Fig. 8-10 shows such a plot for 
algorithm 3 (FAST) when transferring movies over very fast paths with a fast interface 
speed given a high initial slow-start threshold. The figure in red (0.96632) above the plot 
is the computed correlation between y2(u) and y16(u). Points below the diagonal indicate 
cases where flows using the alternate congestion control regime achieved higher average 
goodput, while points above the diagonal indicate cases where TCP flows achieved 
higher average goodput. A strong positive correlation indicates that the trend in goodputs 
for all flows was linear with respect to condition. 

As a second technique to compare goodput of TCP flows vs. goodput of flows 
using alternate congestion control algorithms, we plotted bar graphs for each condition 
and flow group, where each bar spans two points for each algorithm. One point represents 
y2(u)/1000 and one represents y16(u)/1000. If the y2(u) value is higher, then the bar is 
colored green. If the y16(u) value is higher, the bar is colored red. Fig. 8-11 shows a 
sample of such a bar graph. The bar for algorithm 4 (FAST-AT) is colored red, which 
shows that for this condition and flow group TCP flows achieved about 5000 pps higher 
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(40 p/ms – 35 p/ms = 5 p/ms) average goodput than FAST-AT flows. The specific 
condition (21; most congested) is reported in the lower left corner of the plot. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Figure 8-10. Scatter Plot of y16(u)/100 vs. y2(u)/100 for Movies Transferred over a Very Fast Path 
with Fast Interface Speed Given a High Initial Slow-Start Threshold; FAST Alternate Congestion 
Control Algorithm  
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Figure 8-11. Bar Graph for Movies Transferred over a Very Fast Path with Fast Interface Speed 
given a High Initial Slow-Start Threshold during Condition 21 (Most Congested) – each bar is formed 
by plotting y16(u)/1000 and y2(u)/1000 for a Specific Alternate Congestion Control Algorithm (plotted 
from 1 to 7 left to right) – if a bar is red then y16(u)/1000 is plotted at the top of the bar and y2(u)/1000 is 
plotted at the bottom of the bar; otherwise (green bar) y2(u)/1000 is plotted at the top of the bar and 
y16(u)/1000 is plotted at the bottom of the bar – y axis gives goodput (packets/ms) 
 

In addition to analyzing absolute differences in goodput among the alternate 
congestion control algorithms and between the alternates and normal TCP congestion 
control, we also analyzed the relative differences. To compare relative differences we 
adopted a rank analysis. For each given flow group and condition we compared the y2(u) 
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values among the seven alternate congestion control algorithms and ranked them from 
highest (7) to lowest (1). After ranking on all flow groups and conditions, we produced a 
rank matrix for each alternate congestion control algorithm. Fig. 8-12 shows an example 
of such a rank matrix. We generated similar matrices based on ranking y16(u) values 
among the seven alternate congestion control algorithms. The y16(u)-based ranking 
indicates relative goodputs achieved by TCP flows when operating concurrently with 
specific alternate congestion control algorithms. 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Figure 8-12. Rank Matrix for Algorithm 7 (Scalable TCP) – High Initial Slow-Start Threshold. Rank 
(7 high) in each cell denotes ordering of y2(u) for each condition (y axis) and flow group (x axis) – 
conditions are sorted from least (16) to most (21) congested and flow groups are ordered by file size – 
movies (M), service packs (SP), documents (D) and Web objects (WO) – and by path class – very fast 
(VF), fast (F), and typical (T) – within each file size and by interface speed – fast (F) or normal (N) – 
within each path class. Green ranks had goodput values above the condition mean, while red ranks had 
goodput values below the condition mean. Filled cells indicate the goodput was most extreme: either high 
(7 green) or low (1 red). 
 

The matrix in Fig. 8-12 contains (24 flow groups x 32 conditions =) 768 cells, one 
per flow group per condition. Here the matrix reports the ranking of algorithm 7 
(Scalable TCP) with respect to other alternate congestion control algorithms for response 
y2(u) – average goodput on flows using an alternate algorithm instead of standard TCP. 
To determine the rank for a given condition and flow group we order the algorithms from 
lowest to highest average goodput, y2(u), and then assign a integer from 1 (lowest) to 7 
(highest). We also compute the mean of the seven goodputs. The rank is colored green 
when the value if y2(u) is above (red when below) the mean for the same condition and 
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flow group. If the value of y2(u) is most distance from the mean the rank is filled – green 
for highest (7) and red for lowest (1). A quick glance at Fig. 8-12 reveals that Scalable 
TCP appears to provide best goodput for larger files (movies and service packs) and 
worst goodput for smaller files (documents and Web objects). Given a complete set of 14 
matrices, one per algorithm ranking y2(u) values and one per algorithm ranking y16(u) 
values, we also computed the average (and standard deviation) of the ranking for each 
algorithm with respect to each file type. The resulting tables (Tables 8-31 and 8-32) 
allowed us to succinctly compare relative ranking among the algorithms. 

8.4 Results 
Here, we present selected simulation results in three categories: (1) macroscopic network 
behavior, (2) absolute user experience and (3) relative user experience. Within each 
category, we first give relevant data under a high initial slow-start threshold followed by 
data under a low initial slow-start threshold. We present only data that reveals behavioral 
similarities and differences of interest. 

8.4.1 Macroscopic Network Behavior 
In general, the data analyses reported in this section do not reveal much in the way of 
statistically significant changes in macroscopic network behavior. This appears due 
mainly to a general lack of congestion throughout these experiments. In addition, we 
consider both FAST (algorithm 3) and FAST-AT (algorithm 4) together in these 
analyses, which reduces the statistical significance of either algorithm considered alone 
because both algorithms share some traits (as described previously in Chapter 7). Despite 
this, we could discern patterns in macroscopic network behavior with respect to some 
responses. In most cases, the patterns detected echo patterns seen in previous 
experiments, where simulated congestion tended to be much higher under most 
conditions. Here, we report the patterns we found informative. 
 
8.4.1.1 High Initial Slow-start Threshold. Fig. 8-13 gives a detailed analysis of the 
average number of active flows under the 32 simulated conditions. Notice that in most 
conditions either algorithm 7 (Scalable TCP) or 3 (FAST) shows a higher number of 
active flows than other algorithms. This suggests that these algorithms have some number 
of flows that take longer to complete. Algorithm 3 exhibits the extreme value under 
conditions with highest congestion. This suggests that under those conditions, some 
FAST flows exhibit the oscillatory behavior identified in previous experiments (recall 
Chapter 6), which induces excessive losses and lowers goodput on affected flows. In 
previous experiments (see Chapter 5), Scalable TCP was found to provide significant 
unfairness when new flows attempt to gain bandwidth from already established flows. 
This occurs because Scalable TCP flows occupy significant buffer space and reduce their 
congestion window little on each loss, which causes affected new flows to experience a 
larger proportion of losses, and lower goodputs. The reader should keep these ideas in 
mind as additional responses are presented. 

Fig. 8-14, which shows the average number of flows attempting to connect, 
supports the analysis from the preceding paragraph. Under conditions with higher 
congestion, algorithm 3 (FAST) or 4 (FAST-AT) exhibits more flows attempting to 
connect. Under most other conditions, Scalable (algorithm 7) exhibits a larger number of 
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flows attempting to connect. These behavioral differences arise as SYN packets suffer a 
lower rate of successful delivery, which forces affected flows to take longer to connect. 
Figure 8-15 further corroborates this picture by revealing that FAST completes fewer 
flows per interval under higher congestion and that Scalable completes fewer flows per 
interval under most other conditions. 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Figure 8-13. Average Number of Active Flows under High Initial Slow-Start Threshold – y axis gives 
residuals around the mean value for each condition and x axis gives conditions ordered by increasing range 
of residuals 

 
Fig. 8-16 adds more supporting evidence. Notice that FAST and FAST-AT 

(algorithms 3 and 4) exhibit higher retransmission rates under conditions with higher 
congestion and Scalable (algorithm 7) exhibits higher retransmission rates under most 
other conditions. Fig. 8-17 shows that under most conditions, Scalable leads to higher 
average smoothed round-trip times, which supports the observation that Scalable tends to 
have higher buffer occupancy than other algorithms. Fig. 8-18 confirms that over an 
entire simulated hour, Scalable and FAST tend to complete the fewest flows. Similarly, 
Fig. 8-19 shows that under most conditions Scalable completes a higher proportion of 
flows that are small (i.e., Web objects). In the remaining conditions, either FAST or 
FAST-AT completes a higher proportion of flows that are Web objects. Recall that when 
the maximum number of flows with a given file size are already active, then newly 
arriving flows remain Web objects. Therefore, completing a higher proportion of flows 
that are Web objects implies that some larger flows (movies, service packs and 
documents) take longer to complete. 
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Figure 8-14. Average Number of Connecting Flows under High Initial Slow-Start Threshold – y axis 
gives residuals around the mean value for each condition and x axis gives conditions ordered by increasing 
range of residuals  
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Figure 8-15. Average Rate of Flow Completion (flows per 200 ms) under High Initial Slow-Start 
Threshold – y axis gives residuals around the mean value for each condition and x axis gives conditions 
ordered by increasing range of residuals 
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Figure 8-16. Average Flow Retransmission Rate (proportion of packets resent) under High Initial 
Slow-Start Threshold – y axis gives residuals around the mean value for each condition and x axis gives 
conditions ordered by increasing range of residuals 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Figure 8-17. Average Smoothed Round-Trip Time (ms) under High Initial Slow-Start Threshold – y 
axis gives residuals around the mean value for each condition and x axis gives conditions ordered by 
increasing range of residuals 
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Figure 8-18. Aggregate Flows Completed under High Initial Slow-Start Threshold – y axis gives 
residuals around the mean value for each condition and x axis gives conditions ordered by increasing range 
of residuals  
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Figure 8-19. Web Objects as Proportion of Flows Completed under High Initial Slow-Start 
Threshold – y axis gives residuals around the mean value for each condition and x axis gives conditions 
ordered by increasing range of residuals 
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Figure 8-20 shows the propensity of CTCP (algorithm 2) to generate larger 
congestion window sizes on average under conditions of low congestion. This behavior 
was identified in previous experiments (see Chapters 6 and 7). 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Figure 8-20. Average Flow Congestion Window Size (packets) under High Initial Slow-Start 
Threshold – y axis gives residuals around the mean value for each condition and x axis gives conditions 
ordered by increasing range of residuals – green columns indicate high statistically significant outliers 
 
8.4.1.2 Low Initial Slow-start Threshold. Setting the initial slow-start threshold to a small 
value did not much alter the macroscopic behavior reported in the last section. To support 
this observation we give plots analogous to those shown in Fig. 8-13 to 8-20. In some 
cases, explained below, we did discern differences. Fig. 8-21 gives a detailed analysis of 
the average number of active flows under the 32 simulated conditions. As above (Sec. 
8.4.1.1), in most conditions, either algorithm 7 (Scalable) or 3 (FAST) shows a higher 
number of active flows than other algorithms. Fig. 8-22 reveals that FAST and FAST-AT 
still exhibit a higher number of connecting flows under conditions of higher congestion. 
Comparing Fig. 8-22 with Fig. 8-24 also shows that Scalable TCP (algorithm 7) no 
longer exhibits a higher number of connecting flows in many conditions. This appears 
attributable to lowering the initial slow-start threshold. Previously, Scalable TCP and 
TCP Reno flows increased transmission rate to the maximum achievable using the same 
limited slow-start mechanism. This enabled flows to become established and presented 
difficulties for new flows to connect and to gain an equal congestion window size against 
established Scalable TCP flows. Lowering the initial slow-start threshold to 100 packets 
caused both standard TCP and Scalable to enter congestion avoidance (linear increase for 
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standard TCP; delayed exponential increase for Scalable). During the first two seconds of 
a flow, Scalable TCP increases its congestion window more slowly than limited slow-
start. Thus, under a lower initial slow-start threshold, new (Scalable TCP) flows 
increased transmission rate more slowly and thus fewer packets (including SYN packets) 
were lost. This is supported by Fig. 8-24, which shows that Scalable TCP exhibits the 
highest retransmission rate in only five conditions (instead of 12 conditions as shown in 
Fig. 8-16). 

Fig. 8-23 shows that lowering the initial slow-start threshold allows Scalable TCP 
to improve its flow completion rate (relative to Fig. 8-15). This occurs for the same 
reasons the retransmission rate is improved. Figs. 8-23 and 8-24 also show that FAST and 
FAST-AT continue to exhibit lower flow completion rates and higher retransmission 
rates under the more congested conditions. 

Despite a lower initial slow-start threshold, Scalable TCP exhibits higher buffer 
occupancy (see Fig. 8-25) than other algorithms under 16 conditions. This effect is 
somewhat diminished over Fig. 8-17, where Scalable TCP had highest buffer utilization 
in 20 conditions. Given the delayed increase (compared to limited slow start) in 
congestion window for Scalable TCP, the high buffer utilization likely arises from large 
files. Fig. 8-26 shows that FAST (FAST-AT) and Scalable TCP still tend to complete 
fewer files in aggregate than other algorithms, though the effect is somewhat diminished 
for Scalable (relative to Fig. 8-18). The lower flow completion totals for FAST (FAST-
AT) appear under the most congested conditions. 
 
   
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Figure 8-21. Average Number of Active Flows under Low Initial Slow-Start Threshold – y axis gives 
residuals around the mean value for each condition and x axis gives conditions ordered by increasing range 
of residuals  
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 Figure 8-22. Average Number of Connecting Flows under Low Initial Slow-Start Threshold – y axis 
gives residuals around the mean value for each condition and x axis gives conditions ordered by increasing 
range of residuals 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Figure 8-23. Average Rate of Flow Completion (flows per 200 ms) under Low Initial Slow-Start 
Threshold – y axis gives residuals around the mean value for each condition and x axis gives conditions 
ordered by increasing range of residuals  
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Figure 8-24. Average Flow Retransmission Rate (proportion of packets resent) under Low Initial 
Slow-Start Threshold – y axis gives residuals around the mean value for each condition and x axis gives 
conditions ordered by increasing range of residuals 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Figure 8-25. Average Smoothed Round-Trip Time (ms) under Low Initial Slow-Start Threshold – y 
axis gives residuals around the mean value for each condition and x axis gives conditions ordered by 
increasing range of residuals 
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Figure 8-26. Aggregate Flows Completed under Low Initial Slow-Start Threshold – y axis gives 
residuals around the mean value for each condition and x axis gives conditions ordered by increasing range 
of residuals 
 

Fig. 8-27 shows that Scalable TCP completes a higher proportion of flows with 
small size (i.e., Web objects). This mirrors the result shown earlier in Fig. 8-19. Note, 
however, Fig. 8-27 reports that FAST (and FAST-AT) tend to complete a smaller 
proportion of flows with small size. This implies that FAST completes a higher 
proportion of flows with larger file size. As we demonstrate below (Sec. 8.4.2.2), this 
occurs because FAST increases transmission rate (after reaching the initial slow-start 
threshold) to the maximum available much more quickly than other algorithms. 

Finally, Fig. 8-28 displays the previously demonstrated propensity of CTCP 
(algorithm 2) to increase congestion window to large sizes under low congestion. Given 
that a lower initial slow-start threshold leads to somewhat lower overall congestion 
(compared with a high threshold), one expects CTCP to stand out more in Fig. 8-28 than 
in Fig. 8-20. Comparing the two figures verifies this expectation. 
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Figure 8-27. Web Objects as Proportion of Flows Completed under Low Initial Slow-Start Threshold 
– y axis gives residuals around the mean value for each condition and x axis gives conditions ordered by 
increasing range of residuals 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Figure 8-28. Average Flow Congestion Window Size (packets) under Low Initial Slow-Start 
Threshold – y axis gives residuals around the mean value for each condition and x axis gives conditions 
ordered by increasing range of residuals – columns in green indicate statistically significant high outliers 
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8.4.2 Absolute User Experience 
This section investigates absolute differences in user experience, which we measure as 
goodput in packets per second. We consider differences in goodput among users of the 
various alternate congestion control algorithms, as well as differences in goodput among 
TCP users competing with alternate congestion control algorithms. First, we compare 
these user experiences given a high initial slow-start threshold and then we compare them 
given a low initial slow-start threshold. 
 
Table 8-26. Average Goodput (pps) per Flow Group under Each Alternate Congestion Control 
Algorithm (High Initial Slow-Start Threshold) 

ALTERNATE CONGESTION CONTROL ALGORITHM

File Path Interface BIC CTCP FAST FAST-AT HSTCP HTCP STCP

M

VF
F 53650 50696 50299 50325 53212 49826 54638

N 7869 7846 7859 7819 7857 7834 7807

F
F 8056 6451 7145 6738 7765 6295 9572

N 4789 4291 5095 4426 4694 4359 5420

T
F 4843 4295 5069 4424 4698 3753 5439

N 3878 3448 4253 3527 3749 3162 4446

SP

VF
F 24911 25410 25555 25727 24675 25274 24694

N 7262 7313 7340 7346 7242 7295 7168

F
F 6655 6073 6563 6722 6472 5830 6935

N 4679 4456 4934 5002 4563 4328 4801

T
F 4870 4421 5075 5142 4617 4094 5164

N 4053 3789 4364 4398 3876 3513 4225

D

VF
F 2008 2099 2088 2078 2025 2084 1989

N 1800 1833 1833 1830 1787 1834 1782

F
F 1189 1213 1175 1203 1201 1220 1174

N 1124 1149 1113 1140 1138 1162 1111

T
F 1308 1315 1291 1310 1313 1330 1293

N 1254 1264 1240 1259 1261 1281 1240

WO

VF
F 366 390 378 360 427 428 378

N 384 395 395 394 382 394 379

F
F 255 261 250 256 258 263 252

N 250 256 245 251 253 258 247

T
F 308 313 301 306 312 318 306

N 303 307 296 300 307 312 300
 

 
8.4.2.1 High Initial Slow-start Threshold. Table 8-26 summarizes the average goodput – 
response y2(u) – experienced by users in each of the 24 flow classes (dimensioned by file 
size, path quality and interface speed) under each of the seven alternate congestion 
control algorithms. Table 8-27 provides a similar summary of the average goodput – 
response y16(u) – experienced by TCP users in each of the 24 flow classes when 
competing with flows in each of the seven alternate congestion control algorithms. Since 
the tables are somewhat dense with numbers, we present this information in the form of 
bar graphs (Fig. 8-29 through 8-32) – one figure per file size: movie, service pack, 
document and Web object. (The legend for the bar graphs is shown in Fig. 8-7.) The top 
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row of graphs in each figure displays the average goodput in packets per second (pps), 
while the bottom row of graphs displays average goodput as a proportion of the 
maximum interface speed. When examined vertically, the first two columns of graphs 
consider flows transiting very fast (VF) paths, the second two columns consider flows 
transiting fast (F) paths and the final two columns consider flows transiting typical (T) 
paths. Within a given path class, the first vertical sub-column reports goodput for flows 
with fast (F) interface speeds (80 x 103 pps), while the second vertical sub-column reports 
goodput for flows with normal (N) interface speeds (8 x 103 pps). Each graph is labeled 
with the relevant path class and interface speed (e.g., VF-F). 
 
Table  8-27. Average Goodput (pps) per Flow Group on TCP Flows Competing with Each Alternate 
Congestion Control Algorithm (High Initial Slow-Start Threshold) 

ALTERNATE CONGESTION CONTROL ALGORITHM

File Path Interface BIC CTCP FAST FAST-AT HSTCP HTCP STCP

M

VF
F 44610 47731 47899 48628 44397 47110 43551

N 7575 7800 7811 7819 7504 7731 7206

F
F 4730 5032 4843 5138 4770 5072 4339

N 3146 3768 3300 3514 3301 3670 3047

T
F 3184 3108 2956 2970 3099 3327 2994

N 2664 2971 2478 2727 2557 2852 2459

SP

VF
F 23697 24837 24991 25068 23441 24667 23687

N 7149 7275 7302 7307 7136 7286 6946

F
F 5210 5582 5301 5504 5425 5709 5119

N 3837 4159 3894 3998 3970 4144 3732

T
F 3724 3908 3722 3772 3796 3919 3695

N 3205 3366 3182 3224 3268 3410 3163

D

VF
F 1961 1996 2025 2027 1919 2037 1978

N 1783 1822 1819 1818 1776 1829 1765

F
F 1173 1205 1141 1178 1195 1221 1148

N 1109 1142 1079 1108 1128 1152 1089

T
F 1277 1305 1240 1264 1300 1328 1263

N 1228 1256 1193 1212 1251 1278 1213

WO

VF
F 394 378 359 458 382 431 358

N 378 386 385 388 377 387 373

F
F 254 260 248 254 257 262 250

N 249 255 243 249 253 257 246

T
F 306 312 298 303 311 317 304

N 302 307 293 298 306 312 299
 

 
Figs. 8-29 to 8-32 reveal some obvious points. First, differences in goodput 

among alternate algorithms appear more evident with the largest files (movies). Second, 
differences in goodput between TCP flows and competing alternate flows appear with 
larger files (movies and service packs) and on paths with the most congestion (Fast and 
Typical). In general, differences in goodput can originate from four sources: (1) the 
maximum transfer rate, (2) how fast a flow reaches the maximum rate, (3) file size and 
(4) how a flow responds to losses. Here, we ensure that all flows move toward maximum 
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transfer rate at the same speed (by using limited slow-start until the first packet loss). We 
devote each figure to only one file size. This means that any goodput differences in each 
figure (for Figs. 8-28 to 8-32) can result only from loss processing. In other words, how 
much does a flow slow its transmission rate after a loss and how quickly does it recover? 
We expect all alternate congestion control algorithms to improve over TCP Reno with 
respect to processing losses, so we expect differences to appear on congested paths and 
on larger flows which exhibit a larger probability of loss/recovery events. Flows 
transmitting small files should not experience as many loss/recovery cycles as flows 
transmitting large files. Similarly, flows crossing uncongested paths should not 
experience as many loss/recovery cycles as flows transiting congested paths.  
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Figure 8-29. Average Goodput on Movies (High Initial Slow-Start Threshold) (Top row shows raw 
goodput in pps and bottom row shows goodput as a proportion of interface speed) 

 
Though Figs. 8-29 to 8-32 reveal some modest differences in goodput among 

flows groups based on congestion control algorithm, we suspected that more significant 
goodput variations in the data would be explained by differences in experiment 
conditions. To investigate, we conducted a principal components analysis (PCA) of the 
average goodput data across all flow groups. Fig. 8-33 plots the resulting information, 
which reveals three main groups: (1) a group where network speed is low (factor x1 = -
1), (2) a group where network speed is high (factor x1 = +1) and propagation delay is 
high (factor x2 = +1) and (3) a group where network speed is high and propagation delay 
is low (factor x2 = -1). Each of the latter two groups could be divided into two subgroups 
based on average file size: (a) smaller (x5 = -1) and (b) larger (x5 = +1). No distinct 
collection of congestion control algorithms appears anywhere in Fig. 8-33. This suggests 
that most of the variation in the data under a high initial slow-start threshold arises from 
network speed, propagation delay and file size. The congestion control algorithm has 

VF-F VF-N F-F F-N T-F T-N

VF-F VF-N F-F F-N T-F T-N

VF-F VF-N F-F F-N T-F T-NVF-F VF-N F-F F-N T-F T-N

VF-F VF-N F-F F-N T-F T-NVF-F VF-N F-F F-N T-F T-NVF-F VF-N F-F F-N T-F T-N
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only a minor opportunity to affect goodput because network conditions are mainly 
uncongested and flows experience relatively few loss/recovery cycles. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Figure 8-30. Average Goodput on Service Packs (High Initial Slow-Start Threshold) (Top row shows 
raw goodput in pps and bottom row shows goodput as a proportion of interface speed) 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Figure 8-31. Average Goodput on Documents (High Initial Slow-Start Threshold) (Top row shows raw 
goodput in pps and bottom row shows goodput as a proportion of interface speed) 
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Figure 8-32. Average Goodput on Web Objects (High Initial Slow-Start Threshold) (Top row shows 
raw goodput in pps and bottom row shows goodput as a proportion of interface speed) 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Figure 8-33. Principal Component 1 (x axis) vs. Principal Component 2 (y axis) from Average 
Goodput Data (High Initial Slow-Start Threshold) 
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Given that most differences in goodput arise from differences in network 
conditions, we can still analyze the modest goodput differences that can be attributed to 
congestion control algorithms. Fig. 8-34 gives seven scatter plots, each showing TCP 
goodput (y axis) vs. goodput (x axis) on an alternate (as labeled) congestion control 
algorithm for movies transferred on very fast paths with a fast interface speed. Each point 
represents one of the 32 simulated conditions. The diagonal would represent the case 
where TCP flows and alternate flows achieved identical goodput for the same condition. 
Points falling below the diagonal indicate flows using the alternate algorithm had higher 
goodput; points falling above indicate TCP flows had higher goodput. Each plot is also 
labeled (in red) with the computed correlation between goodput on TCP flows and 
alternate flows. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Figure 8-34. Scatter Plot of Goodput on TCP Flows (y axes give y16u/100 pps) vs. Non-TCP Flows (x 
axes give y2u/100 pps) for Movies Transferred on Very Fast Paths with Fast Interfaces (High Initial 
Slow-Start Threshold) 
 

Fig. 8-34 reveals that under many conditions, Scalable TCP, HSTCP and BIC 
flows achieve significantly higher goodputs than competing TCP flows when sending 
movies over very fast paths with fast interfaces. This mirrors the information shown in 
Fig. 8-29, which plots average goodputs, and shows that Scalable, HSTCP and BIC flows 
achieve higher goodputs at the expense of competing TCP flows.  

Fig. 8-35 shows the specific conditions under which goodput on Scalable, HSTCP 
and BIC flows exceed goodput on TCP flows. Each bar graph in Fig. 8-35 represents all 
seven alternate congestion control algorithms under a specific condition (shown in the 
lower left-hand corner of each plot). The algorithms are rendered from leftmost bar to 
rightmost bar ordered by algorithm identifier (1-7). Each bar plots the magnitude of the 
difference in average goodput for TCP flows – y16(u) – versus competing alternate flows 
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– y2(u). If the bar is red, y16(u) is greater; if the bar is green, y2(u) is greater. The 32 bar 
graphs are sorted from least to most congestion. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Figure 8-35. 32 Bar Graphs (one for each Simulated Condition) plotting Goodput (pps/1000) on TCP 
Flows vs. Non-TCP Flows for Movies Transferred on Very Fast Paths with Fast Interfaces  
(High Initial Slow-Start Threshold) (Each graph contains seven bars, one per congestion control 
algorithm, ordered left to right by algorithm identifier. Each bar plots the magnitude of the difference in 
average goodput for TCP flows – y16(u) – versus competing alternate flows – y2(u). If the bar is red, 
y16(u) is greater; if the bar is green, y2(u) is greater. The 32 bar graphs are sorted from least to most 
congestion by condition, as indicated in the lower left-hand corner of each plot.) 
 

Fig. 8-35 reveals scant differences in goodput between TCP flows and alternate 
flows under the 16 least congested conditions. Differences in goodput between alternate 
flows and TCP flows increase with increasing congestion for BIC, HSTCP and Scalable. 
This reveals that aspects of loss/recovery processing implemented by BIC, HSTCP and 
Scalable penalize TCP flows. As discussed previously, in Chapter 6, Scalable TCP (along 
with BIC and HSTCP) reduce congestion window size much less than TCP flows in 
response to a single loss, so once a Scalable flow establishes a large congestion window 
and related buffer space along a path, it could take many loss events to significantly 
reduce the flow’s transmission rate. TCP flows, on the other hand, reduce the congestion 
window by half on each loss and thus TCP flows reduce transmission rate much faster 
than Scalable TCP flows. 
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Figure 8-36. Scatter Plot of Goodput on TCP Flows (y axes give y16u/100 pps) vs. Non-TCP Flows (x 
axes give y2u/100 pps) for Service Packs Transferred on Very Fast Paths with Fast Interfaces (High 
Initial Slow-Start Threshold) 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Figure 8-37. Scatter Plot of Goodput on TCP Flows (y axes give y16u/100 pps) vs. Non-TCP Flows (x 
axes give y2u/100 pps) for Documents Transferred on Very Fast Paths with Fast Interfaces (High 
Initial Slow-Start Threshold) 
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The effects shown in Figs. 8-34 and 8-35 do not appear for smaller file sizes 
transmitted over very fast paths and fast interfaces. This is shown in Fig. 8-36 (for service 
packs) and Fig. 8-37 (for documents). Careful examination of Fig. 8-36 suggests a small 
tendency for BIC, HSTCP and Scalable to discriminate against TCP flows. The tendency 
exists for the reasons discussed above (with respect to movies), but the tendency is much 
muted because flows sending service packs have fewer opportunities to invoke 
loss/recovery processing. For this reason, the tendency for BIC, HSTCP and Scalable 
TCP to discriminate against TCP flows fades with file size (as shown in Fig. 8-37). 

 
Table 8-28. Average Goodput (pps) per Flow Group under Each Alternate Congestion Control 
Algorithm (Low Initial Slow-Start Threshold) 

ALTERNATE CONGESTION CONTROL ALGORITHM

File Path Interface BIC CTCP FAST FAST-AT HSTCP HTCP STCP

M

VF
F 36750 44935 55246 55557 34448 31385 34904

N 7736 7780 7921 7913 7537 7569 7429

F
F 7912 6851 7169 6790 7499 6543 8336

N 5142 4507 5144 4470 4840 4514 5297

T
F 5217 4516 5185 4664 4840 4317 5444

N 4270 3844 4229 3931 4013 3710 4531

SP

VF
F 13318 15578 29337 29315 10790 8897 9933

N 6493 6765 7533 7526 5872 5759 5482

F
F 4869 4672 6832 7023 4196 4024 4018

N 3974 3796 5066 5139 3519 3488 3383

T
F 4275 4045 5332 5364 3800 3504 3821

N 3767 3580 4493 4519 3392 3215 3368

D

VF
F 1669 1682 2464 2406 1623 1589 1562

N 1607 1653 2008 2009 1553 1546 1524

F
F 987 1016 1300 1329 965 956 934

N 959 997 1219 1241 939 934 911

T
F 1147 1174 1403 1418 1126 1119 1108

N 1120 1148 1336 1352 1102 1095 1083

WO

VF
F 431 391 423 405 384 395 392

N 405 408 415 419 399 407 396

F
F 253 258 261 265 255 258 251

N 249 254 255 260 252 254 247

T
F 310 316 313 316 314 317 311

N 305 311 307 310 309 312 306
 

 
8.4.2.2 Low Initial Slow-start Threshold. Table 8-28 summarizes the average goodput – 
response y2(u) – experienced by users in each of the 24 flow classes (dimensioned by file 
size, path class and interface speed) under each of the seven alternate congestion control 
algorithms. Table 8-29 provides a similar summary of the average goodput – response 
y16(u) – experienced by TCP users in each of the 24 flow classes when competing with 
flows in each of the seven alternate congestion control algorithms. Since the tables are 
somewhat dense with numbers, we present this information in the form of bar graphs 
(Figs. 8-38 through 8-41) – one figure per file size: movie, service pack, document and 
Web object. (These figures are laid out in the same fashion as Figs. 8-29 through 8-32.) 
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Tables 8-28 and 8-29, as well as Figs. 8-38 to 8-40, show a marked increase in 

goodput differences among flows using alternate congestion control algorithms and 
between flows using alternate congestion control algorithms and flows using TCP. These 
increased differences must arise from reducing the initial slow-start threshold to a low 
value, as all other aspects of the simulations remained the same. 
 
Table 8-29. Average Goodput (pps) per Flow Group on TCP Flows Competing with Each Alternate 
Congestion Control Algorithm (Low Initial Slow-Start Threshold) 

ALTERNATE CONGESTION CONTROL ALGORITHM

File Path Interface BIC CTCP FAST FAST-AT HSTCP HTCP STCP

M

VF
F 16053 16621 16951 16774 16279 16833 16228

N 7014 7068 7065 7080 6968 6958 6857

F
F 4532 4821 4246 4330 4651 4859 4253

N 3286 3756 3383 3282 3542 3468 3406

T
F 3380 3822 3098 3158 3662 3580 3451

N 2963 3298 2780 2832 3125 3240 3028

SP

VF
F 6484 6531 6563 6494 6498 6636 6456

N 4838 4939 4950 4959 4847 4888 4771

F
F 2872 2936 2709 2762 2886 3037 2818

N 2569 2717 2520 2523 2642 2704 2589

T
F 2811 2916 2562 2627 2872 2941 2861

N 2592 2738 2391 2444 2668 2730 2652

D

VF
F 1504 1528 1521 1521 1493 1561 1520

N 1509 1516 1518 1514 1504 1524 1500

F
F 919 941 899 913 939 950 920

N 897 920 873 892 914 929 897

T
F 1076 1098 1031 1043 1098 1113 1084

N 1054 1076 1009 1023 1077 1091 1063

WO

VF
F 379 404 389 396 396 392 385

N 396 397 397 397 388 396 388

F
F 250 255 246 250 254 258 250

N 246 251 242 246 250 253 246

T
F 307 312 298 301 312 316 310

N 303 308 294 297 308 312 305
 

 
Figs. 8-38 to 8-41 reveal some obvious points. First, flows using alternate 

congestion control algorithms often achieve much higher goodputs than flows using TCP 
congestion control. The differences increase with file size and with interface speed. For 
the smallest size (Web objects, Fig. 8-41) there is no appreciable goodput difference 
among flows. Second, FAST and FAST-AT flows achieve markedly higher goodputs 
than flows using the other alternate congestion control protocols. The ability of FAST 
flows to achieve higher goodputs must arise from differences in congestion window 
increase procedures after a flow reaches the initial slow-start threshold. Third, the 
tendency of Scalable TCP, BIC and HSTCP flows to discriminate against TCP flows 
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when competing on congested paths, though muted, is still evident, especially for the 
largest files (movies). 

 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Figure 8-38. Average Goodput on Movies (Low Initial Slow-Start Threshold) (Top row shows raw 
goodput in pps and bottom row shows goodput as a proportion of interface speed) 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Figure 8-39. Average Goodput on Service Packs (Low Initial Slow-Start Threshold) (Top row shows 
raw goodput in pps and bottom row shows goodput as a proportion of interface speed) 
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Figure 8-40. Average Goodput on Documents (Low Initial Slow-Start Threshold) (Top row shows raw 
goodput in pps and bottom row shows goodput as a proportion of interface speed) 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Figure 8-41. Average Goodput on Web Objects (Low Initial Slow-Start Threshold) (Top row shows 
raw goodput in pps and bottom row shows goodput as a proportion of interface speed) 
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Though Figs. 8-38 to 8-40 reveal strong differences in goodput for flow groups 
using FAST and FAST-AT, we wanted to investigate to what extent differences in 
experiment conditions drove differences in goodput. To investigate this question, we 
conducted a principal components analysis (PCA) of the average goodput data across all 
flow groups. Fig. 8-42 plots the resulting information (a biplot of the first two principal 
components), which reveals two main groups of points: (1) goodput when network speed 
was lower (x1 = -1) and (2) goodput when network speed was higher (x1 = +1). This is as 
expected: higher network speeds enable higher goodputs. Fig. 8-42 also reveals 
differences with respect to congestion control algorithm. Note that goodputs for flows 
using algorithm 3 (FAST) and algorithm 4 (FAST-AT) tend toward the right-hand side of 
the plot and there is a rightmost grouping of points associated with FAST and FAST-
AT.5 These points represent cases when network speed is high and propagation delay is 
low (x2 = -1). This suggests that FAST and FAST-AT can achieve significantly higher 
goodputs than other congestion control algorithms under such conditions. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Figure 8-42. Principal Component 1 (x axis) vs. Principal Component 2 (y axis) for Average Goodput 
Data (Low Initial Slow-Start Threshold) 
 

                                                 
5 Though the data included goodput for TCP flows, differences in goodput among TCP flows was far 
overshadowed by differences in goodput for algorithm 3 (FAST) and algorithm 4 (FAST-AT) flows 
compared to flows using other alternate congestion control algorithms. 
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Fig. 8-43 gives seven scatter plots, each showing TCP goodput (y axis) vs. 
goodput on an alternate (as labeled) congestion control algorithm for movies transferred 
on very fast paths with a fast interface speed. Comparing Fig. 8-43 with Fig. 8-34, which 
gives the same information under high initial slow-start threshold, shows marked 
differences. Under low initial slow-start threshold, all seven alternate congestion control 
protocols provide much better goodput than achieved on TCP flows. This result can be 
attributed directly to the adoption of a low initial slow-start threshold. After reaching a 
congestion window size of 100 packets, the increase functions of the congestion 
avoidance regime of each protocol are activated. The TCP congestion avoidance regime 
leads to linear increase in transmission rate, while the congestion avoidance regimes in 
the other protocols lead to greater than linear increase. The precise increase rate depends 
upon the specific algorithm. Fig. 8-44 shows the degree to which goodput on flows using 
each alternate congestion control algorithm exceeds goodput on TCP flows for each 
condition when movies are transferred on very fast paths with a fast interface speed. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Figure 8-43. Scatter Plot of Goodput on TCP Flows (y axes give y16u/100 pps) vs. Non-TCP Flows (x 
axes give y2u/100 pps) for Movies Transferred on Very Fast Paths with Fast Interfaces (Low Initial 
Slow-Start Threshold) 
 

Fig. 8-44 confirms the results in Fig. 8-43 and also reveals that flows using FAST 
and FAST-AT achieve higher goodput advantage over TCP flows, though the advantage 
diminishes somewhat with increasing congestion. This means that, in congestion 
avoidance, FAST increases transmission rate faster than the other congestion control 
algorithms. From Fig. 8-44 one can also discern that CTCP increases transmission rate 
second fastest. Thus, when given a low initial slow-start threshold and transferring large 
files at high speeds over paths with little congestion, the congestion avoidance increase 
procedures of the alternate protocols reach maximum transfer rate far more quickly than 
possible using the linear increase procedures of TCP. This general pattern also holds for 
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service packs (see Figs. 8-45 and 8-46) and documents (see Figs. 8-47 and 8-48). Note 
that for these smaller file sizes FAST and FAST-AT still achieve much higher goodputs 
than normal TCP, though the degree to which the other alternate congestion control 
algorithms outperform TCP is much diminished. 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Figure 8-44. 32 Bar Graphs (one for each simulated condition) plotting Goodput (pps/1000) on TCP 
Flows vs. Non-TCP Flows for Movies Transferred on Very Fast Paths with Fast Interfaces (Low 
Initial Slow-Start Threshold) (Each graph contains seven bars, one per congestion control algorithm, 
ordered left to right by algorithm identifier. Each bar plots the magnitude of the difference in average 
goodput for TCP flows – y16(u) – versus competing alternate flows – y2(u).) 
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Figure 8-45. Scatter Plot of Goodput on TCP Flows (y axes give y16u/100 pps) vs. Non-TCP Flows (x 
axes give y2u/100 pps) for Service Packs Transferred on Very Fast Paths with Fast Interfaces (Low 
Initial Slow-Start Threshold) 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Figure 8-46. 32 Bar Graphs plotting Goodput (pps/1000) on TCP Flows vs. Non-TCP Flows for 
Service Packs Transferred on Very Fast Paths with Fast Interfaces (Low Initial Slow-Start 
Threshold) (Each graph contains seven bars, one per congestion control algorithm, ordered left to right by 
algorithm identifier. Each bar plots the magnitude of the difference in average goodput for TCP flows – 
y16(u) – versus competing alternate flows – y2(u).) 
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Figure 8-47. Scatter Plot of Goodput on TCP Flows (y axes give y16u/100 pps) vs. Non-TCP Flows (x 
axes give y2u/100 pps) for Documents Transferred on Very Fast Paths with Fast Interfaces (Low 
Initial Slow-Start Threshold) 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Figure 8-48. 32 Bar Graphs plotting Goodput (pps/1000) on TCP Flows vs. Non-TCP Flows for 
Service Packs Transferred on Very Fast Paths with Fast Interfaces (Low Initial Slow-Start 
Threshold) (Each graph contains seven bars, one per congestion control algorithm, ordered left to right by 
algorithm identifier. Each bar plots the magnitude of the difference in average goodput for TCP flows – 
y16(u) – versus competing alternate flows – y2(u). If the bar is red, y16(u) is greater; if the bar is green, 
y2(u) is greater. The 32 bar graphs are sorted from least to most congestion by condition, as indicated in the 
lower left-hand corner of each plot.) 
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8.4.2.3 Summary of Differences in Goodput. Table 8-30 gives a summary of goodput 
differences as percentages for each of the 24 flow groups measured. Differences under 
high initial slow-start threshold (HIGH INITIAL SSTHRESH) are reported in three 
columns: (1) AMONG ALTs gives the range of percentage difference on average 
goodput, y2(u), between flows using the alternate congestion control algorithms with the 
highest and lowest average goodput; (2) AMONG TCPs gives the range of percentage 
difference on average goodput, y16(u), between TCP flows with the highest and lowest 
average goodput when competing with alternate congestion control algorithms; (3) ALTs 
> TCPs gives the percentage increase in average goodput, y2(u) vs. y16(u), for flows 
using alternate congestion control algorithms over competing TCP flows (note that in one 
case, given in red, TCP flows achieved higher average goodput). A similar set of three 
columns reports goodput differences under low initial slow-start threshold (LOW 
INITIAL SSTHRESH). 
 
Table 8-30. Range of Goodput Differences (%) for Flow Groups under High and Low Initial Slow-
Start Threshold (Differences are shown: among Alternate Congestion Control Algorithms, among TCP 
Flows Competing with Alternate Algorithms and between Alternate Algorithms and TCP Flows) 
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Under high initial slow-start threshold, all congestion control algorithms 
(including TCP) increase transmission rate to the available maximum using the same 
algorithm (limited slow-start, here), so variations in goodput result solely from 
differences in loss/recovery procedures among the algorithms. This means that such 
differences arise mainly during congestion and when transferring large files, which are 
likely to have more packets lost because there are more packets in the files. Under low 
initial slow-start threshold, TCP increases transmission rate linearly after entering 
congestion avoidance, while the alternate congestion control algorithms increase 
transmission rate more steeply. FAST and FAST-AT increase transmission rate quickest 
and CTCP second quickest. The advantage of a steep increase in transmission rate 
appears most evident for large files when transferred over fast paths experiencing little 
congestion. This advantage for smaller files exists mainly for FAST and FAST-AT. 

Table 8-30 shows that the largest differences in average goodput occur among 
flows using various alternate congestion control algorithms (AMONG ALTs) and 
between flows using alternate algorithms and competing TCP flows (ALTs > TCP). 
Lesser differences in average goodput appear among TCP flows when competing with 
flows using alternate algorithms (AMONG TCPs). To more completely analyze 
differences in average goodput, we can consider the relative ranking of each alternate 
algorithm with respect to goodput achieved by flows using the algorithm and by TCP 
flows competing with the algorithm. We turn to this topic next. 

8.4.3 Relative User Experience 
In this section, we set aside absolute differences in average goodput and consider instead 
relative differences. For each simulated condition, we ranked from high (7) to low (1) the 
average goodput – y2(u) – provided by the seven alternate congestion control algorithms 
and we also computed the average goodput across all seven algorithms. We took similar 
steps with respect to average goodput – y16(u) – among TCP flows competing with the 
alternate algorithms. Armed with this information, we generated seven pairs of rank6 
matrices. One member of each pair relates to y2(u) and the other member to y16(u). (See 
Fig. 8-12 for a sample rank matrix). Each matrix contains (32 conditions x 24 flow groups 
=) 768 cells, where each cell contains the rank (of average goodput among the seven 
competing algorithms) for the congestion control algorithm associated with the matrix. If 
the rank in a cell is rendered in green, then the goodput associated with the rank was 
above the average goodput for all algorithms. If red, then the goodput was below the 
relevant average. When a highest ranked (7) cell was farther from the average goodput 
than the lowest ranked (1) cell, then the cell is filled in green. In the reverse case, the 
lowest ranked cell is filled in red.  

The columns in each matrix are divided into four vertical sections that each relate 
to a specific file size (movie, service pack, document and Web object). Each section 
contains three pairs of flow groups (labeled on the x axis) ordered by path class (very 
fast, fast and typical). Within each flow-group pair the ordering is by interface speed (fast 
and normal). The matrix rows are ordered by condition (labeled on the y axis) from least 
(top) to most (bottom) congested. In the results below, we reproduce matrices related to 
                                                 
6 The reader should keep in mind the fact that ranking forces an ordering among the congestion control 
algorithms without distinction to the magnitude of those differences. Absolute differences in average 
goodput were the subject of the preceding section (8.4.2). 
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high and low initial slow-start threshold. Half of the matrices show the rank in goodput 
for each alternate congestion control algorithm when compared against the others. The 
remaining matrices show the rank in goodput for TCP flows competing with each 
alternate congestion control algorithm when compared against TCP flows competing with 
the others. We reproduce these matrices to show any patterns that occur. 

In addition to showing the matrices, we computed the average rank for each 
congestion control algorithm for each file size. Similarly, we computed the average rank 
for TCP flows competing with each congestion control algorithm for each file size. We 
also determined the standard deviation in rank for each alternate congestion control 
algorithm, across all files sizes and considering both y2(u) and y16(u). We report these 
averages and standard deviations in summary tables (Tables 8-31 and 8-32). We use the 
information from the summary tables to generate scatter plots of average rank (x axis) vs. 
standard deviation in rank (y axis), which reveal differences in relative user experience 
among the seven alternate congestion control algorithms. 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Figure 8-49. Goodput Rank Matrix – y2(u) – BIC  (High Initial Slow-Start Threshold) Rank (7 high) 
in each cell denotes ordering of y2(u) for each condition (y axis) and flow group (x axis) – conditions are 
sorted from least (16) to most (21) congested and flow groups are ordered by file size – movies (M), 
service packs (SP), documents (D) and Web objects (WO) – and by path class – very fast (VF), fast (F), 
and typical (T) – within each file size and by interface speed – fast (F) or normal (N) – within each path 
class. 

 
8.4.3.1 High Initial Slow-start Threshold. Figs. 8-49 through 8-55 show the ranking 
matrices for y2(u) under a high initial slow-start threshold. The related matrices for 
y16(u) are given in Figs. 8-56 through 8-62. Table 8-31 summarizes the rankings. 
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Figure 8-50. Goodput Rank Matrix – y2(u) – CTCP (High Initial Slow-Start Threshold) 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 8-51. Goodput Rank Matrix – y2(u) – FAST (High Initial Slow-Start Threshold) 
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Figure 8-52. Goodput Rank Matrix – y2(u) – FAST-AT (High Initial Slow-Start Threshold) 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 8-53. Goodput Rank Matrix – y2(u) – HSTCP (High Initial Slow-Start Threshold) 
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Figure 8-54. Goodput Rank Matrix – y2(u) – HTCP (High Initial Slow-Start Threshold) 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 8-55. Goodput Rank Matrix – y2(u) – Scalable TCP (High Initial Slow-Start Threshold) 
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Figure 8-56. TCP Goodput Rank Matrix – y16(u) – BIC (High Initial Slow-Start Threshold) 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 8-57. TCP Goodput Rank Matrix – y16(u) – CTCP (High Initial Slow-Start Threshold) 
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Figure 8-58. TCP Goodput Rank Matrix – y16(u) – FAST (High Initial Slow-Start Threshold) 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 8-59. TCP Goodput Rank Matrix – y16(u) – FAST-AT (High Initial Slow-Start Threshold) 



Study of Proposed Internet Congestion Control Mechanisms NIST 

Mills, et al. Special Publication 500-282 378 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 8-60. TCP Goodput Rank Matrix – y16(u) – HSTCP (High Initial Slow-Start Threshold) 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 8-61. TCP Goodput Rank Matrix – y16(u) – HTCP (High Initial Slow-Start Threshold) 
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Figure 8-62. TCP Goodput Rank Matrix – y16(u) – Scalable TCP (High Initial Slow-Start Threshold) 

 
Table 8-31. Summary Average and Standard Deviation in Goodput and TCP Goodput Rank for All 
Congestion Control Algorithms (High Initial Slow-Start Threshold) 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

The matrices and summary table give some impressions regarding relative 
goodput for flows operating under various congestion control algorithms as well as for 

1.191.370.340.640.770.980.53Std.

3.164.633.904.353.694.633.66Avg.y2(u) 
& y16(u)

2.565.303.914.283.405.153.39Avg.

2.455.664.044.162.845.373.44WO

2.395.704.154.132.965.203.46D

2.515.293.834.263.785.253.09SP

2.914.533.614.594.014.783.57M

y16(u)

3.753.963.884.423.974.103.92Avg.

2.405.684.104.103.035.323.37WO

2.555.183.844.683.404.943.42D

4.612.423.265.584.983.014.15SP

5.442.594.323.324.463.144.73M

y2(u)

STCPHTCPHSTCPFAST-ATFASTCTCPBIC

1.191.370.340.640.770.980.53Std.

3.164.633.904.353.694.633.66Avg.y2(u) 
& y16(u)

2.565.303.914.283.405.153.39Avg.

2.455.664.044.162.845.373.44WO

2.395.704.154.132.965.203.46D

2.515.293.834.263.785.253.09SP

2.914.533.614.594.014.783.57M

y16(u)

3.753.963.884.423.974.103.92Avg.

2.405.684.104.103.035.323.37WO

2.555.183.844.683.404.943.42D

4.612.423.265.584.983.014.15SP

5.442.594.323.324.463.144.73M

y2(u)

STCPHTCPHSTCPFAST-ATFASTCTCPBIC



Study of Proposed Internet Congestion Control Mechanisms NIST 

Mills, et al. Special Publication 500-282 380 

competing TCP flows. Keep in mind that these observations relate only to a high initial 
slow-start threshold, so the main differences must be attributable to how congestion 
control algorithms react to losses. First, HTCP and CTCP, followed by FAST-AT, appear 
to interfere least with goodput on competing TCP flows. On a loss, these protocols reduce 
congestion window to the same extent as TCP. Of course, so does FAST. FAST-AT can 
be less aggressive than FAST when recovering from congestion because the  parameter 
can be driven down, which causes FAST-AT to recover less forcefully. More aggressive 
recovery by FAST can induce higher losses from which TCP flows recover with a linear 
increase in congestion window. Second, Scalable TCP provides significant goodput on 
large files but interferes with TCP flows. BIC shows traits similar to Scalable but with 
lower magnitude. HSTCP provides moderate goodputs and interferes only moderately 
with TCP flows. HTCP and CTCP provide relatively high goodputs on smaller files, 
while not interfering much with TCP flows. HTCP interferes less with TCP flows than 
does CTCP, but HTCP also provides substantially lower relative goodput on larger files.  

   
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 8-63. Goodput Rank Matrix – y2(u) – BIC (Low Initial Slow-Start Threshold) 
 

8.4.3.2 Low Initial Slow-start Threshold. When the initial slow-start threshold is low, 
differences in relative goodput appear not only due to loss/recovery processing but also 
due to the rate at which flows discover the maximum available transmission rate. For this 
reason, all alternate congestion control protocols provide substantially better goodput 
than standard TCP. Despite this fact, appropriate analyses can still discern differences in 
relative goodput among alternate congestion control protocols as well as among 
competing TCP flows. Figs. 8-63 through 8-69 show the ranking matrices for y2(u) under 
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a low initial slow-start threshold. The related matrices for y16(u) are given in Figs. 8-70 
through 8-76. Table 8-32 summarizes the rankings.  
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 8-64. Goodput Rank Matrix – y2(u) – CTCP (Low Initial Slow-Start Threshold) 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 8-65. Goodput Rank Matrix – y2(u) – FAST (Low Initial Slow-Start Threshold) 
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Figure 8-66. Goodput Rank Matrix – y2(u) – FAST-AT (Low Initial Slow-Start Threshold) 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 8-67. Goodput Rank Matrix – y2(u) – HSTCP (Low Initial Slow-Start Threshold) 
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Figure 8-68. Goodput Rank Matrix – y2(u) – HTCP (Low Initial Slow-Start Threshold) 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 8-69. Goodput Rank Matrix – y2(u) – Scalable TCP (Low Initial Slow-Start Threshold) 



Study of Proposed Internet Congestion Control Mechanisms NIST 

Mills, et al. Special Publication 500-282 384 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 8-70. TCP Goodput Rank Matrix – y16(u) – BIC (Low Initial Slow-Start Threshold) 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
Figure 8-71. TCP Goodput Rank Matrix – y16(u) – CTCP (Low Initial Slow-Start Threshold) 



Study of Proposed Internet Congestion Control Mechanisms NIST 

Mills, et al. Special Publication 500-282 385 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 8-72. TCP Goodput Rank Matrix – y16(u) – FAST (Low Initial Slow-Start Threshold) 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 8-73. TCP Goodput Rank Matrix – y16(u) – FAST-AT (Low Initial Slow-Start Threshold) 
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Figure 8-74. TCP Goodput Rank Matrix – y16(u) – HSTCP (Low Initial Slow-Start Threshold) 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 8-75. TCP Goodput Rank Matrix – y16(u) – HTCP (Low Initial Slow-Start Threshold) 
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Figure 8-76. TCP Goodput Rank Matrix – y16(u) – Scalable TCP (Low Initial Slow-Start Threshold) 

 
Table 8-32. Summary Average and Standard Deviation in Goodput and TCP Goodput Rank for All 
Congestion Control Algorithms (Low Initial Slow-Start Threshold) 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figs. 8-63 through 8-76 and Table 8-32 reveal the key differences in relative 
goodput, under low initial slow-start threshold, among flows using alternate congestion 
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control protocols and also among competing TCP flows. First, FAST and FAST-AT 
provide highest relative goodputs due largely to very quick increase in transmission rate 
after reaching the initial slow-start threshold. On the other hand, the quick increase can 
lead to losses, from which TCP flows recover linearly. Thus, FAST interferes most with 
TCP flows. FAST-AT interferes somewhat less than FAST because, under sustained 
congestion, FAST-AT flows do not increase transmission rate as quickly as FAST flows. 
Second, Scalable TCP and BIC flows still interfere significantly with TCP flows – the 
reasons are as discussed earlier. In addition, Scalable flows see significant goodput only 
on the largest files. This occurs because Scalable TCP increases transmission rate steeply 
only after some period of delay. The largest files last long enough for Scalable TCP to 
reach the steep increase in transmission rate. Third, CTCP and HTCP are least disruptive 
to the throughput of competing TCP flows. CTCP still does better than HTCP in 
providing goodput on flows running alternate congestion control procedures. Contrasts in 
relative goodput between flows using alternate congestion control and TCP flows account 
for the large standard deviations in rank exhibited by FAST, FAST-AT and HTCP. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Figure 8-77. Average (x axis) vs. Standard Deviation (y axis) in Goodput Rank (High Initial Slow-
Start Threshold) 

 
8.4.3.3 Summary of Differences in Relative Goodput. To summarize differences in 
relative goodputs we plot the average goodput rank (x axis) against the standard deviation 
in goodput rank (y axis) under high (Fig. 8-77) and low (Fig. 8-78) initial slow-start 
thresholds for each alternate congestion control regime. The average and standard 
deviations consider goodput rank on flows using an alternate congestion control regime 
and also on competing TCP flows. In such a plot, the ideal congestion control regime 
would appear in the lower right-hand corner – high average rank in goodput applied 
evenly to all competing flows. Where alternate congestion control regimes provide 
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equally high average rankings, one should prefer the regime with lower standard 
deviation in rank. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 8-78. Average vs. Standard Deviation in Goodput Rank (Low Initial Slow-Start Threshold) 
 

Fig. 8-77 and 8-78 show CTCP to be best with respect to relative goodput rank. 
CTCP provides the highest average rank (over 4.5) and the lowest standard deviation 
among high ranking alternatives (e.g., HTCP in Fig. 8-77 and FAST-AT in Fig. 8-78). 
Further, Scalable TCP is worst with respect to relative goodput rank and BIC is second 
worst. HSTCP ranks in the middle. HTCP ranks well with respect to average goodput 
under large initial slow-start threshold, but ranks significantly less well under low initial 
slow-start threshold. Further, HTCP exhibits a high standard deviation, interfering 
relatively little with TCP flows, while underperforming other alternate congestion control 
algorithms with respect to large files. The relative performance of FAST-AT might be 
considered second best, though due to its rapid increase in transmission rate (under low 
initial slow-start threshold) FAST-AT can induce losses in TCP flows, which recover 
only linearly. FAST induces more losses in TCP flows than FAST-AT, and also benefits 
from the same (as FAST-AT) rapid increase in transmission rate when the initial slow-
start threshold is low. 

8.5 Findings 
This experiment considered a range of files sizes (movies, service packs, documents and 
Web objects) being transferred across a relatively uncongested network, where some (fast 
and typical) paths experienced more congestion than others (very fast paths) and where 
some flows could achieve a maximum rate of 80 x 103 pps, while others were constrained 
(by the interface speed of a sender or receiver) to at most 8 x 103 pps. Flows using TCP 
congestion control were mixed with flows using one of seven alternate congestion control 
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algorithms. In general, under these conditions, goodput experienced on flows is 
influenced by three main factors (when ignoring network speed and delay): (1) 
quickeness with which the maximum transfer rate is achieved, (2) file size and (3) packet 
losses and related recovery procedures. The 32 conditions simulated in this experiment 
were run twice: once with a high and once with a low initial slow-start threshold. Under a 
high threshold, all flows used the same algorithm (limited slow-start) to find the 
maximum transfer rate. In such cases, only file size and packet loss/recovery procedures 
served to distinguish goodput among the various algorithms investigated. Under a low 
threshold, flows discovered the maximum transfer rate using techniques associated with 
the specific algorithms. In such cases, the quickness with which a flow could reach 
maximum transfer rate is the largest factor distinguishing among goodput. 

8.5.1 Finding #1 
Under low congestion, choice of initial slow-start threshold significantly influenced 
goodput differences between TCP flows and flows running alternate congestion control 
algorithms. Given a high threshold, all flows discovered the maximum available 
transmission rate using the same slow-start algorithm. In such cases, goodput differences 
between TCP flows and flows running alternate algorithms were diminished greatly, 
depending only on differences associated with loss/recovery procedures. Loss/recovery 
procedures played a larger role with bigger files (more packets mean more losses) and in 
congested areas and conditions (more simultaneous flows lead to more losses). Given a 
low threshold, all alternate algorithms yielded superior performance to standard TCP due 
to TCP’s linear rate of increase in transmission toward the maximum rate. FAST and 
FAST-AT, which showed the quickest increase to the maximum transmission rate, 
benefited most from a low initial slow-start threshold and exhibited significantly higher 
goodputs (than the other algorithms) for all but the smallest files. CTCP achieved the 
second fastest pace of increase to maximum rate. 

8.5.2 Finding #2 
With increasing losses, due to large file size or path congestion, goodputs were 
distinguished mainly by loss/recovery procedures. Scalable TCP, BIC and HSTCP do not 
decrease their transmission rate as much as the other algorithms when a loss is detected. 
This means that already established flows continue to transmit at higher rates, inducing 
losses in newer flows, and also in ongoing TCP flows, which cut their transmission rate 
in half on each loss. Thus, under congested conditions, Scalable TCP, BIC and HSTCP 
interfered most with competing TCP flows. On the other hand, FAST, FAST-AT, CTCP 
and HTCP reduce transmission rate by half on a loss, which mirrors the reduction of TCP 
flows. Of course, FAST (and sometimes FAST-AT) subsequently increases transmission 
rate quickly to recover from the loss, while CTCP increases transmission rate second 
most quickly. HTCP delays for one second without another packet loss before increasing 
transmission rate more than linearly, so HTCP lagged somewhat in recovering from 
losses. 

The ability of FAST to rapidly increase transmission rate on loss recovery was 
somewhat of a double-edged sword. Increased rate of transmission by competing FAST 
flows could induce additional losses in TCP flows, which recover at only a linear rate. 
Thus, under such circumstances, FAST could interfere markedly with TCP flows. FAST-
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AT includes the ability to reduce the  parameter, so when congestion is significant 
FAST-AT flows recover less aggressively than FAST flows. For this reason, FAST-AT 
interfered somewhat less with standard TCP flows.  

8.5.3 Finding #3 
Overall, CTCP provided the best balance in relative goodput achieved on all flows. 
CTCP interfered little (but HTCP interfered least) with TCP flows and proved second 
best (after FAST/FAST-AT) at providing goodput to flows using alternate congestion 
control procedures. FAST-AT disrupted TCP flows somewhat more than HTCP and 
CTCP, while providing nearly the best goodput to flows using alternate procedures. 

8.5.4 Finding #4 
As seen in earlier experiments, this experiment showed that use of some alternate 
congestion control protocols altered selected macroscopic characteristics of the network. 
Here, however, the characteristic changes were, in general, not statistically significant. 
We attribute this to two main factors: (1) overall congestion levels were kept much lower 
than in previous experiments (e.g., Chapters 6 and 7) and (2) FAST and FAST-AT, which 
have similar characteristics, where not separated in the analyses, which (as discussed in 
Chapter 7) tended to reduce the statistical significance that might be attributed to either 
algorithm considered without the other. In general, the current experiments confirmed (as 
seen previously in Chapters 6 and 7) that FAST and FAST-AT tend to increase 
retransmission rate under higher congestion. Thus, more flows are pending in the 
connecting state and fewer flows complete per unit of time. In addition, Scalable TCP 
tends to increase buffer occupancy throughout the network. As discussed in Sec. 8.4.1, 
this can also lead to higher losses and increased retransmission rates, to more flows 
pending in the connecting state and to fewer flows completing per unit time. At lower 
congestion levels, Scalable TCP performed worse on these metrics than FAST. At higher 
congestion levels, FAST performed worse. Finally, we found again in this experiment 
that CTCP can exhibit a much higher average congestion window size than other 
congestion control algorithms. The increase appears more prominent under lower levels 
of congestion. 

8.6 Conclusions 
In this section, we described an experiment to investigate effects on macroscopic 
behavior and user experience when deploying various congestion control algorithms in a 
simulated, heterogeneous network, i.e., a network that includes flows operating under 
normal TCP congestion control procedures together with flows operating under one of 
seven alternate congestion control algorithms. Mixing each alternate congestion control 
regime together with standard TCP enabled us to investigate the influence of alternate 
congestion avoidance algorithms on the performance of TCP flows, as might prove 
important during a period of transition from TCP toward adoption of an alternate 
congestion control regime. Under half of the test conditions more flows operated with 
TCP, as might be typical in earlier stages of transition to an alternate congestion control 
regime, while under the remaining test conditions more flows operated with an alternate 
congestion control regime, as might be typical in later stages of transition. We also 
introduced additional flow sizes to represent downloading movies and software service 
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packs. These file sizes augmented the Web objects and document downloads used in 
previous experiments. We adopted a small-scale network because earlier experiments 
suggested that a small network yields significant information while requiring fewer 
resources. Reducing computational cost allowed us to repeat our experiments first with a 
high initial slow-start threshold and then with a low initial slow-start threshold. We took 
this step in light of the apparent significance of the initial slow-start threshold, as 
uncovered in earlier experiments (Chapters 6 and 7). 

 We demonstrated that, under the conditions simulated, and setting aside network 
speed and delay, goodput experienced on flows is influenced by three main factors: (1) 
quickness with which the maximum transfer rate is achieved, (2) file size and (3) packet 
losses and related recovery procedures. We showed that adopting a high initial slow-start 
threshold throughout the network allowed all flows to reach maximum transfer rate at the 
same speed, which substantially reduced goodput differences among TCP flows and 
flows using alternate congestion control algorithms. With a high threshold, only 
loss/recovery procedures distinguished goodput among congestion control algorithms. 
We found that on a loss, Scalable TCP, BIC and HSTCP reduced transmission rate less 
than other algorithms, causing Scalable TCP, BIC and HSTCP to interfere more with 
TCP flows under congested conditions. While CTCP, FAST and FAST-AT (and 
sometimes HTCP) halved their transmission rate on a loss, FAST (and sometimes FAST-
AT) where able to increase transmission rate at the quickest pace, followed by CTCP. 
The pace of increase of HTCP was much less. Under heavy congestion, FAST-AT was 
less aggressive in recovering from losses than was FAST. 

We showed that under a low initial slow-start threshold all of the alternate 
congestion control algorithms reached the maximum transmission rate much more 
quickly than TCP, which was limited to a linear rate of increase. FAST (and FAST-AT) 
increased transmission rate most quickly, followed by CTCP. Scalable TCP increased 
transmission rate least quickly during a flow’s initial period before achieving a steep rate 
of increase, so under a low initial slow-start threshold, Scalable achieved substantial 
goodputs only on large files. Differences in the speed of increase in transmission rate 
among the other congestion control algorithms (BIC, HSTCP and HTCP) did not appear 
significant. We found that CTCP gave the best balance in goodput among all flows, but 
FAST and FAST-AT flows achieved the highest goodputs when all flows used a low 
initial slow-start threshold. 

We were also able to confirm some network-wide results from earlier 
experiments, where FAST and FAST-AT exhibited higher retransmission rates, more 
pending flow connections and fewer flows completing. In addition, we found that, under 
high initial slow-start threshold, Scalable TCP could also exhibit such undesirable 
network-wide properties. 

In the next section, we revisit the results from this section by rerunning the 
experiment on a larger (10 times more sources) and faster (10 times higher capacity) 
network. The substantial increase in computational requirements arising from this 
increase in network size and speed will limit us to consider only one setting for initial 
slow-start threshold. We chose the high initial slow-start threshold in order to focus on 
differences in loss/recovery processing. We expect that the larger network will 
experience substantially less congestion under most conditions. Given the findings from 
the current section, we suspect a less congested network, where all flows use a high 
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initial slow-start threshold, will yield a narrowing of differences in goodput among the 
alternate congestion control algorithms. Fewer losses should mean that the algorithms 
have fewer opportunities to invoke their loss/recovery behaviors. 
 

 
 



Chapter 9 – Comparing Congestion Control  
                    Regimes in a Large, Fast,  
                    Heterogeneous Network  
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9 Comparing Congestion Control Regimes in a Large,   
    Fast, Heterogeneous Network 
In this chapter, we repeat the fundamental experiment design and data analyses described 
in the previous chapter (Chapter 8), while increasing the scale (speed and size) of the 
simulated network by one order of magnitude. Because increasing network scale will also 
increase the computational resources needed for executing the experiments, we decided 
to limit the simulations to cases where the initial slow-start threshold is set high. We 
made this choice in order to focus on the loss/recovery aspects of the alternate congestion 
control algorithms.  
 
Table 9-1. Comparison of Experiment with Congestion Control Algorithms in a Small Network (Chapter 8) vs. 
Experiment in a Large, Fast Network (Chapter 9) 

Characteristic Chapter 8 High SST Chapter  9 High SST

Network Size (sources) 17.455x10-3 & 26.085x10-3 174.6x10-3 & 261.792x10-3

Backbone Speed (Gbps) 19.2 & 38.4 192 & 384

Packet Loss Rate 1x10-4 to 1x10-2 2x10-9 to 2x10-2

Initial Slow-Start 
Threshold 232/2 packets 232/2 packets

Alternate Congestion 
Control Algorithms & 
Associated Identifiers

1-BIC, 2-CTCP, 3-FAST, 
4-FAST-AT, 5-HSTCP, 
6-HTCP, 7-Scalable

1-BIC, 2-CTCP, 3-FAST, 
4-FAST-AT, 5-HSTCP, 
6- HTCP, 7-Scalable

Ratio (%) of Sources 
using Alternate 
Congestion-Control to 
Standard TCP 
Congestion-Control

30:70 & 70:30 30:70 & 70:30

Scenario

60 min. – 96-98% Web 
objects; 2-4% document 
transfers; smaller number 
of service-pack and movie 
downloads

60 min. – 96-98% Web 
objects; 2-4% document 
transfers; smaller number 
of service-pack and movie 
downloads

 
  

 Table 9-1 highlights in red differences from the relevant experiment reported in 
Chapter 8. As indicated, we compared the seven congestion control algorithms under the 
same mix of sources with the same traffic patterns as used in Chapter 8. We also set the 
initial slow-start threshold to a high value and simulated network operation for one hour. 
As the table shows, we increased the number of sources and network speed tenfold. One 
ramification of increasing network speed is to extend the range of congestion conditions, 
as measured by packet-loss rate. Specifically, the experiment conditions in Chapter 9 led 
to five orders of magnitude lower congestion for the least congested case. Note, however, 
that the experiments in both Chapters 8 and 9 have the same order of losses under the 
condition with highest congestion. To the extent that faster network speeds permit lower 
congestion, and thus fewer losses, we expected the performance of the alternate 
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algorithms to become closer to each other, and to the performance of standard TCP 
congestion control. This follows from the fact that in these experiments only 
loss/recovery procedures can distinguish the alternate algorithms from each other and 
from TCP. Fewer losses equate to fewer chances to distinguish among the various 
congestion control algorithms.   

9.1 Changes in Experiment Design 
Except as described in this section, we adopted the same parameter settings used for the 
experiment reported in Chapter 8. Below, we discuss the few changes we made in 
robustness factors and fixed factors and we report the resulting experiment conditions. 
We then describe how these few changes affected the domain view of the experiment 
conditions. We close with a recap of responses recorded.  

9.1.1 Changes in Robustness Factors and Fixed Factors 
Table 9-2 specifies the robustness factors and values we used for this experiment. 
Highlighted in red are the only changes from Chapter 8 – we multiplied the network 
speed settings by 10. Table 9-3 identifies (in red) the only change we made to the fixed 
factors used in Chapter 8. We multiplied the base number of sources by 10. These two 
changes led to the desired order of magnitude increase in network speed and size.  
 
Table 9-2. Robustness Factors Adopted for Comparing Congestion Control Mechanisms (Changes 
from Chapter 8 highlighted in red) 

Identifier Definition PLUS (+1) Value Minus (-1) Value
x1 Network Speed 16000 p/ms 8000 p/ms

x2 Propagation Delay Multiplier 2 1
x3 Buffer Size Adjustment Factor 1 0.5
x4 Think Time 7500 ms 5000 ms
x5 Average File Size for Web Objects 150 packets 100 packets
x6 Distribution for Sizing Large Files 2 1
x7 Probability of Fast Source .7 .3

x8 Probability of Alternate 
Congestion-Control Algorithm .7 .3

x9 Multiplier on Base Number of 
Sources ( U) 3 2

 
 
Table 9-3. Key Fixed Factors Adopted for Comparing Congestion Control Mechanisms (Change from 
Chapter 8 highlighted in red) 

Parameter Definition Value

Bsources Basic unit for sources per access router 1000

P(Ns) Probability source under normal access router 0.1

P(Nsf) Probability source under fast access router 0.6

P(Nsd) Probability source under directly connected access router 0.3

P(Nr) Probability receiver under normal access router 0.6

P(Nrf) Probability receiver under fast access router 0.2

P(Nrd) Probability receiver under directly connected access router 0.2

sstINT Initial slow-start threshold (packets) 231/2
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9.1.2 Changes in Orthogonal Fractional Factorial Design of  
         Robustness Conditions 
Increasing network speed caused the experiment conditions to change only with respect 
to a single factor (x1). The resulting 32 experiment conditions are shown in Table 9-4. 
 
Table 9-4. Two-Level 29-4 Orthogonal Fractional Factorial Design (Changes from Chapter 8 highlighted 
in red) 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 

9.1.3 Changes in Domain View of Robustness Conditions 
Changes in speed and size influence the domain view of our simulated network, as 
reported in Tables 9-5 through 9-7, where changes from the experiment in Chapter 8 are 
highlighted in red. Table 9-5 shows simulated router speeds for this experiment, which 
are comparable to speeds that might be seen in contemporary networks. Increasing 
Bsources (base number of sources) to 103 scales the number of potentially active flows to 
a level that matches the simulated network speeds. Table 9-6 shows the number of 
sources for each level of factor x9 (multiplier on Bsources). The number of receivers is 
four times the number of sources. We used the same topology, including propagation 
delays, as in previous experiments. Buffer sizing is influenced by three factors: network 
speed (x1), propagation delay (x2) and buffer-size adjustment factor (x3). Table 9-7 
characterizes buffer sizes for each router level under both values for factor x3. 

Factor-> x1 x2 x3 x4 x5 x6 x7 x8 x9
Condition -- -- -- -- -- -- -- -- --

1 8000 1 0.5 5000 100 0.04/0.004/0.0004 0.7 0.7 3
2 16000 1 0.5 5000 100 0.04/0.004/0.0004 0.3 0.3 2
3 8000 2 0.5 5000 100 0.02/0.002/0.0002 0.7 0.3 2
4 16000 2 0.5 5000 100 0.02/0.002/0.0002 0.3 0.7 3
5 8000 1 1 5000 100 0.02/0.002/0.0002 0.3 0.7 2
6 16000 1 1 5000 100 0.02/0.002/0.0002 0.7 0.3 3
7 8000 2 1 5000 100 0.04/0.004/0.0004 0.3 0.3 3
8 16000 2 1 5000 100 0.04/0.004/0.0004 0.7 0.7 2
9 8000 1 0.5 7500 100 0.02/0.002/0.0002 0.3 0.3 3

10 16000 1 0.5 7500 100 0.02/0.002/0.0002 0.7 0.7 2
11 8000 2 0.5 7500 100 0.04/0.004/0.0004 0.3 0.7 2
12 16000 2 0.5 7500 100 0.04/0.004/0.0004 0.7 0.3 3
13 8000 1 1 7500 100 0.04/0.004/0.0004 0.7 0.3 2
14 16000 1 1 7500 100 0.04/0.004/0.0004 0.3 0.7 3
15 8000 2 1 7500 100 0.02/0.002/0.0002 0.7 0.7 3
16 16000 2 1 7500 100 0.02/0.002/0.0002 0.3 0.3 2
17 8000 1 0.5 5000 150 0.02/0.002/0.0002 0.3 0.3 2
18 16000 1 0.5 5000 150 0.02/0.002/0.0002 0.7 0.7 3
19 8000 2 0.5 5000 150 0.04/0.004/0.0004 0.3 0.7 3
20 16000 2 0.5 5000 150 0.04/0.004/0.0004 0.7 0.3 2
21 8000 1 1 5000 150 0.04/0.004/0.0004 0.7 0.3 3
22 16000 1 1 5000 150 0.04/0.004/0.0004 0.3 0.7 2
23 8000 2 1 5000 150 0.02/0.002/0.0002 0.7 0.7 2
24 16000 2 1 5000 150 0.02/0.002/0.0002 0.3 0.3 3
25 8000 1 0.5 7500 150 0.04/0.004/0.0004 0.7 1 2
26 16000 1 0.5 7500 150 0.04/0.004/0.0004 0.3 0.3 3
27 8000 2 0.5 7500 150 0.02/0.002/0.0002 0.7 0.3 3
28 16000 2 0.5 7500 150 0.02/0.002/0.0002 0.3 0.7 2
29 8000 1 1 7500 150 0.02/0.002/0.0002 0.3 0.7 3
30 16000 1 1 7500 150 0.02/0.002/0.0002 0.7 0.3 2
31 8000 2 1 7500 150 0.04/0.004/0.0004 0.3 0.3 2
32 16000 2 1 7500 150 0.04/0.004/0.0004 0.7 0.7 3
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Table 9-5. Simulated Router Speeds 
 
 

 
 
 
 
 
 
 
 

 
Table 9-6. Number of Simulated Sources 

PLUS (+1) Minus (-1)
261.792 x 103 174.6 x 103

 
 

Table 9-7. Characterization of Simulated Buffer Sizes 

Router
x3  = 1.0 x3  = 0.5

Min Avg Max Min Avg Max
Backbone 651 x 103 1.464 x 106 2.604 x 106 326 x 103 732 x 103 1.302 x 106

POP 81 x 103 183 x 103 325 x 103 41 x 103 92 x 103 163 x 103

Access 13 x 103 29 x 103 52 x 103 6.5 x 103 14.6 x 103 25.9 x 103

 
 

Fig. 9-1 plots the retransmission rates for each of the 32 simulated conditions. The 
x axis is ordered by increasing retransmission rate. Using visual guidance, we divided 
congestion conditions into six categories moving from little congestion (C1) to relatively 
high congestion (C6). Except for the highest congestion category (C6), the simulated 
conditions exhibit several orders of magnitude reduction in congestion when compared 
with the experiments in Chapter 8 (recall Figs. 8-1 and 8-2). 

To further explore the nature of congestion under the conditions simulated for this 
experiment, we examined six time series. We chose one condition from the middle of 
each congestion class. Fig. 9-2 plots related time series. We selected the following 
conditions, one from each congestion class C1 through C6: 4, 6, 31, 7, 29 and 19. The y 
axis indicates the number of flows in a particular state: connecting (gold) or active (red). 
Active flows may be operating in initial slow start (green), normal congestion avoidance 
(brown) or alternate congestion avoidance (blue). In these particular plots, CTCP flows 
were operating in the network along with flows using standard TCP congestion control 
procedures. The discussion considers only the relative distances between the curves on 
the graphs, so inability to read the axes will be immaterial. The number of active flows 
generally appears to be on the order of 104. 

Under the least congested condition (4), nearly all active flows operate in initial 
slow-start, and few losses occur. In general, as congestion increases with condition, the 
relative number of active flows in initial slow-start decreases and the relative number 
under normal congestion avoidance procedures increases. That is, the green and brown 
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Minus (-1)PLUS (+1)Router

24 Gbps48 GbpsDirectly Connected Access

7.2 Gbps9.6 GbpsFast Access
2.4 Gbps4.8 GbpsNormal Access
24 Gbps48 GbpsPOP

192 Gbps384 GbpsBackbone
Minus (-1)PLUS (+1)Router



Study of Proposed Internet Congestion Control Mechanisms NIST 

Mills, et al. Special Publication 500-282 399 

lines come closer together.1 The number of flows under alternate congestion avoidance 
procedures (blue) shifts up or down slightly depending on whether a particular condition 
has 30 % or 70 % of the sources equipped with an alternate congestion control algorithm. 

 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 9-1. Conditions Ordered Least to Most Congested under High Initial Slow-Start Threshold 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Figure 9-2. Distribution of Flow States for Six Conditions with Increasing Congestion (Flows are 
either connecting (gold) or sending (red) and sending flows may be in one of three congestion control 
states: initial slow start (green), normal congestion avoidance (brown) or alternate congestion avoidance 
(blue) 

                                                 
1 Note that this trend is not monotonic – the green and brown lines move farther apart as condition 
advances from 7 to 29. We attribute this to the fact that condition 29 is the only condition among conditions 
31, 7, 29 and 19 that has a lower probability of larger file sizes. This means more files can complete in 
initial slow start under condition 29, than under the other three conditions.  
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9.1.4 Responses Measured 
We measured the same responses for this experiment as we measured for the experiments 
discussed in Chapter 8. We measured 16 responses characterizing macroscopic behavior 
of the network and 28 responses representing user experience in each of 24 flow groups. 
Refer to back Sec. 8.1.4 for a definition of the responses.   

9.2 Experiment Execution and Data Collection 
Table 9-8 compares resource requirements for simulating the large, fast network against 
resource requirements for simulating the smaller network used in Chapter 8. Simulating 
the large, fast network over (7 algorithms x 32 conditions =) 224 runs, required about 11 
processor years, compared with only 2/3 of a processor year for simulating the same 
number of runs given the smaller network. Scaling up the network by an order of 
magnitude led to increasing computation requirements by a factor of 16 or so. Table 9-9 
shows that the increase in the number of packets sent and flows simulated was 
approximately linear (i.e., tenfold). The higher than linear increase in computation 
requirements can be attributed to extra processing time associated with managing larger 
event lists. Since we collected data in the same form as described in Sec. 8.2.2, increasing 
the scale of the simulation did not increase the amount of data collected.  

9.3 Data Analysis Approach 
We used the same data analysis approach described in Sec. 8.3. We focused mainly on 
user experience in each of 24 flow classes (recall Table 8-6), where we investigated both 
absolute and relative differences. We examined macroscopic data with detailed analyses 
for each of the 16 responses, applying a Grubbs’ test to residuals about the mean 
associated with each of the 32 conditions.  
 
Table 9-8. Comparing Resource Requirements for Simulating a Small Network (from Chapter 8) and 
a Large, Fast Network (from Chapter 9)  

 

Small, Slow Network 
with High Initial Slow-

Start Threshold

Large, Fast Network 
with High Initial Slow-

Start Threshold
CPU hours 
(224 Runs) 5.857 x 103 94.355 x 103

Avg. CPU hours
(per run) 26.15 421.23

Min. CPU hours
(one run) 12.58 203.04

Max. CPU hours
(one run) 43.97 739.04

Avg. Memory 
Usage (Mbytes) 196.56 2.392 x 103
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Table 9-9. Comparing Number of Simulated Flows and Packets for a Small Network (from Chapter 
8) and a Large, Fast Network (from Chapter 9)  

Small, Slow Network with High 
Initial Slow-Start Threshold

Large, Fast Network with High 
Initial Slow-Start Threshold

Statistic Flows Completed Data Packets Sent Flows Completed Data Packets Sent

Avg. Per Condition 11.466 x 106 3.414 x 109 116.317x 106 33.351 x 109

Min. Per Condition 7.258 x 106 2.139 x 109 72.945 x 106 21.069 x 109

Max. Per Condition 17.391 x 106 5.048, x 109 175.948 x 106 50.932 x 109

Total all Runs 2.568 x 109 764.740 x 109 26.055 x 109 7.471 x 1012

 

9.4 Results 
In this section, we present selected simulation results in three categories: (1) macroscopic 
network behavior, (2) absolute user experience and (3) relative user experience. We 
present only data that reveals behavioral similarities and differences of interest. In some 
cases, we compare results with results obtained from one of the experiments in Chapter 8. 
Specifically, we compare results under a high initial slow-start threshold. 

9.4.1 Macroscopic Network Behavior 
In general, as we found in the earlier experiment (Chapter 8), the data analyses reported 
in this section do not reveal much in the way of statistically significant changes in 
macroscopic network behavior. This appears due mainly to the general lack of congestion 
throughout the experiment conditions. As in the results from Chapter 8, we consider both 
FAST (algorithm 3) and FAST-AT (algorithm 4) together, which reduces the statistical 
significance of either algorithm considered alone because both algorithms share some 
traits (as described previously in Chapter 7). Despite the lack of statistical significance, 
we could discern patterns in macroscopic network behavior with respect to some 
responses. In most cases, the patterns detected here echo patterns seen in Chapter 8 under 
a high initial slow-start threshold. The patterns appeared less distinct in the current 
experiments because overall levels of congestion were much lower across most of the 32 
simulated conditions. We report the patterns we found informative. 

 Fig. 9-3 shows the average number of flows attempting to connect. In the six 
conditions with highest congestion (17, 29, 25, 1, 19 and 21), FAST and FAST-AT had 
more flows pending in the connecting state than other algorithms. This was especially so 
for the three most congested conditions. This result is consistent with results from our 
other experiments, which showed that FAST and FAST-AT led flows to take longer to 
connect in the face of significant congestion. Most conditions in the current experiment 
did not lead to significant congestion, but where significant congestion existed FAST and 
FAST-AT induced more losses in SYN packets. In addition, as shown in Fig. 9-4, under 
highly congested conditions, FAST and FAST-AT induced higher retransmission rates. 
Fig. 9-4 also mirrors results in Fig. 8-36 – under conditions of lower congestion, Scalable 
TCP induced more losses and retransmissions than other algorithms. Comparing Fig. 9-4 
with Fig. 8-36 shows that Scalable TCP induced more losses under more conditions in 
Fig. 9-4. This should be expected because the current experiment has significantly lower 
congestion under most conditions than was the case for the previous experiment (Chapter 
8). 
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Figure 9-3. Average Number of Connecting Flows under High Initial Slow-Start Threshold – y axis 
gives residuals around the mean value for each condition and x axis gives conditions ordered by increasing 
range of residuals.  

 
Fig. 9-5 shows that FAST and FAST-AT completed substantially fewer flows per 

measurement interval under the three most congested conditions (1, 19 and 21). As 
shown in Fig. 9-6, the lower flow completion rate for FAST and FAST-AT under severe 
congestion (conditions 1, 19 and 21) resulted in millions fewer completed flows over the 
entire simulated hour. 

Fig. 9-7 shows that Scalable TCP had a tendency to incur longer smoothed round-
trip times, which resulted from larger network packet queues. This echoes results from 
the previous experiment (Chapter 8), where Scalable TCP round-trip times could be 2-10 
ms higher on average than those of other algorithms. Fig. 9-8 shows that, under Scalable 
TCP, a higher proportion of completed flows were Web objects. Note, however, that the 
differences in proportion were quite small (most on the order of 10-4). The case with 
respect to movie transfers is shown in Fig. 9-9. In more than half the simulated 
conditions, under all algorithms the same proportion of files transferred were movies 
(highlighted in black in Fig. 9-9). In the remaining conditions, differences were on the 
order of 10-6. Overall, the differences in proportion of flows completed were very small. 
We attribute this to the fact that conditions generally exhibited little congestion. 

Finally, as shown in Fig. 9-10, CTCP achieved a significant increase in average 
congestion window. This characteristic also appeared in pervious experiments. The 
higher network speed available in the current experiment enabled CTCP to achieve a 
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more substantial advantage in average congestion window than reported for the slower 
network used in Chapter 8 (see Fig. 8-40). 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
 
 

Figure 9-4. Average Retransmission Rate (proportion of packets resent) under High Initial Slow-
Start Threshold – y axis gives residuals around the mean value for each condition and x axis gives 
conditions ordered by increasing range of residuals. Columns highlighted in green indicate significant 
outliers on the high side, columns highlighted in black indicate no numeric difference measured among the 
congestion control algorithms and blue columns mean that differences among the congestion control 
algorithms were not statistically significant.  
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Figure 9-5. Average Flow Completion Rate (flows per 200 ms) under High Initial Slow-Start 
Threshold – y axis gives residuals around the mean value for each condition and x axis gives conditions 
ordered by increasing range of residuals. Column highlighted in red denotes a statistically significant 
outliner on the low side. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Figure 9-6. Aggregate Flows Completed under High Initial Slow-Start Threshold – y axis gives 
residuals around the mean value for each condition and x axis gives conditions ordered by increasing range 
of residuals. Column highlighted in red denotes a statistically significant outlier on the low side. 
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Figure 9-7. Average Smoothed Round-Trip Time (ms) under High Initial Slow-Start Threshold – y 
axis gives residuals around the mean value for each condition and x axis gives conditions ordered by 
increasing range of residuals. Column highlighted in green denotes a statistically significant outlier on the 
high side. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Figure 9-8. Web Objects as Proportion of Flows Completed under High Initial Slow-Start Threshold 
– y axis gives residuals around the mean value for each condition and x axis gives conditions ordered by 
increasing range of residuals. 
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Figure 9-9. Movies as Proportion of Flows Completed under High Initial Slow-Start Threshold – y 
axis gives residuals around the mean value for each condition and x axis gives conditions ordered by 
increasing range of residuals. Column highlighted in green indicates significant outlier on the high side, 
columns highlighted in black indicate no numeric difference measured among the congestion control 
algorithms. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Figure 9-10. Average Flow Congestion Window Size (packets) under High Initial Slow-Start 
Threshold – y axis gives residuals around the mean value for each condition and x axis gives conditions 
ordered by increasing range of residuals. Columns highlighted in green indicate significant outliers on the 
high side. 
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9.4.2 Absolute User Experience 

Table 9-10 summarizes the average goodput – response y2(u) – experienced by users in 
each of the 24 flow groups (dimensioned by file size, path class and interface speed) 
under each of the seven alternate congestion control algorithms. Table 9-11 provides a 
similar summary of the average goodput – response y16(u) – experienced by TCP users 
in each of the 24 flow groups when competing with flows in each of the seven alternate 
congestion control algorithms. 
 
Table 9-10. Average Goodput (pps) per Flow Group under Each Alternate Congestion Control 
Algorithm for a Large, Fast Network with High Initial Slow-Start Threshold – file sizes include 
movies (M), service packs (SP), documents (D) and Web objects (WO); path classes include very fast (VF), 
fast (F) and typical (T); interface speeds include fast (F) and normal (N) 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Since the tables are somewhat dense with numbers, we present this information in 
the form of bar graphs (Fig. 9-11 through 9-14) – one figure per file size: movie (M), 
service pack (SP), document (D) and Web object (WO). (The legend for the bar graphs is 
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shown in Fig. 8-27.) The top row of graphs in each figure displays the average goodput in 
packets per second (pps) achieved in a large, fast network with a high initial slow-start 
threshold, while, for comparison, the bottom row of graphs displays average goodput 
achieved in a smaller, slower network with high initial slow-start threshold (as reported 
previously in Sec. 8.4.2.1). When examined vertically, the first two columns of graphs 
consider flows transiting very fast (VF) paths, the second two columns consider flows 
transiting fast (F) paths and the final two columns consider flows transiting typical (T) 
paths. Within a given path class, the first vertical sub-column reports goodput for flows 
with fast (F) interface speeds (80 x 103 pps), while the second vertical sub-column reports 
goodput for flows with normal (N) interface speeds (8 x 103 pps). Each column of graphs 
is labeled with the relevant path class and interface speed (e.g., VF-F). 
 
Table 9-11. Average Goodput (pps) per Flow Group on TCP Flows Competing with Each Alternate 
Algorithm for a Large, Fast Network with High Initial Slow-Start Threshold – file sizes include 
movies (M), service packs (SP), documents (D) and Web objects (WO); path classes include very fast (VF), 
fast (F) and typical (T); interface speeds include fast (F) and normal (N) 
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Figs. 9-11 through 9-14 reveal two main points. First, in a larger, faster network, 
flows for large files (movies and service packs) over fast interfaces (80 x 103 pps) achieve 
significantly higher average goodputs than similar flows in a smaller, slower network. 
Second, average goodputs achieved by competing TCP flows in a larger, faster network 
appear closer to average goodputs achieved by competing TCP flows in a smaller, slower 
network. These two points appear due to generally reduced congestion in the larger, 
faster network. Recall that under a high initial slow-start threshold any goodput 
differences result from loss/recovery processing because all flows use the same algorithm 
to accelerate to the initial maximum transfer rate. Lower overall congestion leads to 
fewer losses per flow, which means that all flows achieve higher goodputs and that 
alternate congestion control algorithms have fewer opportunities to invoke their 
loss/recovery procedures. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Figure 9-11. Average Goodputs (pps) on Movies under Combinations of Path Class and Interface 
Speed (Large Fast Network vs. Small Slow Network) 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
Figure 9-12. Average Goodputs (pps) on Service Packs under Combinations of Path Class and 
Interface Speed (Large Fast Network vs. Small Slow Network) 
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Figure 9-13. Average Goodputs (pps) on Documents under Combinations of Path Class and Interface 
Speed (Large Fast Network vs. Small Slow Network) 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
Figure 9-14. Average Goodputs (pps) on Web Objects under Combinations of Path Class and 
Interface Speed (Large Fast Network vs. Small Slow Network) 
 

Given the similarity in goodput for flows with the same file size, regardless of 
whether using standard TCP or alternate congestion control procedures, we decided to 
see if factors other than file size influenced goodput on flows. To investigate, we 
conducted a principal components analysis (PCA) of the average goodput data across all 
flow groups. Fig. 9-15 plots the resulting information, which reveals four main groups: 
(1) a group where network speed is higher (x1 = 1), (2) a group where network speed is 
lower (x1 = -1), (3) a group where propagation delay is higher (x2 = 1) and (4) a group 
where propagation delay is lower (x2 = -1). Within each group, two subgroups appear: 
(1) a subgroup where file sizes are larger (x5 = 1) and (2) a subgroup where file sizes are 
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smaller (x5 = -1). Thus, PCA reveals that differences in flow goodput are influenced 
mainly by network speed, propagation delay and file size – not by congestion control 
algorithm. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Figure 9-15. Principal Component 1 (x axis) vs. Principal Component 2 (y axis) from Average 
Goodput Data in a Large, Fast Network with High Initial Slow-Start Threshold – the blue dashed line 
separates (but not crisply) PC1 values for a network with higher (left) and lower (right) propagation delays, 
the red dashed line separates PC2 values with higher (top) and lower (bottom) network speeds, and the 
green dashed lines subdivide the two PC2 areas (one above and one below the red line) by file size: larger 
(above the green lines) and smaller (below the green lines)  
 

In experiments reported in Chapter 8, we found that under conditions with higher 
congestion flows using several alternate congestion control algorithms (e.g., BIC, HSTCP 
and Scalable TCP) had significantly higher goodput than competing TCP flows. Given 
the generally lower overall congestion when simulating a larger, faster network, can such 
differences still be discerned? To investigate, we used scatter plots and per-condition bar 
graphs, as introduced in Sec. 8.3.2. Fig. 9-16 gives seven scatter plots, each showing TCP 
goodput (y axis) vs. goodput of an alternate (as labeled) congestion control algorithm for 
movies transferred on very fast paths with a fast interface speed. The scatter plots show 
no significant difference in goodput for TCP flows vs. flows using alternate congestion 
control algorithms. Fig. 9-17, which gives differences in goodput between TCP flows and 
alternate congestion control algorithms under each of 32 simulated conditions, also shows 
no significant differences. The lack of differences can be attributed to the fact that very 

x1: Network Speed
x2: Propagation Delay
x5: File Size

x1: Network Speed
x2: Propagation Delay
x5: File Size



Study of Proposed Internet Congestion Control Mechanisms NIST 

Mills, et al. Special Publication 500-282 412 

fast paths exhibit little congestion, which means that few losses occur and so one should 
expect little difference in flow goodputs regardless of congestion control algorithm. 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
Figure 9-16. Goodput on TCP Flows (y axes give y16u/100 pps) vs. Non-TCP Flows (x axes give 
y2u/100 pps) for Movies on Very Fast Paths with Fast Interfaces in a Large, Fast Network with High 
Initial Slow-Start Threshold 
 

When we examine path classes with higher likelihood of congestion, BIC, 
HSTCP and Scalable TCP flows have a goodput advantage over standard TCP flows on 
very large files – i.e., movies. For example, Fig. 9-18 shows related scatter plots that 
reveal the tendency of alternate congestion control algorithms to have better goodputs 
than TCP flows. As in Chapter 8, the effect is most pronounced for BIC, HSTCP and 
Scalable TCP. This occurs because large files have a tendency to accumulate more losses 
on more congested paths, which allows for the loss/recovery procedures of the alternate 
congestion control algorithms to be activated more often. As previously shown, BIC, 
HSTCP and Scalable TCP tend to resist lowering transmission rate on sporadic losses, so 
flows using those regimes achieve significantly higher goodputs vs. TCP flows, which 
reduce their transmission rate in half on each loss. Fig. 9-19 suggests that the advantage 
of the alternate congestion control algorithms over TCP tends to increase with increasing 
congestion, at least until congestion becomes so pervasive that all flows suffer significant 
reductions in goodput. 

The advantage of alternate congestion control algorithms decreases with 
decreasing file size because there are fewer packets on each flow to incur losses. This 
effect can be seen in the scatter plots in Fig. 9-20 for service packs sent over fast paths 
with fast interfaces and in the accompanying bar graphs plotted in Fig. 9-21. Notice that 
Fig. 9-21 confirms that alternate congestion control algorithms can achieve better 
goodputs than TCP flows as congestion increases, as seen in conditions 26, 18, 27, 9, 15 
and 17. 
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Table 9-12 gives a summary of goodput differences as percentages for each of the 
24 flow groups measured. Differences under a smaller, slower network with a high initial 
slow-start threshold are reported (taken from Table 8-30) in three columns: (1) AMONG 
ALTs gives the range of percentage difference between flows using the alternate 
congestion control algorithms with the highest and lowest average goodput; (2) AMONG 
TCPs gives the range of percentage difference between TCP flows with the highest and 
lowest average goodput when competing with alternate congestion control algorithms; (3) 
ALTs > TCPs gives the percentage increase in average goodput for flows using alternate 
congestion control algorithms over competing TCP flows (note that when given in red, 
TCP flows achieved higher average goodput). A similar set of three columns reports 
goodput differences under a large, fast network with high initial slow-start threshold. 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Figure 9-17. Bar Graphs (one for each simulated condition) plotting Goodput Differences (pps/1000) 
on TCP Flows vs. Non-TCP Flows for Movies Transferred on Very Fast Paths with Fast Interfaces in 
a Large, Fast Network with a High Initial Slow-Start Threshold (Each graph contains seven bars, one 
per congestion control algorithm, ordered left to right by algorithm identifier. Each bar plots the magnitude 
of the difference in average goodput for TCP flows – y16(u) – versus competing alternate flows – y2(u). If 
the bar is red, y16(u) is greater; if the bar is green, y2(u) is greater. The 32 bar graphs are sorted from least 
to most congestion by condition, as indicated in the lower left-hand corner of each plot.) 
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Figure 9-18. Goodput on TCP Flows (y axes give y16u/100 pps) vs. Non-TCP Flows (x axes give 
y2u/100 pps) for Movies on Fast Paths with Fast Interfaces in a Large, Fast Network with High 
Initial Slow-Start Threshold 
 
 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
 
Figure 9-19. Bar Graphs (one for each simulated condition) plotting Goodput Differences (pps/1000) 
on TCP Flows vs. Non-TCP Flows for Movies Transferred on Fast Paths with Fast Interfaces in a 
Large, Fast Network with High Initial Slow-Start Threshold (green bars indicate flows using alternate 
algorithm have higher goodput and red bars indicate competing flows using TCP have higher goodput) 
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Figure 9-20. Goodput on TCP Flows (y axes give y16u/100 pps) vs. Non-TCP Flows (x axes give 
y2u/100 pps) for Service Packs on Fast Paths with Fast Interfaces in a Large, Fast Network with 
High Initial Slow-Start Threshold 

 
 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Figure 9-21. Bar Graphs (one for each simulated condition) plotting Goodput Differences (pps/1000) 
on TCP Flows vs. Non-TCP Flows for Service Packs Transferred on Fast Paths with Fast Interfaces 
in a Large, Fast Network with High Initial Slow-Start Threshold (green bars indicate flows using 
alternate algorithm have higher goodput and red bars indicate competing flows using TCP have higher 
goodput) 
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Examination of Table 9-12 reveals that goodput differences among alternate 
congestion control algorithms and among competing TCP flows narrowed as network 
size and speed increased. In addition, goodput improvements provided by alternate 
congestion control algorithms over TCP flows disappeared for most flow groups. 
Alternate congestion control algorithms provided improved goodputs (over TCP) only on 
flows where files were large (movies and service packs) and where congestion was 
significant (fast and typical path classes.) 
 
Table 9-12. Range of Goodput Differences (%) for Flow Groups under High Initial Slow-Start 
Threshold for Small, Slow Network and for Large, Fast Network (Differences are shown: among 
Alternate Congestion Control Algorithms, among TCP Flows Competing with Alternate Algorithms and 
between Alternate Algorithms and TCP Flows) 
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9.4.3 Relative User Experience 
In this section, we set aside absolute differences in average goodput and consider instead 
relative differences. As discussed in Sec. 8.4.3, for each simulated condition, we ranked 
from high (7) to low (1) the average goodput – y2(u) – provided by the seven alternate 
congestion control algorithms and we also computed the average goodput across all seven 
algorithms. We took similar steps with respect to average goodput – y16(u) – among TCP 
flows competing with each of the alternate algorithms. Using this information, we 
generated seven pairs of rank matrices. One member of each pair relates to y2(u) and the 
other member to y16(u). (See Fig. 8-32 for a sample rank matrix.) Each matrix contains 
(32 conditions x 24 flow groups =) 768 cells, where each cell holds the rank (of average 
goodput among the seven competing algorithms) for the congestion control algorithm 
associated with the matrix. If the rank in a cell is rendered in green, then the goodput 
associated with the rank was above the average goodput for all algorithms. If red, then 
the goodput was below the relevant average. When a highest ranked (7) cell was farther 
from the average goodput than the lowest ranked (1) cell, then the cell is highlighted in 
green. In the reverse case, the lowest ranked cell is highlighted in red. 

The columns in each matrix are divided into four vertical sections that each relate 
to a specific file size (movie, service pack, document and Web object). Each section 
contains three pairs of flow groups (labeled on the x axis) ordered by path class (very 
fast, fast and typical). Within each flow-group pair the ordering is by interface speed (fast 
and normal). The matrix rows are ordered by condition (labeled on the y axis) from least 
(top) to most (bottom) congested. We reproduce the matrices (Figs. 9-22 through 9-35) to 
show any patterns that occur. We computed the average rank for each congestion control 
algorithm for each file size. Similarly, we computed the average rank for TCP flows 
competing with each congestion control algorithm for each file size. We also determined 
the standard deviation in rank for each alternate congestion control algorithm, across all 
files sizes and considering both y2(u) and y16(u). We report these averages and standard 
deviations in a summary table (Table 9-13). We use the information from the summary 
table to generate a scatter plot (Fig. 9-36) of average rank (x axis) vs. standard deviation 
in rank (y axis), which reveals differences in relative user experience among the seven 
alternate congestion control algorithms. 

Table 9-13 shows standard deviation in rank to fall and narrow significantly (0.23 
to 0.73) compared with the smaller, slower network (Table 8-31), so ranks of all alternate 
congestion control algorithms became closer in the larger, faster network. This is 
congruent with other analyses of the average goodput data. The relative rank of Scalable 
TCP improved due to higher goodputs for movies, while differences narrowed for other 
file sizes. The relative rank of FAST-AT improved because the algorithm ranked very 
well among all file sizes except movies. The relative rank of HTCP and CTCP fell 
because fewer losses gave fewer opportunities to activate the TCP-friendly2 loss/recovery 
procedures of the two algorithms. 

                                                 
2 TCP friendliness implies that an alternate algorithm behaves similarly to TCP, e.g., reduces transmission 
rate in half (or nearly so) on a loss and then does not increase transmission rate very quickly. HTCP 
reduces transmission rate up to 50 % on a packet loss and then increases transmission rate only linearly for 
one second after a loss. CTCP reduces transmission rate 50 % on a packet loss and can increase 
transmission rate quickly, but only when the congestion window is above 41 packets and delay is not 
increasing on the path between a source and receiver.  
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Figure 9-22. Goodput Rank Matrix – y2(u) – BIC (Large, Fast Network, High Initial Slow-Start) 
Rank (7 high) in each cell denotes ordering of y2(u) for each condition (y axis) and flow group (x axis) – 
conditions are sorted from least (16) to most (21) congested and flow groups are ordered by file size – 
movies (M), service packs (SP), documents (D) and Web objects (WO) – and by path class – very fast 
(VF), fast (F), and typical (T) – within each file size and by interface speed – fast (F) or normal (N) – 
within each path class. 
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Figure 9-23. Goodput Rank Matrix – y2(u) – CTCP (Large, Fast Network, High Initial Slow-Start) 
 
 
 
 
 
 
 
 
 
 
 
 
 
  
 
 
 
 
 
 
 
 

 
 

Figure 9-24. Goodput Rank Matrix – y2(u) – FAST (Large, Fast Network, High Initial Slow-Start) 
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Figure 9-25. Goodput Rank Matrix – y2(u) – FAST-AT (Large, Fast Network, High Initial Slow-
Start) 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Figure 9-26. Goodput Rank Matrix – y2(u) – HSTCP (Large, Fast Network, High Initial Slow-Start) 
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Figure 9-27. Goodput Rank Matrix – y2(u) – HTCP (Large, Fast Network, High Initial Slow-Start) 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Figure 9-28. Goodput Rank Matrix – y2(u) – Scalable (Large, Fast Network, High Initial Slow-Start) 
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Figure 9-29. Goodput Rank Matrix – y16(u) – BIC (Large, Fast Network, High Initial Slow-Start) 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Figure 9-30. Goodput Rank Matrix – y16(u) – CTCP (Large, Fast Network, High Initial Slow-Start) 
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Figure 9-31. Goodput Rank Matrix – y16(u) – FAST (Large, Fast Network, High Initial Slow-Start) 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Figure 9-32. Goodput Rank Matrix – y16(u) – FAST-AT (Large, Fast Network, High Initial Slow-
Start) 
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Figure 9-33. Goodput Rank Matrix – y16(u) – HSTCP (Large, Fast Network, High Initial Slow-Start) 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Figure 9-34. Goodput Rank Matrix – y16(u) – HTCP (Large, Fast Network, High Initial Slow-Start) 
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Figure 9-35. Goodput Rank Matrix – y16(u) – Scalable (Large, Fast Network, High Initial Slow-
Start) 
 

 
 

Table 9-13. Summary Average and Standard Deviation in Goodput Rankings for Flows using 
Alternate Congestion Control Algorithms and for Competing TCP Flows (Large, Fast Network, High 
Initial Slow-Start Threshold) 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

BIC CTCP FAST FAST-AT HSTCP HTCP STCP
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Avg. 3.92 3.78 3.71 4.39 3.87 3.79 4.43
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y2(u) Avg. 3.68 4.18 3.56 4.36 3.87 4.17 4.07
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Figure 9-36. Average (x axis) vs. Standard Deviation (y axis) in Goodput Rank (Large, Fast Network, 
High Initial Slow-Start Threshold) 
 

Looking at the rank matrices, summary table and scatter plot gives some 
impressions regarding relative goodput for flows operating under various congestion 
control algorithms as well as for competing TCP flows. Four of these impressions were 
seen and discussed before (in Sec. 8.4.3.1). First, CTCP, HTCP and FAST-AT3 appear 
relatively friendly to TCP flows. Second, Scalable TCP ranks high in goodput for movies 
and for all file sizes under sporadic losses. Third, BIC, FAST, HSTCP and Scalable TCP 
are relatively unfriendly4 to TCP flows. Fourth, HTCP ranks poorly with respect to large 
flows. Comparing relative ranks in a large, fast network against relative ranks in a 
smaller, slower network, revealed two additional impressions. First, differences in rank 
cover a lower range in the large, fast network (3.56 to 4.36) than was the case for a 
smaller, slower simulated network (3.16 to 4.63). Second, the standard deviation in ranks 
was much narrower in a large, fast network (0.23 to 0.73) than in a smaller, slower 
network (0.34 to 1.37). 

Overall, then, assuming a high initial slow-start threshold, as a network becomes 
faster and less congested, differences in goodput offered by the alternate congestion 
control algorithms and competing TCP flows come closer together. Adopting a large 
initial slow-start threshold eliminates activation of enhanced window increase procedures 

                                                 
3 FAST-AT reduces transmission rate 50 % on a packet loss and can increase rate quickly after that, but a 
falling transmission rate can cause FAST-AT to reduce the  parameter, which causes a slower increase in 
transmission rate when recovery occurs. 
4 TCP unfriendliness implies reducing transmission rate substantially less than 50 % following a packet loss 
and/or increasing transmission rate much more quickly than linearly when recovery occurs.  
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available in the alternate congestion control algorithms. When losses occur, differences in 
goodput can be discerned and attributed to loss/recovery characteristics of the various 
algorithms. As a network becomes less and less congested, alternate congestion control 
algorithms have fewer chances to invoke their enhanced loss/recovery procedures. 

9.5 Findings 
This experiment considered a range of files sizes (movies, service packs, documents and 
Web objects) being transferred across a largely uncongested network, where some (fast 
and typical) paths experienced more congestion than others (very fast paths) and where 
some flows could achieve a maximum rate of 80 x 103 pps, while others were constrained 
(by the interface speed of a sender or receiver) to at most 8 x 103 pps. Flows using TCP 
congestion control were mixed with flows using one of seven alternate congestion control 
algorithms. All flows adopted the same initial slow-start procedures to determine the 
maximum available transfer rate (i.e., all flows used a high initial slow-start threshold). In 
general, under these conditions (ignoring network speed and propagation delay), goodput 
experienced on individual flows is influenced by two main factors: (1) file size and (2) 
packet losses and related recovery procedures. The results of these experiments 
confirmed many of the findings discussed in Chapter 8.  

9.5.1 Finding #1 
Given a high initial slow-start threshold and the minimal congestion arising in a large, 
fast network, differences in average goodput narrowed in each flow group, whether using 
alternate or standard TCP congestion control procedures. That is, goodput differences 
shrank among alternate congestion control algorithms and between TCP flows and flows 
using alternate congestion control procedures. Assigning all flows a high initial-slow start 
threshold eliminated differences in increase procedures when determining the maximum 
available transfer rate. Increasing network speed and size reduced overall congestion by 
several orders of magnitude under most conditions. Lower congestion led to fewer losses, 
which reduced opportunities for alternate congestion control algorithms to activate 
enhanced loss/recovery procedures. 

9.5.2 Finding #2 
Under selected conditions, where file sizes were large (i.e., movies and service packs) 
and where congestion could appear (i.e., on fast and typical paths, which can experience 
sharing among more flows), differences in average goodputs could still be distinguished 
due to differences in loss/recovery procedures. Though the effects were somewhat muted 
because overall congestion was lower, the finding here is analogous to a similar finding 
in Chapter 8. Scalable TCP, BIC and HSTCP do not decrease their transmission rate as 
much as the other algorithms when a loss is detected. This means that already established 
flows continue to transmit at higher rates at the cost of inhibiting newer flows and also 
TCP flows, which cut their transmission rate in half on a loss. Thus, under congested 
conditions, these protocols provided higher goodput than TCP flows. 

9.5.3 Finding #3 
Overall, in this experiment, FAST-AT provided the best balance in relative goodput 
achieved on all flows. CTCP ranked second best overall, followed closely by HTCP. 
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FAST-AT ranked third most friendly (after CTCP and then HTCP) to TCP flows and 
ranked second best (after Scalable TCP) at providing goodput to flows using alternate 
congestion control procedures. Note that lower overall congestion narrowed significantly 
the differences in ranking among all the algorithms.  

9.5.4 Finding #4 
As seen in earlier experiments, this experiment showed that use of some alternate 
congestion control protocols altered selected macroscopic characteristics of the network. 
Here, as in Chapter 8, the characteristic changes were, in general, not statistically 
significant. We attribute this to two main factors: (1) overall congestion levels were kept 
much lower than in previous experiments and (2) FAST and FAST-AT, which have 
similar characteristics, where not separated in the analyses, which tended to reduce the 
statistical significance that might be attributed to either algorithm considered without the 
other. In general, the current experiments confirmed that FAST and FAST-AT tend to 
increase retransmission rate under higher congestion. Thus, more flows are pending in the 
connecting state and fewer flows complete per unit of time. In addition, Scalable TCP 
tends to increase buffer occupancy throughout the network. This can also lead to higher 
retransmission rates, to more flows pending in the connecting state and to fewer flows 
completing per unit time. At lower congestion levels, Scalable TCP performed worse on 
these metrics than FAST (and FAST-AT). At higher congestion levels, FAST (and 
FAST-AT) performed worse. Finally, we found again in this experiment that CTCP can 
exhibit a much higher average congestion window size than other congestion control 
algorithms. The increase appears most prominent under lower congestion levels. 

9.6 Conclusions 
In this chapter, we described an experiment to investigate effects on macroscopic 
behavior and user experience when deploying various congestion control algorithms in a 
large, fast, simulated, heterogeneous network, i.e., a network that includes flows 
operating under standard TCP congestion control procedures together with flows 
operating under one of seven proposed alternate congestion control algorithms. In effect, 
we repeated, with a few changes, half the experiments from Chapter 8. Specifically, we 
repeated the experiments where all flows adopted a high initial slow-start threshold. We 
changed the network to increase router speeds and number of sources and receivers by an 
order of magnitude, which also changed buffer sizes. Increasing network speed and size 
required more than an order of magnitude increase in computational cost, which 
motivated us to repeat only half the experiments from Chapter 8. 

We demonstrated that, under a larger, faster network (given a high initial slow-
start threshold), reduced congestion levels narrowed differences in average goodput 
among flows using alternate congestion control algorithms and also between flows using 
alternate and standard TCP congestion control procedures. Lowered congestion meant 
fewer losses, which reduced the opportunities for alternate congestion control algorithms 
to activate enhanced loss/recovery procedures. We also confirmed some findings from 
the experiments described in Chapter 8. First, on a loss, Scalable TCP, BIC and HSTCP 
reduced transmission rate less than other algorithms, so these algorithms tended to be 
provide higher goodput than TCP flows on larger file sizes under congested conditions. 
Second, under conditions with higher congestion, FAST and FAST-AT exhibited higher 
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retransmission rates, more pending flow connections and fewer flows completing. Under 
conditions with lower congestion, Scalable TCP could also exhibit such undesirable 
network-wide properties. Third, CTCP, FAST-AT and HTCP showed better balance 
overall (than other alternate congestion control algorithms) with respect to relative 
average goodput for all flows, including both those using the alternate procedures and 
those using standard TCP procedures. 

After completing five sets of simulation experiments (as described in Chapters 6 
through 9), we accumulated sufficient information to draw some conclusions about the 
behaviors of the seven congestion control algorithms we studied. We also developed 
sufficient experience to evaluate the various methods we adopted. We turn to these topics 
next, where we conclude our study and identify future work. 
 
 



Chapter 10 – Conclusions  
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10 Conclusions 
Below, we provide conclusions in two general categories: conclusions and 
recommendations (Sec. 10.1) about the congestion control algorithms we studied and 
conclusions and recommendations (Sec. 10.2) about the methods we applied. Along with 
each set of conclusions and recommendations, we also provide suggestions for related 
future work.   

10.1 Conclusions about Congestion Control Algorithms 
The simulation and modeling studies reported here enabled us to draw a range of 
conclusions about the general utility and safety of seven proposed alternate congestion 
control algorithms for the Internet. We were also able to characterize each of the 
congestion control algorithms we studied. In the end, we developed some 
recommendations about whether it makes sense to deploy alternate congestion control 
algorithms at large scale on the general Internet. Finally, though our study is quite 
comprehensive, we recognize the need for future work to investigate some questions that 
we did not study. We address these topics, in turn, below. 

10.1.1 Utility and Safety of Alternate Congestion Control Algorithms 
Our simulation and modeling experiments showed that deploying alternate congestion 
control algorithms can provide improved user experience under specific circumstances. 
As discussed below, the nature of such circumstances bound the utility that alternate 
congestion control algorithms may provide. In addition, the experiments showed that 
some proposed algorithms can be deployed without driving large changes in macroscopic 
behavior throughout a network. On the other hand, other proposed algorithms altered 
behavior in undesirable directions under specific spatiotemporal situations. We address 
these topics in detail.   
 
10.1.1.1 Increase Rate. One of the key questions for any data transport protocol is: How 
fast can the maximum available transfer rate be achieved on a network path? Assuming 
no congestion (i.e., no losses) protocols that can quickly attain the maximum rate will 
spend the largest portion of a file transfer at that rate. Each TCP flow begins without any 
knowledge of the maximum available transfer rate. For this reason, TCP specifies an 
initial slow-start process where the source transmits slowly but then, as feedback arrives 
from a receiver, quickly increases the transmission rate until reaching a specified (initial 
slow-start) threshold or encountering a loss. This initial slow-start process is not altered 
by any of the proposed alternate congestion control algorithms that we studied. 

Assuming no (or low) congestion, the setting of the initial slow-start threshold can 
be quite important when comparing goodputs experienced by users on TCP flows with 
goodputs for users on flows operating under alternate congestion control algorithms.1 
                                                 
1 Note that in real TCP flows receivers may convey a receiver window (rwnd) that can restrict goodput 
quite severely because sources pace transmission based on the minimum of the congestion window (cwnd) 
and rwnd.Tthe following may hold: rwnd < cwnd. In our studies, we assume an infinite rwnd in order to 
compare the effects of congestion control algorithms adjusting the cwnd. The goodput on many TCP flows 
in a real network might well be constrained by rwnd. In such cases, alternate congestion control algorithms 
would provide little advantage over TCP congestion control procedures. 
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When the initial slow-start threshold is set arbitrarily high, on average all flows achieve 
maximum transfer rate with the same quickness. Under such situations, the goodput seen 
on TCP flows and flows running alternate algorithms appears quite comparable. Flows 
carrying short files (e.g., Web objects and document downloads) tend to complete while 
in initial slow-start, which means that alternate congestion control procedures (restricted 
to the congestion avoidance phase of a flow) do not operate. Even flows conveying long 
files can operate for extended periods under initial slow-start because such flows do not 
enter congestion avoidance until encountering a loss. 

When the initial slow-start threshold is set low (e.g., 64 Kbytes) all of the 
alternate congestion control algorithms that we studied increase transmission rate more 
quickly than the linear increase provided by the standard TCP congestion avoidance 
procedures. Thus, under low congestion, when the initial slow-start threshold is set low 
compared to the size of files transferred (and assuming the receiver window – rwnd – is 
not constraining transmission rate) users on TCP flows will see much lower goodput than 
users of alternate congestion control algorithms. The larger the file sizes being transferred 
the larger the goodput advantage of the alternate algorithms. The alternate congestion 
control algorithms provide different degrees of goodput improvement over TCP 
congestion avoidance procedures. As discussed below (Sec. 10.1.2), these goodput 
differences can be tied directly to the speed with which the alternate algorithms reach the 
maximum available transmission rate. 

Under conditions of heavy congestion the setting of the initial slow-start threshold 
matters less because initial slow-start terminates upon the first packet loss and then a flow 
enters the congestion avoidance phase, which is where the alternate congestion control 
algorithms differ from TCP procedures. In such situations, the main difference in goodput 
experienced by users relates to the loss/recovery procedures defined by the alternate 
algorithms. We turn to this topic next. 
 
10.1.1.2 Loss/Recovery Processing. Two key questions arise when a data transport 
protocol experiences a packet loss. (1) How much should the protocol reduce 
transmission rate upon a loss? (2) How quickly should the protocol increase transmission 
rate after the reduction? The standard TCP congestion avoidance procedures reduce 
transmission rate by one-half on each packet loss. Subsequently, TCP congestion 
avoidance procedures increase transmission rate linearly. The alternate congestion control 
algorithms we studied specify various procedures for transmission rate reduction and 
increase following a lost packet. 

One group of algorithms (Scalable TCP, BIC2 and HSTCP) reduce transmission 
rate less than TCP after a packet loss. As a result, these algorithms tend to retain a higher 
transmission rate and associated buffers than is the case for TCP flows. Smaller rate 
reduction can allow these algorithms to provide established flows with higher goodputs 
following packet losses. We found this effect to increase with increasing loss rate and 
also file size. In addition, these algorithms can be somewhat unfair (see Sec. 10.1.1.3) to 
algorithms (such as TCP) that exhibit a more reduced transmission rate following a loss, 

                                                 
2 Note that on repeated losses occurring close in time, BIC can reduce cwnd substantially more than the 
standard TCP congestion avoidance procedures; thus, on paths with very severe congestion BIC can 
actually provide lower goodput than TCP and can also occupy fewer buffers. 
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as well as to flows that have not had sufficient time to attain a high transmission rate 
prior to a loss. 

A second group of algorithms (CTCP, FAST and FAST-AT) reduce transmission 
rate in half following a loss. HTCP appears to be a hybrid, reducing transmission rate 
variably, between 20% and 50%, depending on conditions. The higher reduction occurs 
when transmission rate had been changing substantially in a round-trip time and the 
lower reduction occurs when transmission rate is less variable. To obtain higher goodput, 
these algorithms increase transmission rate more quickly than TCP flows following a rate 
reduction. As discussed below (Sec. 10.1.2), the rate of increase varies with the specific 
algorithm. Typically, HTCP and CTCP are less aggressive than FAST and FAST-AT 
when increasing transmission rate after a reduction. Though, FAST-AT will be less 
aggressive when sufficient congestion exists to force a reduction in the  parameter. An 
aggressive rate increase following a rate reduction can induce additional losses on a path. 
When such losses affect TCP flows, then linear recovery procedures lead to lower 
goodputs. Under severe congestion, CTCP and HTCP can provide better goodput than 
FAST and FAST-AT, which can underperform TCP. 

In areas and at times of extreme congestion, most of the alternate algorithms we 
studied include procedures to adopt standard TCP congestion avoidance behavior. These 
procedures appear motivated by the theory that when congestion is sufficiently severe 
then existing TCP behavior provides the best approach to fairly share the limited 
available transmission rate. The most typical technique employed is to set a low-window 
threshold. When the congestion window (cwnd) is below the threshold then TCP 
congestion avoidance procedures are used. When cwnd is above the threshold then 
alternate congestion avoidance procedures are used. Specific values for the threshold vary 
among the alternate congestion control algorithms. The combination of different 
thresholds and different file sizes can lead to modest differences in user goodputs. 

HTCP handles adaptation to TCP procedures somewhat differently than the other 
alternate algorithms we investigated. After a loss, HTCP adopts linear rate increase for a 
time. The time period is an HTCP parameter, set in these experiments to one second. We 
found that HTCP then adapts to TCP linear increase after every loss, regardless of file 
size or cwnd value. For larger files, which tend to have higher cwnd and to experience 
more losses during transmission, this approach tends to lower goodput significantly 
relative to other alternate algorithms, which do not adopt linear increase after every loss. 

 FAST and FAST-AT do not use standard TCP congestion avoidance procedures 
under any circumstances. In times and areas of heavy congestion, failure to adopt less 
aggressive rate increase can lead to oscillatory behavior and to an associated increase in 
loss rate. Increased losses lead to lower user goodputs. FAST-AT does somewhat better 
under heavy congestion because the  parameter can be lowered, causing less aggressive 
rate increases. Still, under many conditions, FAST-AT can exhibit a similar increased 
loss rate to FAST. 
 
10.1.1.3 TCP Fairness. TCP fairness denotes the situation where competing flows 
transiting a shared path in the Internet will all receive an equal share of available 
goodput. Comparing alternate congestion control algorithms with respect to TCP fairness 
can be somewhat difficult because the alternate algorithms are designed to give better 
goodput than TCP for large file transfers on high bandwidth-delay paths. Thus, for 
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example, all of the alternate algorithms can increase transmission rate more quickly than 
TCP given a low initial slow-start threshold and large file sizes. Further, all alternate 
algorithms take steps to provide loss/recovery improvements over the standard TCP 
congestion avoidance procedures. On the other hand, most of the alternate algorithms 
take steps to adopt TCP congestion avoidance procedures when congestion is sufficiently 
high. Given these factors, one would expect all alternate congestion control algorithms to 
provide better goodput than TCP under optimal conditions. In addition, some of the 
alternate algorithms are assured of performing no worse than TCP under suboptimal 
conditions. The usual measures of TCP fairness do not apply in such circumstances 
because they would tend to measure how much of a goodput advantage a given alternate 
algorithm provides over TCP procedures. Instead, we measured relative TCP fairness by 
ranking the average goodput achieved by TCP flows when they competed with each 
alternate congestion control algorithm under the same conditions. We considered the 
average rank across four file sizes: Web objects, documents, software service packs and 
movies. In this way, we could elicit the relative TCP fairness of the alternate algorithms.  

We found that CTCP and HTCP were most fair to TCP flows. We found FAST-
AT third fairest to TCP flows under high initial slow-start threshold. Under low initial 
slow-start threshold, FAST-AT proved more unfair to TCP flows because of its quick 
increase in transmission rate after passing the initial slow-start threshold. Injecting more 
FAST-AT packets into the network induced more losses in TCP flows, which could not 
recover as quickly. 

We found Scalable TCP, BIC and FAST to be most unfair to TCP flows. 
Established Scalable and BIC flows (large files) tended to maintain higher transmission 
rates after losses, while competing TCP flows cut transmission rates in half. By 
maintaining higher transmission rates and, thus, more buffer space, Scalable and BIC 
flows induced more losses in TCP flows. FAST could recover more quickly from losses 
than TCP flows and so FAST flows could occupy more buffers and induce more losses in 
TCP flows. In addition, like FAST-AT, FAST exhibited unfairness under low initial 
slow-start threshold because of its quick increase in transmission rate upon entering 
congestion avoidance. 

HSTCP appeared moderately fair to TCP flows, especially under conditions of 
lower congestion and under a low initial slow-start threshold. HSTCP showed TCP 
unfairness, similar to Scalable TCP, under conditions of heavy congestion. 

We believe that Scalable TCP, BIC and HSTCP could also be unfair to competing 
flows that are newly arriving. Given that some large flows operating under Scalable TCP, 
BIC and HSTCP have established relatively high transmission rates and associated large 
buffer states and given that newly arriving flows induce losses, the established flows will 
not reduce transmission rate very much and will maintain large buffer states. The newly 
arriving flows will be forced into congestion avoidance on the loss. Further, Scalable 
TCP and HSTCP do not increase transmission rate very fast early in a flow’s life, so 
newly arriving flows of these types can face difficulty increasing transmission rate. 
 
10.1.1.4 Utility Bounds. We showed that alternate congestion control protocols could 
provide increased utility (goodput) for users, but we also found that this increased utility 
would be maximized only under specific, bounded circumstances. First, the rwnd must 
not be constraining flow transmission rate. Second, a flow must be using a relatively low 
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initial slow-start threshold. Third, a flow must be transmitting a large file. Fourth, a 
flow’s packets must be transiting a relatively uncongested path (i.e., experiencing only 
sporadic losses from congestion or corruption) or else users must be willing to accept 
marked unfairness (e.g., as seen with Scalable TCP) in trade for increased goodput. These 
bounds arise from some simple factors. 

 If a flow is restrained by receipt of a relatively small rwnd, then the ability of 
alternate congestion control regimes to increase to a high cwnd cannot be used to transmit 
faster on a flow. Assuming rwnd does not constrain flow goodput, flows can increase 
goodput in concert with cwnd by using slow start to discover the maximum transmission 
rate. Given a high initial slow-start threshold, then all flows can discover the maximum 
cwnd with the same quickness. In this case, TCP flows would reach maximum cwnd on 
average with the same pace as flows running alternate algorithms. Only when the initial 
slow-start threshold is low, forcing early entry into congestion avoidance, could flows 
using alternate algorithms reach maximum cwnd more quickly than TCP. If flows are 
transferring large files, then the ability to reach maximum transmission rate quickly 
provides a substantial goodput advantage, and the advantage increases with file size. 
Under small files a transfer could complete under initial slow-start and, thus, the 
advantage inherent in congestion avoidance increase procedures for the alternate 
algorithms would not be realized. When flows transit heavily congested paths in the 
network, then most of the alternate congestion control algorithms adopt standard TCP 
congestion avoidance procedures, which negate any goodput advantage over TCP flows. 
Though FAST and FAST-AT do not adopt standard TCP congestion avoidance 
procedures, we found that heavy congestion can cause the transmission rate to oscillate 
on FAST and FAST-AT flows, which leads to higher loss rates, more retransmissions and 
lower goodput. 

We are unable to determine how likely a particular flow is to operate under the 
bounded circumstances required for alternate congestion control algorithms to provide 
improved goodput over standard TCP. Certainly it would be possible to engineer a 
network, or segments of a network, to provide specific users with high utility from 
alternate congestion control algorithms. On the other hand, we suspect a rather low 
probability for such circumstances to arise generally in a network. Thus, we conclude that 
alternate congestion control algorithms can provide improved user goodput, but most 
users seem unlikely to benefit very often.   
 
10.1.1.5 Safety. Given that on occasion some users could benefit from the increased 
goodputs available from alternate congestion control algorithms, we need to consider 
whether widespread deployment of such algorithms could induce undesirable 
macroscopic characteristics into the network. In other words, are there significant costs 
that might offset the modest benefits associated with deploying alternate congestion 
control algorithms? We can answer this question only in part because we simulated 
networks where sources used either a single congestion control regime or where some 
sources used a selected alternate congestion control algorithm while other sources used 
standard TCP congestion control procedures. There could be additional cautionary 
findings that arise from a heterogeneous mixture of alternate congestion control 
algorithms. We postpone such investigations to future work. 
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  In our experiments, we simulated a wide range of conditions and we considered 
numerous scenarios comparing network behavior under specific alternate congestion 
control algorithms, sometimes mixed with TCP procedures. For most algorithms under 
most conditions, we found little significant change in macroscopic network 
characteristics. One exception relates to FAST and FAST-AT. In spatiotemporal realms 
with high congestion, where there were insufficient buffers to support the flows transiting 
specific routers, FAST and FAST-AT exhibited oscillatory behavior where the flow cwnd 
increased and decreased rapidly with large amplitude. Under these conditions, the 
network showed increased loss and retransmission rates, a higher number of flows 
pending in the connecting state and a lower number of flows completed over time. Thus, 
FAST and FAST-AT should be deployed on a wide scale only with great care. There 
appears to be some possibility that FAST could cause significant degradation in network 
performance in selected areas and for selected users. We recommend the need for 
additional study of FAST and FAST-AT prior to widespread deployment and use on the 
Internet.  

10.1.2 Characteristics of Individual Congestion Control Algorithms 
Below, we provide a brief summary of the characteristics found from our experiments for 
each alternate congestion control algorithm. For each algorithm we consider four 
characteristics. The first characteristic, implementation complexity, assesses how much 
code might be required to implement an algorithm. The second characteristic, activation 
trigger, identifies the condition (usually a specific congestion window size) that causes a 
flow to switch between standard TCP congestion avoidance procedures and alternate 
procedures defined by an algorithm.  The third characteristic, goodput latency, measures 
the time required for a flow to achieve maximum transmission rate on long-lived flows 
when operating under an algorithm’s alternate congestion avoidance procedures. The 
fourth characteristic, recovery latency, measures the time required for a long-lived flow 
to recover maximum transmission rate after a period of congestion with sustained losses. 
Table 10-1 compares the seven alternate congestion control algorithms with respect to 
these four characteristics. We discuss the algorithms in alphabetical order, as shown in 
the table. 
 
Table 10-1. Comparing Four Characteristics of Individual Alternate Congestion Control Algorithms 

Algorithm
Implementation 
Complexity

Activation 
Trigger

Goodput
Latency (avg)

Recovery
Latency (avg)

BIC high 14 packets 18.8 s 71.3 s

CTCP moderate 41 packets 7.9 s 2.9 s

FAST low none 3.7 s 6.6 s

FAST‐AT moderate none 3.7 s 26.0 s

HSTCP low 31 packets 22.4 s 10.0 s

H‐TCP moderate 1 s w/o loss 16.6 s 10.0 s

Scalable TCP low 16 packets 17.8 s 22.5 s
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10.1.2.1 BIC. Clearly, among the seven algorithms we studied, BIC is the most complex 
to code and implement, requiring a potentially substantial amount of processing to adjust 
the cwnd. BIC uses standard TCP congestion avoidance procedures when cwnd is below 
a low-window threshold (14 packets, here). Under congestion with losses spaced 
sufficiently in time, BIC reduces cwnd less quickly than standard TCP, so BIC can 
achieve higher goodputs under sporadic losses by maintaining a high transmission rate 
and associated buffer state. This can be somewhat unfair to newly arriving flows. On the 
other hand, when congestion becomes severe, with losses spaced closely in time, BIC 
reduces cwnd much more quickly than TCP. Under such circumstances, BIC can take 
substantial time (average 71.3 s in our experiments) to recover maximum goodput after 
congestion eases. When considering the rate of increase in transmission speed under low 
congestion after reaching initial slow-start threshold, BIC averaged about 18.8 s to reach 
maximum transfer speed on long-lived flows. This rate of increase ranked fifth (of six) 
overall, and was competitive with HTCP, Scalable TCP and HSTCP. 

  
10.1.2.2 CTCP. The algorithm for CTCP requires periodic processing to adjust an 
auxiliary delay window (dwnd), which increases the processing cost beyond that found in 
standard TCP congestion control. Under congestion, CTCP reduces transmission rate by 
one-half and then recovers relatively quickly. The advantage of CTCP recovery 
procedures appears most obvious after a period of severe congestion on a path. Under 
easing congestion, dwnd can increase quite quickly. Since CTCP augments the cwnd with 
the dwnd, transmission rate can also increase quickly – returning to maximum rate in an 
average 2.9 s in our experiments. In fact, in some situations, the rate of increase in dwnd 
appears unbounded. CTCP implementations should probably include a bound on 
maximum dwnd. Under periods of heavier congestion, increase in dwnd is constrained. In 
addition, the CTCP algorithm appears quite fair to competing CTCP flows as well as 
TCP flows. CTCP had the highest default low-window threshold (41 packets, here) 
among the algorithms we studied. Further, CTCP averaged about 7.9 s to reach maximum 
transfer speed on long-lived flows under low congestion and low initial slow-start 
threshold. This rate of increase ranked second overall behind only FAST and FAST-AT, 
which tied for first. 
 
10.1.2.3 FAST. The algorithm for FAST requires periodic processing to adjust the target 
cwnd. While each adjustment demands little computation, the default periodicity (20 ms, 
here) can require multiple adjustments within a single round-trip time. FAST does not 
have a low-window threshold; thus, after initial slow-start, FAST flows never use 
standard TCP congestion avoidance procedures. Under congestion, FAST reduces 
transmission rate by one-half and then recovers very quickly. The advantage of FAST 
recovery speed appears under both sporadic losses and when congestion eases following 
a period of severe congestion on a path. Under easing congestion, FAST recovered 
maximum transmission rate in an average of 6.6 s in our experiments. On the other hand, 
for flows transiting congested areas, with insufficient buffer space for all flows, FAST 
exhibits oscillatory behavior that increases losses and, thus, retransmissions, which 
reduces user goodput. Under severe congestion, FAST causes an increase in flows 
pending in the connecting state because SYN packets are lost with increased probability. 
In addition, FAST can significantly reduce the number of flows completed over time in a 
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network. Among the algorithms we studied, FAST achieves maximum available 
transmission rate in the shortest time (3.7 s average) on long-lived flows under low 
congestion and low initial slow-start threshold. The ability of FAST to accelerate 
transmission rate led to superior goodputs (under low congestion and low initial slow-
start threshold) for file sizes larger than Web objects, and the advantage of FAST 
increased with file size. The ability of FAST to quickly attain high transmission rates for 
large files tended to induce losses in competing flows. Since TCP flows could not recover 
quickly, FAST flows could attain much higher goodputs than competing TCP flows. 
 
10.1.2.4 FAST-AT. The FAST-AT algorithm augments FAST with periodic procedures to 
monitor throughput and tune the  parameter used when adjusting the target cwnd. 
Without  tuning, FAST sets the  parameter to a fixed value. FAST-AT monitors 
throughput every round-trip time and tunes the  parameter periodically (every 200 s, 
here). As throughput improves past specified thresholds  is increased and as throughput 
declines past specified thresholds  is decreased. FAST-AT exhibits many of the same 
positive and negative properties as FAST. The main difference was that, under severe and 
sustained congestion, FAST-AT reduced the  parameter from a default setting of 200 to 
as low as 8. In such, circumstances FAST-AT recovers much more slowly than FAST. 
When throughput begins increasing, FAST-AT adjusts the  parameter only every 200 s 
and must make two adjustments (8 to 20 followed by 20 to 200) before reaching the 
maximum recovery rate. In our experiments, when recovering from sustained periods of 
heavy congestion, FAST-AT took longer (26 s average) to reach maximum transmission 
rate than all alternate algorithms except BIC. On the other hand, by recovering 
transmission rate more slowly under heavy congestion, FAST-AT proved more TCP 
friendly than FAST. This occurred because under such circumstances FAST-AT did not 
induce as many losses in competing TCP flows.   
 
10.1.2.5 HSTCP. The HSTCP algorithm is relatively straightforward, updating the cwnd 
no more frequently than standard TCP. The HSTCP cwnd updates involve somewhat 
costly logarithmic and exponentiation operations. HSTCP uses standard TCP congestion 
avoidance procedures when the cwnd is below a low-window threshold (31 packets, 
here). HSTCP reduces cwnd less on a loss than standard TCP and provides more than 
linear increase in cwnd during congestion avoidance. Under both sporadic and heavy 
congestion, HSTCP retains a higher transmission rate (and associated buffers) than TCP. 
By maintaining more buffered packets, HSTCP can induce losses in competing flows. In 
such situations, newly arriving HSTCP flows can have difficulty increasing transmission 
rate, especially on paths with longer propagation delays. In addition, losses induced on 
competing TCP flows hurt goodput for TCP users because TCP recovers only linearly. 
When recovering from periods of sustained heavy congestion, HSTCP tied for third best 
(10 s average) in our experiments, but the short recovery time can be attributed mainly to 
the fact that, in comparable situations, HSTCP flows did not reduce transmission rate as 
much as most other congestion control algorithms. Under low congestion and low initial 
slow-start threshold, HSTCP achieved maximum transmission rate more slowly (22.4 s 
average) on long-lived flows than all other alternate congestion control algorithms we 
studied.   
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10.1.2.6 HTCP. The HTCP algorithm requires a periodic (250 ms, here) process to 
monitor flow throughput. HTCP uses standard TCP congestion avoidance procedures for 
a specified period (1 s, here) after a packet loss. Under congestion, HTCP behaves like 
standard TCP congestion avoidance. The heavier the congestion, the more time HTCP 
spends using TCP procedures. When recovering from periods of sustained heavy 
congestion, HTCP tied for third best (10 s average) in our experiments. Under sporadic 
losses, HTCP can spend too much time using TCP’s linear increase. In our experiments, 
this trait led HTCP to provide lower goodput than other alternate congestion control 
algorithms on large files. On the other hand, by adopting standard TCP congestion 
avoidance procedures following packet loss, HTCP is quite TCP friendly. Under low 
congestion and low initial slow-start threshold, HTCP achieved maximum transmission 
rate somewhat slowly (16.6 s average), comparable to BIC, HSTCP and Scalable TCP, 
but significantly slower than CTCP, FAST and FAST-AT.  
 
10.1.2.7 Scalable TCP. The Scalable TCP algorithm is a small modification of standard 
TCP congestion avoidance procedures. Scalable TCP increases cwnd by a constant on 
each acknowledgment and decreases cwnd by 12.5 % on each loss. In addition, Scalable 
adopts standard TCP congestion avoidance procedures when cwnd is below a low-
window threshold (16 packets, here). Under congestion, established Scalable TCP flows 
do not reduce transmission rate very quickly. By maintaining more buffered packets, 
Scalable TCP can induce losses in competing flows. In such situations, newly arriving 
Scalable TCP flows can have difficulty increasing transmission rate, especially on paths 
with longer propagation delays. In addition, losses induced on competing TCP flows hurt 
goodput for TCP users because TCP recovers only linearly. When recovering from 
periods of sustained heavy congestion, Scalable performed fifth best (22.5 s average) in 
our experiments, but the recovery time can be attributed mainly to the fact that, in 
comparable situations, Scalable TCP flows did not reduce transmission rate as much as 
most other congestion control algorithms. Under low congestion and low initial slow-start 
threshold, Scalable TCP achieved maximum transmission rate somewhat slowly (17.8 s 
average). In fact, Scalable increased transmission rate very slowly for the first few 
seconds of long-lived file transfers, which means that Scalable provides a steep increase 
in transmission rate only for large files. 

10.1.3 Recommendations 
Under some circumstances, users can benefit from adopting alternate congestion control 
algorithms to transfer files on the Internet. For that reason, it makes sense to deploy such 
algorithms into computers attached to the Internet. Of course, the probability appears 
quite low that a specific user will see benefits on any particular file transfer. Among the 
alternate congestion control algorithms we studied, CTCP appears to provide the best 
balance of properties. Under low congestion, CTCP can increase transfer rate relatively 
quickly when operating in the congestion avoidance phase. Further, CTCP reduces 
transmission rate relatively quickly in the face of sustained congestion and recovers to the 
maximum transmission rate quite quickly when congestion eases. CTCP appears 
relatively friendly to flows using standard TCP congestion avoidance procedures. CTCP, 
along with most of the other alternate congestion control algorithms we studied, is 
unlikely to induce large shifts in the macroscopic behavior of the Internet. FAST and 
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FAST-AT have some appealing properties, especially with respect to achieving 
maximum transmission rate quickly on high-bandwidth, long-delay paths and recovering 
quickly from sporadic losses. Unfortunately, when transiting highly congested paths with 
insufficient buffers to support the flow volume, FAST and FAST-AT can enter an 
oscillatory regime that could significantly increase loss and retransmission rates. Flows 
transiting affected areas would take longer to connect and complete and would receive 
lower goodputs.  

10.1.4 Future Work 
We studied seven proposed replacement congestion control mechanisms for the Internet. 
Despite the comprehensive nature of our study, more work remains to be done in at least 
four directions. First, we limited our study to a bounded set of alternate congestion 
control algorithms for which we could find empirical data against which to validate our 
simulations. Researchers have proposed many congestion control algorithms that were 
not included in our study, so one direction for future work is to consider the behavior of 
additional algorithms. Of particular interest is CUBIC, which has replaced BIC as the 
congestion control algorithm enabled by default in Linux. 

Second, we have not considered scenarios where multiple alternate congestion 
control algorithms are mixed together in the same network. Increasing the heterogeneity 
of algorithms might reveal additional insights about the advantages and disadvantage of 
the various algorithms, as well as uncover undesirable macroscopic behaviors resulting 
from such mixtures. Where undesirable behaviors do not appear, then such a study would 
increase confidence in the safety of deploying alternate congestion control regimes. Of 
course, conducting such a study would likely require substantial increase in demand for 
computation resources in order to simulate long enough network operation to accumulate 
sufficient samples to reveal statistically significant behavioral patterns. 

Third, we have not validated our findings against live, controlled experiments 
configured in GENI or a similar test bed environment. Conducting such a validation 
would substantially increase confidence in the findings of our study. We intend to 
undertake such a validation as soon as we can gain access to sufficient resources to 
support our experiments. In the meantime, we also plan to consider how we might 
attempt to validate our findings using test environments of smaller scale. One way to 
approach this may be to make predictions about behaviors we should see replicated even 
at smaller scale than the network sizes and speeds we simulated. 

Fourth, our study revealed various strengths and weaknesses in the congestion 
control algorithms we investigated. Future researchers could exploit our findings to 
propose algorithm improvements that compensate for identified weaknesses, while 
retaining strengths. Further, our general findings may also help other researchers to 
improve future designs for additional congestion control algorithms. 

10.2 Conclusions about Methods 
The simulation and modeling studies reported here also enabled us to evaluate each of the 
modeling and analysis methods we used. Below, we first discuss the use of discrete-event 
simulation as a technique to model systems at large scale. Subsequently, we evaluate the 
specific methods we applied to solve each of the five hard problems that we identified in 
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Sec. 2.4. We than provide some overall recommendations for those seeking to model and 
analyze large distributed systems. We close with suggestions for future work. 

10.2.1 Discrete Event Simulation 
Recall that our discrete-event simulation model, MesoNet, was constructed because an 
existing cellular automaton model proved unable to scale to simulate networks of the size 
and speed required for this study. The cellular automaton model simply demanded far too 
many computation resources. What about discrete-event simulation? We demonstrated 
that MesoNet could feasibly simulate a network operating for one hour at contemporary 
router speeds while transporting hundreds of thousands of simultaneous flows with a mix 
of 100 Mbps and 1 Gbps sources and receivers sending flows with sizes ranging from 
tens of kilobytes to gigabytes. Of course, running such a simulation for an average 
parameter combination required about 17 ½ days of processing time. In the best case, 
such a scenario required just over 8 days and in the worst case just over 30 days. The 
speed of individual processors seems unlikely to improve much in the future. Instead, 
computer systems will be outfitted with an increasing number of processors that can be 
used in parallel. Increasing parallelization is a nice match for orthogonal fractional 
factorial experiment designs (see Sec. 10.2.2.3 below), but each individual experiment 
run must still be completed within a time budget. We conclude that discrete-event 
simulation is unlikely to support network simulations much beyond the scale we used in 
our study. Even if one is willing to wait 60 or 90 days for a single simulation run to 
complete, the odds seem low that the underlying hardware, operating system, simulation 
environment and model could run so long without incurring some sort of failure. 
Researchers are investigating parallel simulation as a means to increase the scale of runs 
that can be executed, but temporal relationships among elements in network simulations 
will probably restrict the degree of speedup that can be achieved. We conclude that 
increasing the scale of a simulated network will likely require a different paradigm, such 
as fluid-flow or hybrid simulations. We discuss such models further in Appendices A and 
B.     

10.2.2 Scale Reduction Techniques 
We adopted five specific techniques to reduce the scale of parameter and response spaces 
in our experiments. Below, we evaluate each technique in turn. 
 
10.2.2.1 Model Restriction and Parameter Clustering. Restricting model parameters to 
those germane to this specific study led to substantial reduction in intellectual effort 
associated with identifying and assigning values to both fixed and variable parameters. 
Further, reduction in the parameter space lowered the overall computational demand 
associated with individual experiment runs and with experiment campaigns. Clustering 
individual parameters into groups, each representing a key factor driving a simulated 
network, further reduced the intellectual effort needed to parameterize experiments and 
also to analyze responses and assess the influence of particular input factors. Of course, 
the reductions associated with restricting and clustering input parameters were 
insufficient alone to achieve computational tractability for the experiments in this study. 
Other reductions were required (see Sec. 10.2.2.2 and Sec. 10.2.2.3 below). Further, 
significant domain expertise was needed to identify reasonable parameter restrictions and 
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groupings. This may impede studies where such expertise is unavailable. In some cases, 
substantial simulation executions and data analyses were required to identify parameter 
reduction decisions that were inappropriate. For example, we required about one week of 
simulation to identify a gradual trend toward an increasing number of active flows. 
Discovering this trend led us to introduce connection establishment procedures into the 
simulation. This finding illuminated the important role that connection establishment 
procedures play in controlling network-wide congestion. 
 
10.2.2.2 Two-Level Experiment Designs. The largest reduction in computation demand 
for simulations in this study arose from the simple act of limiting parameter settings to 
only two levels. Of course, taking this step incurred several drawbacks. First, the 
experiment designer must select specific values for each level. This requires significant 
domain expertise. Second, the results obtained for each experiment are robust only over 
the range defined by the selected level settings. Third, drawing conclusions from a two-
level experiment design entails an assumption that a model behaves monotonically within 
the range defined by the selected settings. To mitigate these restrictions, the study 
adopted several experiments and varied level settings between experiments. While some 
may cringe at limiting parameter settings to two levels, we demonstrated in this study that 
significant insight can be gained even under such a severe restriction.    
 
10.2.2.3 Orthogonal Fractional Factorial Experiment (OFF) Designs. OFF experiment 
designs enabled us to further reduce computational demand in cases where simulating all 
combinations of parameter settings proved too costly, even after limiting parameters to 
only two levels. In general, OFF designs allow an experiment designer to simultaneously 
vary parameter combinations in a balanced and orthogonal fashion to provide the 
maximum amount of information given a limit on the affordable number of experiment 
runs. Since each selected combination of parameters represents an independent 
simulation run, OFF experiment designs create a suite of simulations that can be executed 
in parallel, across all available processors, one simulation per processor. Recall, however, 
that each individual simulation run must still be computationally feasible (as discussed in 
Sec. 10.2.2.1 above). Another advantage to two-level OFF designs arises from an 
effective match with a ten-step graphical analysis technique developed at NIST (see Sec. 
10.2.4.1 below). Pairing two-level OFF designs with the graphical and analytical 
techniques used in our study reveals substantial information about system behavior – 
within the restrictions of two-level designs (as discussed above in Sec. 10.2.2.2). Of 
course, OFF designs further reduce the potential parameter combinations examined in a 
particular study. In general, no study can cover all potential parameter combinations. The 
most typical approach adopted by network researchers entails fixing all parameter 
settings except one, which is varied across a range of levels. The results of this one-
factor-at-a-time approach can produce nice x-y plots, but any resulting conclusions are 
valid only under a specific combination of fixed parameters. OFF designs provide a 
principled technique to vary multiple parameter settings simultaneously, which yields 
more information about overall behavior of a system. Further, OFF designs can identify 
model errors more readily than one-factor-at-a-time experiments because OFF designs 
probe a model under a larger variety of parameter combinations.   
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10.2.2.4 Correlation Analysis and Clustering. Correlation analysis proved an effective 
technique to reduce the response space that we needed to examine. In one of our 
sensitivity analyses (see Chapter 4), for example, we showed how 22 potential responses 
could be reduced to only seven. Assuming availability of a domain expert, correlation 
results may also aid in model validation. For example, a domain expert should be able to 
verify whether or not the correlations make sense. A domain expert should also be able to 
attribute surprising correlations to modeling error or to new insights. We found that a 
given set of correlation results apply only to the specific range of parameter combinations 
used to generate the related responses. For example, the correlations identified in 
Appendix C differ in some ways from the correlations identified in Chapter 4. 
Examination by a domain expert revealed that both sets of correlations are valid; 
differences arose from variations in the range of parameters simulated. We conclude that 
correlation analysis should be applied separately to each suite of experiments where level 
settings differ. 
 
10.2.2.5 Principal Components Analysis (PCA). We used PCA to complement correlation 
analysis3. PCA aims to identify orthogonal variations, so-called principal components, in 
response data and to assign weights to indicate the degree to which responses influence 
each identified principal component. For the models simulated in this study, we found 
that most variation in response data could be accounted for by the first four principal 
components in a given analysis. This implies, for example, that we might be able to 
analyze four responses instead of the 22 used in our sensitivity analysis. Further, a 
domain expert could compare the findings from a PCA against the findings from a 
correlation analysis to determine if the two analyses were consistent. This consistency 
check helps to further validate a model. On the other hand, working with PCA results can 
be somewhat difficult for a few reasons. First, principal components are abstract linear 
weighted combinations of responses, so there is no specific domain interpretation behind 
a given component. An analyst or expert must invest considerable effort to develop a 
domain interpretation of even the top two or three principal components. In some cases 
(e.g., Chapter 4), a clear and reasonable interpretation can be achieved. In other cases 
(e.g., Appendix C), interpretation becomes more difficult. Second, principal components 
can take on both positive and negative values, which present an analyst with difficulty 
assigning meaning. In fact, conducting a main-effects analysis of principal components 
required us to refer to main-effects analyses of raw responses in order to develop an 
interpretation. Third, PCA sometimes identified components that proved coarser than 
similar response groupings developed with correlation analysis. When aiming to reduce 
the response state space, we conclude that PCA provides a reasonable complement to 
correlation analysis, but domain experts will often find correlation analysis more readily 
comprehensible than PCA. 

10.2.3 Model Validation Techniques 
As we discussed in Chapter 2, network researchers typically do not know whether their 
models are valid. For this reason, we took two steps to increase confidence in the validity 
of MesoNet. We evaluate each step in turn. 
                                                 
3 We also used PCA to identify sources of variation in data related to several experiments throughout our 
study. We evaluate PCA in these applications below in Sec. 10.2.4.3.  
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10.2.3.1 Sensitivity Analysis. Sensitivity analysis provided a tractable means to 
investigate the response of MesoNet to various changes in model input parameters. Using 
sensitivity analyses we were able to find and fix errors in early model formulations and, 
ultimately, to develop confidence that the model was fit for its intended role in our study. 
Of course, to conduct such analyses we combined many of the individual methods 
evaluated here, including two-level OFF experiment design, correlation and principal-
components analyses and ten-step graphical analysis. For this reason, our approach to 
sensitivity analysis inherited the strengths and weaknesses associated with the individual 
methods. In particular, the two-level design limited the range of our conclusions about 
model validity. To mitigate that, we conducted a supplementary sensitivity analysis (see 
Appendix C) that adopted different level settings for each input factor evaluated. We also 
used preliminary sensitivity analyses to identify factors that did not much influence 
model responses. We could then reduce the search space in subsequent analyses. We 
conclude that rigorous sensitivity analysis becomes feasible when using a reduced-scale 
simulation model and two-level OFF design, combined with judicious choice of factors to 
vary. Results from sensitivity analyses guided us in designing specific experiments 
associated with our study. We recommend that campaigns of simulation (or numerical) 
experiments use only models that have been examined for sensitivity to changes in input 
parameters.  
 
10.2.3.2 Key Empirical Comparisons. To increase confidence that we had correctly 
modeled specific congestion control algorithms, we relied on key comparisons between 
simulation results and empirical results. Such comparisons were facilitated by the 
existence of published empirical results measured under controlled circumstances in a 
small (“dumbbell”) topology. We were easily able to model the small topology in 
MesoNet and to simulate the same scenarios and parameter settings used in the empirical 
studies. Comparing our simulation results with empirical results enabled us to identify 
errors in modeling several congestion control algorithms. We were also able to correct 
our models and ensure that we obtained results consistent with empirical results. In this 
way, we gained confidence in our models of the various congestion control algorithms 
prior to increasing the scale of topology we simulated. As an added benefit, the empirical 
study identified default parameter settings adopted by congestion control algorithms. We 
were able to adopt those settings for our large simulations. For a given study, empirical 
results may be unavailable, either because the problem under study is not yet 
implemented or because no one has published empirical results. Where feasible, we 
recommend that a small experimental configuration be used to generate empirical 
measurements in order to ground a mathematical model in reality. Preferably, the 
empirical measurements should be made from implementations developed independently 
from the models. The empirical measurements should capture key aspects of system 
behavior on a small scale. When empirical measurements cannot be made available, 
important aspects of a model may go unconfirmed. From our experiences, the resulting 
model can contain significant errors that lead to invalid behaviors. We recommend that 
significant studies endeavor to compare key model aspects with empirical measurements 
taken at small scale. Any reasonable expense required to obtain empirical measurements 
will be repaid by enhancing confidence in models used to study large-scale systems.   
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10.2.4 Data Analysis Methods 
Data analysis comprises the third axis of our method; modeling and experiment design 
comprise the other two axes. We applied and explored four data analysis methods during 
our study. We evaluate each method below.  
 
10.2.4.1 Ten-Step Graphical Analysis. In support of exploratory analysis, NIST designed 
a ten-step graphical method (explained in Appendix D), where each step generates an 
individual plot designed to answer one specific question regarding a data set. We 
employed this ten-step method as a main part of our sensitivity analysis, where we 
applied all ten steps to each response. The analysis method is designed to match well with 
a two-level OFF experiment design. Clearly, for our application, the main-effects plot 
(D.3) proved most insightful – revealing changes in system responses resulting from 
changes in input factors. The interaction effects matrix (D.4) also helped to identify that 
MesoNet was driven primarily by main effects, rather than by two-factor interactions. 
Other plots proved useful for specific, limited purposes. For example, the ordered data 
plot (D.1) identified specific combinations of factor settings that produced significant 
effects on the responses. The multi-factor scatter plot (D.2) summarized how the 
distribution in responses changed with respect to changes in input factors. Several other 
plots provided redundant information, which served to confirm related results or to 
identify analysis errors. For example, the Youden plot (D.6) identified the most 
significant factors driving particular responses, which could also be ascertained from 
main effects plots, as well as a number of other plots. The |Effects| plot (D.7) and the 
cumulative residual standard deviation plot (D.9) helped to visualize whether a linear 
model could approximate a system’s response to input factors. A derived contour plot 
(D.10) suggested how specific changes in the two main factors influencing a response 
might drive the response in particular directions. For our purposes, the box plot (D.5) did 
not provide significant new information. Overall, the ten-step graphical analysis proved 
quite useful in analyzing a model’s sensitivity to changes in input parameter settings. We 
applied all ten steps to our initial sensitivity analysis. Subsequently, we used only main 
effects plots and interaction effects matrices, which provided the most important 
information for our supplementary sensitivity analysis. We recommend applying all ten 
steps of the graphical analysis during early stages of model development and 
investigation. The various plots reveal a range of confirming and complementary 
information that could prove quite insightful. In later stages of analysis, we recommend 
limiting selected plots to only those necessary to address specific questions of interest.  
 
10.2.4.2 Cluster Analysis. We employed cluster analyses to reveal overall patterns of 
similarities and differences in multidimensional responses. We sought patterns in 
behavior among selected congestion control algorithms under conditions, composed of 
combinations of input parameters. Because parameter combinations varied greatly, we 
clustered algorithms only with respect to individual conditions. To identify clustering 
patterns, we needed to characterize differences among conditions. Such characterization 
required external analyses. Given dendrograms for each condition, along with 
characterizations of each condition, we were able to identify patterns where selected 
algorithms clustered together. These clustering patterns provided general relationships 
among algorithms and congestion. On the other hand, the patterns did not identify 
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specific relationships among responses that led to the patterns; for this we required more 
detailed analyses (see 10.2.4.3 below). Cluster analysis appears well suited to identify 
general patterns where such patterns exist. Further, using cluster analysis, we were able to 
identify close correspondence in the behaviors of two congestion control algorithms, 
which enabled us to make informed decisions about more detailed analyses. On the 
whole, cluster analysis can provide a concise overview of patterns in data sets, but one 
should not expect cluster analysis alone to provide complete insight about causality. At 
best, we found that cluster analysis could help to identify aspects of the data that should 
be given closer scrutiny.  
 
10.2.4.3 Custom Multidimensional Visualizations. Using Dataplot, a statistical scripting 
language and supporting run-time environment developed at NIST, we could construct 
custom visualizations designed to explore specific relationships among multidimensional 
data sets. We developed several custom, multidimensional, visualizations for our study. 
The resultant representations provided substantial insight into overall system behavior. In 
fact, custom visualizations provided launching points for many causality analyses (see 
Sec. 10.2.5). Custom visualization can provide a domain expert with concise and precise 
information regarding the questions under study. Further, detailed custom visualizations 
can be subjected to custom summarizations that identify key patterns in experiment data. 
On the other hand, successful custom visualizations entail collaboration between an 
expert in statistical visualization and a domain expert, who must iterate over the design 
and construction of each visualization until a useful result emerges. We found, however, 
that a few (four or five) well-crafted multidimensional visualizations could be reused to 
analyze data from most experiments in our study. We recommend custom 
multidimensional visualizations as a key tool for analysis of data sets for complex 
systems. Of course, we were fortunate that one study participant was expert in the design 
and programming of statistical visualizations. Custom visualizations would be difficult to 
create and apply without access to the necessary expertise.    
 
10.2.4.4 Exploratory Multidimensional Interactive Visualization. Early in our study, we 
collaborated with visualization experts, who constructed DiVisa, a general purpose 
system for interactive exploration of multidimensional data. DiVisa enables an analyst to 
view multiple, related, data simultaneously, while assigning custom visual attributes to 
represent various dimensions in the data. For example, visual attributes may include 
color, size and shape. Altogether, DiVisa allowed an analyst to assign up to eight 
different attributes to data. In using DiVisa, an analyst needs to remember how attributes 
are assigned. The resulting visualizations proved quite abstract and difficult to interpret. 
Late in development, and at the request of a domain expert, DiVisa was extended to 
support display of topological information associated with a given simulation. Since a 
topology is quite natural for a networking expert, DiVisa acquired increased utility for 
our study. In fact, given voluminous spatiotemporal information, such as queue sizes 
changing over time in every router in a network topology, DiVisa could replay the 
dynamic behavior of a MesoNet simulation, which enabled us to detect unwanted 
behaviors in various simulations and to adjust model parameter settings as necessary to 
achieve desired effects. Unlike custom multidimensional visualizations, interactive 
visualization systems require a domain expert to explore system data and to develop 
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revealing representations by assigning attributes to data dimensions. We found this quite 
difficult to do. Perhaps our experience would have been different had we collaborated 
with an expert in interactive multidimensional visualization. We do not recommend using 
abstract interactive systems for visualizing multidimensional data unless the resulting 
displays can be readily related to concepts comprehensible to a domain expert.  

10.2.5 Causality Analysis Methods 
We chose data analysis methods mainly based on an ability to reveal overall patterns in 
behavioral data derived from models of large systems. Once significant patterns were 
revealed, we typically needed to delve into more depth in order to determine root causes 
for the patterns. In this study, we adopted four main techniques   
 
10.2.5.1 Principal Components Analysis (PCA). We were sometimes able to apply PCA 
to identify causality underlying variations in response data. For example, when searching 
for causes in goodput variation among many flow groups under generally low congestion, 
PCA was able to identify the main drivers as network speed, propagation delay and file 
size. PCA could also discern cases where congestion control algorithms did contribute to 
variation in goodput. In general, after using PCA to find the two main principal 
components, an analyst creates a scatter plot of component one vs. component two, where 
each point represents a particular parameter combination. Visual inspection may then be 
used to discriminate clusters, or groupings, of points. Using supplementary analyses, an 
analyst can characterize common factor settings among points in each grouping. Using 
this technique, factors underlying variation in the data can become quite explicit. Further, 
this level of analysis requires little domain expertise and may be accomplished based 
solely on the factors and settings in a two-level OFF experiment design. 
   
10.2.5.2 Detailed Measurements. Causality exploration sometimes requires detailed 
spatiotemporal data related to a specific question under investigation (e.g., time series of 
changing queue sizes in individual routers in a topology). At other times, an analyst may 
need to peruse aggregated spatiotemporal data (e.g., time series of the distribution of flow 
states within the network) to determine if a system is behaving as expected. We chose to 
collect detailed spatiotemporal data as an integral part of our simulation model, MesoNet. 
In fact, for pattern analysis we generated summary data from the detailed measurements. 
We found several advantages to this approach. First, we could use the spatiotemporal 
behavior of our model to determine what range of data to summarize in order to avoid 
transient startup behavior. Second, we could subject our model to exploratory analyses 
(see Sec. 10.2.4.4 and Sec. 10.2.5.4). Third, should patterns from data analysis indicate 
need to further investigate detailed behavior, the data would already exist.4 Fourth, 
should other researchers wish to investigate particular questions not addressed in this 
study, the data would be available for later use. Some drawbacks also arise from 

                                                 
4 In practice, we made initial guesses about the detailed data we needed to collect. During our study, 
specific issues revealed the need to collect additional details, such as the temporal posture of the network 
with respect to the state (e.g., idle, connecting, active) and phase (e.g., initial slow-start, normal congestion 
avoidance, alternate congestion avoidance) of all flows. So, while one can arrange to collect substantial 
detailed data during model construction, the need might arise to add additional measurement data during a 
particular study. 
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collecting such detailed data. First, collecting extensive spatiotemporal data can require 
substantial memory within a running simulation. We mitigated this by permitting the 
simulation to periodically dump the measurement buffer to disk and then reuse the space 
for additional measurements. Of course, this increases the failure surface of the 
simulation. In practice, we found that making incremental measurements worked 
effectively, even when writing results to a file server located on a network.5 Second, 
collecting extensive spatiotemporal data requires availability of sufficient disk storage. 
The experiments in this study required approximately 250 GBytes of storage, so this was 
easily accommodated. For studies investigating behavior in large distributed systems, we 
recommend collecting detailed spatiotemporal data regarding every conceivable aspect 
that might be of interest. Summary data can be created from the details, as required for 
specific analyses. 
 
10.2.5.3 Scientific Method. Given a pattern of interest revealed by data analyses, we used 
the scientific method to search for causality. In general, we would posit a hypothesis to 
explain an observed pattern. We would then suggest detailed behavioral data that should 
exist to confirm our hypothesis. We would investigate the detailed data and either 
confirm or refute the hypothesis. If the hypothesis were refuted, then we would develop 
an alternate hypothesis and repeat. Eventually, we would construct a confirmed 
hypothesis for a given pattern and that would establish a causal link. This approach often 
proved time consuming, especially when a domain expert had insufficient insight to 
formulate a good, initial hypothesis. On the other hand, the rigorous nature of the entire 
modeling and analysis method we used built increasing insight into system behavior as 
the study progressed. For this reason, it became easier over time to generate good 
hypotheses. We were able to establish causality for every pattern of interest to us. Of 
course, our data is available for use by other researchers who might reach different 
conclusions than we have about particular causal links. While we would prefer to suggest 
a more direct process to establish causality, we had little recourse but to adopt the 
scientific method in cases where PCA could not provide sufficient insights.  
 
10.2.5.4 Exploratory Analysis. While the scientific method provides an orderly approach 
to establish causality, we also sometimes adopted a more exploratory approach. In 
general, we would select some related aspects of system behavior and then analyze or 
interact with time varying data to discover trends. We used this technique, for example, 
to characterize temporal changes in the distribution of flow states and phases arising from 
various levels of congestion. We also sometimes used exploratory analysis to develop 
hypotheses about causes underlying patterns arising from analysis of summary data. For 
example, we used exploration of temporal variations in congestion window size on 
specific flows to create the hypothesis that frequent, high amplitude oscillations in the 
                                                 
5 We did find it necessary to modify the simulation to detect network outages that prevented writing 
measurements and then to detect resumption of a network path so that the measurements could be written. 
During times of prolonged network outage the simulation halts while waiting to purge the measurement 
buffer. In some instances, when the file server crashed, the simulation could not write measurement results 
because the file handle was stale. Failure to recover from a stale file handle required a simulation to be 
restarted. Such instances were relatively rare. We were unable to use the SLX checkpoint and restart 
functions because the SLX product requires that a simulation be reloaded into the same memory addresses. 
We could not guarantee that this would be the case. 
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congestion window were responsible for increased loss rates exhibited by FAST and 
FAST-AT under high spatiotemporal congestion. Of course, to engage in exploratory 
analysis, one needs to have sufficient data collected under various well-understood 
conditions. 

10.2.6 Experiment Selection Methods 
Despite the powerful modeling and analysis techniques available to study behavior in 
large systems, significant spatiotemporal patterns can be missed completely if the 
selected experiments do not create the necessary conditions. We relied on three methods 
to help ensure good coverage of key behaviors. Domain expertise played a crucial role. 
 
10.2.6.1 Factor Analysis. We exploited the sensitivity analysis of MesoNet to identify 
input factors exerting the largest influence on model response (as described in Sec. 
4.6.3.2). This enabled us to concentrate our experiment campaign initially on varying 
those factors most likely to drive model behavior. We were able to keep other factors 
fixed. This shows how findings from sensitivity analyses can help to craft effective 
experiment designs.    
 
10.2.6.2 Domain Expertise. In designing our initial experiment (described in Chapter 6), 
we relied mainly on domain expertise. A domain expert conceived a temporal scenario 
that started with typical Web browsing traffic, added heavy congestion in a 
spatiotemporally localized form and then removed the heavy congestion to allow for 
resumption of normal Web browsing. A domain expert also introduced three long-lived 
flows that could provide a detailed view of congestion control behavior. This basic 
scenario proved well-suited to investigate many operational aspects of congestion control 
algorithms. Insufficient domain expertise could create a significant impediment to 
designing insightful experiment scenarios.    
 
10.2.6.3 Incremental Design. We used incremental design to help construct effective and 
efficient experiment campaigns. In incremental design, results of preceding experiments 
are used to select parameters and scenarios for subsequent experiments. For example, our 
first experiment showed that using a large initial slow-start threshold reduced differences 
among most congestion control algorithms. The initial experiment also identified some 
distinctive behaviors arising from FAST. Given these factors, we were able to craft our 
second experiment (see Chapter 7) to examine any changes that resulted from using a low 
initial slow-start threshold and from including a version of FAST with  tuning. At the 
same time we were able to determine whether reducing the size and speed of a simulated 
network would reveal new information. We made these changes while retaining the 
fundamental scenario from the initial experiment. We used the findings from the second 
experiment to design a subsequent pair of experiments (discussed in Chapter 8) that 
examined the influence of initial slow-start threshold in a network supporting standard 
TCP flows mixed together with flows using an alternate congestion control algorithm. At 
the same time, domain expertise injected much lower overall congestion and a richer 
variety of traffic sources into the experiments. Based on findings from these experiments, 
we decided to design an experiment (reported in Chapter 9) that focused on loss/recovery 
procedures within the congestion control algorithms, while at the same time increasing 
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the size and speed of the simulated network. We recommend interweaving domain 
expertise with sensitivity analysis and incremental design to construct the most effective 
experiment campaign to fit within the allotted time.  

10.2.7 Recommendations 
Investigating the behavior of large distributed systems benefits from rigorous application 
of a coherent set of experiment design and analysis methods. We recommend that such 
investigations adopt two-level OFF experiment designs, which can facilitate a wide range 
of compatible analysis methods. Two-level designs allow a system to be investigated 
under a diverse set of conditions for a reasonable cost. Once overall behavior of a model 
is understood, later experiments can focus on fewer factors with more levels, as needed to 
investigate specific aspects of behavior. The quality of these more focused experiments 
will be improved when placed within the context of a well-understood model. We also 
recommend that system models (whether numerical or simulation) be subjected to 
sensitivity analyses in order to understand response to changing input parameters. We 
advocate the use of incremental design when constructing an experiment campaign. We 
suggest that discrete-event simulations can capture more detailed aspects of system 
behavior than would typically be feasible with more abstract models. We found that 
various scale-reduction methods can lead to tractable simulations for systems of 
significant size, but there appears to be a limit. We recommend validating key model 
behaviors against empirical measurements, where feasible. We also identified several 
useful data analysis methods that can reveal overall behavior in large systems. Some 
methods, such as cluster analysis, reveal the presence of behavioral patterns without 
providing much insight into underlying causes. Other methods, such as the NIST-
developed ten-step graphical analysis, give better insights. We found that custom 
multidimensional visualizations can be quite informative, but creating such visualizations 
requires significant iteration between a domain expert and an expert in statistical 
visualization. Causality analysis remains largely beyond the grasp of automated analysis 
methods. Investigating causality required iterative application of the scientific method: a 
domain expert developed a hypothesis regarding a macroscopic pattern of behavior and 
then used evidence from detailed spatiotemporal data to confirm or refute the hypothesis. 
For this reason, we recommend capturing data in as much spatiotemporal detail as a 
model will permit. Finally, we found that effective use of software for interactively 
exploring multidimensional data requires visualizations that relate to concrete concepts 
within the domain under investigation.  

10.2.8 Future Work 
We suggest three areas for future work on modeling and analysis methods for large 
distributed systems. First, we recommend investigating methods that enable abstract 
models to yield improved accuracy. For example, some researchers have developed a 
hybrid model combining continuous-time logic with discrete events to achieve efficient 
simulation of system behaviors (see Appendix B). Similarly, we are working to improve 
the accuracy of fluid-flow models of congestion control algorithms (see Appendix A). 
Such hybrid or fluid-flow models could be augmented with features necessary to support 
the experiments adopted in the current study and then the experiments could be repeated. 
Perhaps one of these abstract models could reveal the same findings at reduced cost. 
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Second, we suggest investigating approaches to automate design of custom visualizations 
for multidimensional data. Currently, successful application of custom visualization (such 
as the detailed response analyses used throughout Chapters 6 through 9) requires 
substantial collaboration between a domain expert and an expert in statistical 
visualization. Perhaps the knowledge of a statistical visualization expert can be packaged 
in an automated form that enables a domain expert to create effective visualizations? 
Third, we encourage research into automated support for causality analysis. In this study, 
establishing causality required iteration of the scientific method by a domain expert. This 
approach was error prone, time consuming and difficult.    
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Appendix A Understanding, Improving and Applying   
                      Fluid-Flow Models 
In order to insure efficient and stable operation of the Internet it is important to be able to 
estimate network performance characteristics under TCP traffic, which today constitutes 
the bulk of Internet data freight. The main obstacle to achieving this goal is posed by the 
dynamic nature of TCP congestion control: very complex collective behavior arises as a 
result of interactions between congestion control algorithms of concurrent flows. A good 
analogy that we will return to below is that of gas or fluid dynamics in which relatively 
simple interactions between molecules comprising the substance lead to familiar but 
complex bulk properties such as viscosity, temperature, and pressure, which are not 
easily understood or computed from the microscopic, molecular description. 

As in fluid dynamics there are two possible approaches to gauging the properties 
of an aggregate network — by simulating the microscopic dynamics of transmission and 
transit of individual packets or by studying heuristically derived high-level 
approximations describing the packet traffic as a kind of a continuous substance flowing 
along the network links. The advantage of the former approach (adopted in the main body 
of this study) is that it yields very detailed information that is easily compared against 
traces collected on experimental test beds, for example, for verification. On the other 
hand, simulating a network of a realistic size over a large number of network parameter 
combinations may prove computationally infeasible. The fluid approximation models by 
comparison have very modest resource demands, although they are also less detailed. 
Fluid approximation models have another advantage over simulations in that they can 
sometimes give precise mathematical relationships between performance and network 
parameters, which can then be used as a guide in design of future networks and protocols 
as well as to improve the performance of current systems.  

We begin in Sec. A.1 by introducing fluid-flow approximation models for TCP 
Reno flows and then we discuss the utility and limitations of such models. In Sec. A.2, 
we use fluid-flow approximation to develop response functions for TCP Reno, as well as 
CUBIC [56] and Compound [58] TCP and then compare the estimated equilibrium 
throughput of these alternatives. We close in Sec. A.3, where we outline future work 
related to fluid-flow approximation of Internet congestion control algorithms. 

A.1 Fluid-flow Approximation Models 
How would the Internet appear when visualizing packets as points moving along links 
and through routers? With hundreds of thousands of packets crossing a typical router 
every second they would appear to be an uninterrupted blur of motion, as if a fluid were 
flowing through pipes rather than a series of discrete packets flowing along links. This is 
the basic idea of fluid approximation: if the number of packets in the network is very 
large and they are moving very fast then the packet traffic will be well approximated by 
an abstract continuous stream. 

Although each individual TCP flow behaves deterministically, aggregate 
dynamics, for a network of any significant size, will appear as nearly random. A good 
physical analogy is molecular dynamics in a volume of gas: while each molecule obeys 
simple Newtonian laws of motion, their collective behavior is essentially stochastic. 
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Describing the paths of individual molecules is a hopeless and ultimately useless 
endeavor; on the other hand, bulk properties such as pressure and temperature are neatly 
connected by the ideal gas equations. Similarly, one may hope that for a large collection 
of TCP flows the aggregate throughput may be related to the round-trip delay, capacity 
and buffer size in a simple way. Thus, the ultimate goal of fluid-flow approximation 
models is to develop a kind of TCP network thermodynamics. 

We introduce fluid approximation by briefly describing the congestion window 
and throughput dynamics in the case of an isolated flow. To keep the presentation as 
simple and clear as possible we will discuss the most basic version of TCP Reno 
preserving only the most salient features of the protocol. That is, by TCP we will 
henceforth mean TCP Reno without selective acknowledgment, fast retransmit and fast 
recovery. Mathematical models incorporating these advanced features of TCP have been 
studied elsewhere [127]. For an isolated flow there can only be one bottleneck router 
along its path and so the rest of the path contributes only in terms of propagation delay. 
We assume further that the bottleneck router is positioned immediately in front of the 
source on the outgoing link. The general case is not substantially different. Let the router 
capacity at the bottleneck be denoted by C packets per second (pps), let its buffer size be 
B packets and the round-trip propagation delay T sec. If the variation in the round-trip 
time due to queuing at the router is negligible, the size of the congestion window in the 
congestion avoidance phase is approximated by the differential equation  
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where W(t) interpolates the discrete congestion window size and P(t) is a sum of delta 
functions )−= ∑ jtttP ()( δ , with tj corresponding to moments of congestion window 
reduction due to detection of packet losses. In the case of an isolated connection the 
sequence tj is periodic and can be computed explicitly. Note, also, that if the buffer is 
large T must be replaced with the equilibrium round-trip time that includes the 
equilibrium queuing delay. 

If B≈CT and the variation in queuing delay is significant, then queue length has to 
be explicitly included in the model. Equation (1) then becomes  
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where )(tQ  is the buffer queue length at the router and  χ[0,B](x)  is the characteristic 
function of [0,B]. 
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While equations (1) and (2) describe the evolution of the congestion window, the 
quantity of real interest is usually the transmission rate. It is not hard to see that the rate at 
which the TCP sliding window1 advances, and hence the transmission rate, is equal to 
W(t) divided by the total round-trip delay T+Q(t)/C. So long as queuing delay is small 
relative to the total round-trip propagation time, the transmission rate, X(t), can be 
approximated by W(t)/T. Dividing (1) through by T we have 
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Note that, as expected, transmission rate attains its maximum value C at W=CT and stays 
at this value even as W continues to increase. This means that when the buffer size is 
comparable with the bandwidth-delay product X(t) does not carry enough information to 
reconstruct the system state completely because it is impossible to compute X(t) 
following a congestion window reduction given only the value of X(t) before the 
reduction. In this case, throughput has to be computed by solving (2) first. 

When considering the case of multiple flows, the complexity of the problem increases 
in two ways. First, as the number of flows increases, the simple periodic congestion 
window dynamics described above breaks down because packet loss now depends on the 
collective behavior of all flows. Consequently, the evolution of congestion windows 
becomes more and more complex and chaotic. The difficulty of the problem also 
increases with increasing complexity of the network structure. As the web of interactions 
among flows becomes increasingly complicated so does the global dynamics of the 
network. This topological aspect of the problem has so far received comparatively little 
mathematical treatment, mainly because describing a large number of flows in a simple 
topology is already a formidable challenge. Most mathematical models in current 
literature treat very simple network topologies. The one most often considered is that of a 
single bottleneck link shared by a large number of identical flows. While this simple 
topology may not exhibit the full range of dynamics that may exist in more complicated 
networks, it is, nevertheless, an important special case both practically and theoretically. 
We turn to this case next. 

A.1.1 Modeling Many Flows on One Link 
We briefly outline the derivation of the fluid approximation for the one-link-many-flows 
case. Let the number of flows N be large and let capacity and buffer size of the router 
scale with N as NC and NaB, 0≤a≤1, respectively. Then the number of packets passing 
through the shared link per unit time will be large, satisfying the intuitive condition 
necessary for the fluid approximation to hold. While the system as a whole will remain 
deterministic as N grows, the packet loss process will be increasingly well approximated 
by a stochastic one. Thus it makes sense to model evolution of congestion windows with 

                                                 
1 The sliding window is the interval of packet numbers corresponding to already sent but not yet 
acknowledged packets. The size of the sliding window is bounded by the size of the congestion window; its 
right edge advances when a new packet is sent and its left when a previously sent packet is acknowledged 
[9]. 
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a corresponding collection of random processes. Let WN(t) be the random process 
describing aggregate congestion window size when the number of concurrent flows is N  
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where WN

i (t) describes the congestion window size of flow i at time t. Since the flows are 
identical, it is reasonable to assume that the WN

i (t) are identical random processes. We 
will also assume that the WN

i (t) become independent as N tends to infinity. Applying the 
law of large numbers we have that 1/N WN(t) converges to some deterministic process 
w(t) as N goes to infinity. The deterministic process w(t) is the fluid approximation of 
WN(t). 

Considering the simpler case of small buffers a<1 first [120], we have from (1) 
and (5)  
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Note that PN

i (t) are now coupled random variables. Dividing through by N and letting N 
go to infinity we obtain the governing equation for w(t) 
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/1lim)(  (assuming the limit exists) is the aggregate loss density 

function. If the variation in round-trip time is small, p(t) can be assumed to depend only 
on w(t−T) (ignoring the rest of the network parameters for the moment). Furthermore, the 
number of packets lost per unit time can be approximated as p(w(t−T))w(t−T)/T, where 
p(w) now stands for the probability that an arriving packet will be dropped due to buffer 
overflow when the aggregate congestion window size is w. Note that because of the 
round-trip delay the source detects packet loss only after a round-trip time T so that p 
depends on the transmission rate T seconds in the past. Formula (7) can be approximated 
as  
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If the buffer is large (a=1) then p(w) will depend not only on w(t−T) but also on buffer 
content q(t−T). Using equations (2) and (5) gives 
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where we assume that the per flow buffer content NtQtq N

N
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lim)(  converges to a 

continuous deterministic variable. 

A.1.2 Utility of Fluid-flow Approximation Models 
There are two main types of results that can be obtained from models such as equations 
(8) and (9). First, one can deduce existence and uniqueness of the equilibrium, and its 
dependence on network parameters. Secondly, one can analyze stability properties of the 
equilibrium solution and the dependence of the equilibrium solution on the network 
parameters. Both types of results have clear practical applications, the first for optimal 
resource utilization and the second for stable network design. We will give a brief survey 
of both types of results. 

By setting the right side of (8) and (9) to 0 we can obtain the expression for the 
equilibrium mean congestion window size w*  
 

                                                        w*=  
2
p*,                                                              (10) 

 
where p*=p(w*) or p(w*,q*) respectively. This shows that an equilibrium exists, since 
p*≠0 is satisfied. Making the natural assumption that p(w) is monotonically increasing in 
w, equation (10) also shows that the equilibrium is unique [122]. Formula (10) is close to 
experimental measurements [117] and also agrees with first principles derivations [117]. 
Unfortunately, the dependence of w* on T and B is hidden inside the unknown function 
p(w), which limits the usefulness of (10) for making a priori throughput estimates. Simple 

forms for p(w) such as 
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M/M/1/B queuing system have been found to be far from accurate [112-113]. Recently, 
an alternative packet loss model based on the Anick-Mitra-Sondhi on-off fluid queuing 
model has been proposed [112, 114] and found to be substantially more accurate than the 
M/M/1/B model at reproducing dependence of packet loss on w and the network 
parameters. 

Even without knowing the exact expression for p(w), however, sufficient 
conditions for linear stability of equilibrium (10) can be deduced in terms of p* and 
p'*=p'(w*). Using standard methods of control theory it has been shown [126] that 
equilibrium (10) of equation (8) will be stable in linear approximation provided that  
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Inequality (11) is a necessary but not sufficient condition for stability, i.e., if it is violated 
the equilibrium will definitely be unstable but satisfying (11) does not guarantee (non-
linear) stability. Based on (11) one can conclude, for example, that p'* must decrease with 
increasing bandwidth-delay product in order for the equilibrium not to lose stability, 
since larger bandwidth-delay product corresponds to larger equilibrium congestion 
window size w*. With more advanced methods it is also possible to derive conditions 
guaranteeing global stability of equilibrium (10), although, the resulting inequalities 
[124] are considerably more complicated and less informative than (11). 

Fluid approximation models have also been used in a global optimization 
framework for the Internet, originally developed by F.P. Kelly, et al. [125] to show that 
per-flow TCP congestion control can be viewed as optimizing a certain global utility 
function. That is, TCP congestion control can be seen as a decentralized iterative 
algorithm for solving a network wide optimization problem. This point of view 
revolutionized understanding of the effect of TCP congestion control on global network 
dynamics. In particular, it paved the way toward a top-down protocol design, where 
starting with a desirable global network state first, the end-to-end congestion control can 
be tailored to achieve this global state. 

Finally, fluid approximation models have been used to create fast simulators for 
large networks [106, 119] by leveraging fast numerical methods for solving systems of 
differential equations. While not as accurate or detailed as packet level simulators, the 
results from the first implementations are encouraging. 

A.1.3 Limitations of Fluid-flow Approximation Models 
In spite of great theoretical value, and even some practical applications, the fluid 
approximation framework falls short of being truly useful to practitioners of network and 
protocol design mainly due to lack of accuracy [112-113]. The main obstruction to the 
accuracy of fluid approximation models is lack of an accurate packet loss process model, 
which determines the equilibrium as well as dynamic behavior of the network. At the 
outset, the packet loss process was assumed to be well approximated by the loss process 
in an M/M/1/B queuing system. However, there is experimental evidence against the 
Poisson packet arrival hypothesis [118]. Based on packet traces collected from the 
Internet it was shown that the packet arrival process has rather different statistical 
properties from a Poisson process. In particular, it was observed that it is much burstier 
and is, moreover, bursty on all time scales. Due to the difficulty of mathematical analysis 
of queuing systems fed by such self-similar traffic, relatively little headway has been 
made toward obtaining a closed form expression for packet loss usable in the fluid 
approximation framework. In fact, it is still common in current publications [112, 120, 
122, 123] to find computations based on the M/M/1/B queuing system. 

Elsewhere [112] we proposed and tested a new expression for packet loss based 
on a queuing model of Anick, Mitra and Sondhi (AMS) [121]. Briefly, the model consists 
of a single fixed rate server fed by a superposition of fluid, fixed-rate, on-off sources with 
exponentially distributed “on" and “off" periods. This model is essentially a packet level 
fluid approximation. Observations [112, 114-115] of ns2 traces suggest that TCP sources 
tend to concentrate packets in bursts (corresponding to a single congestion window) 
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rather than transmitting packets at a uniform rate on the time scale of a round-trip time. 
Thus setting the mean duration of the "on" periods to the congestion window size allows 
us to simulate burstiness arising from the non-uniformity in the transmission rate at the 
round-trip time scale. 

The resulting mathematical model turns out to have a closed form solution in 
terms of the basic system parameters such as the number of sources, the server and source 
rates and the mean duration of the “on" and “off" periods. While this model is certainly 
only an approximation, since, for example, the window size distribution is expected to be 
non-exponential [107, 110], numerically it produces much better results than the 
commonly used M/M/1/B model [112]. Moreover there are some indications that the 
AMS packet loss model may be applicable to any unpaced TCP variant and not just TCP 
Reno, for which it was developed. Assuming this is so we can then use the fluid 
approximation framework to easily compare alternative congestion control algorithms in 
a variety of different network set ups with varying link bandwidths, buffer sizes and 
propagation delays. Next, we show how this can be accomplished. 

A.2 Applying Fluid-flow Approximation Models to Compare  
      Alternate Congestion Control Algorithms 
In what follows, we briefly illustrate how the fluid approximation framework can be used 
to compare throughput performance of different TCP variants in a simple network. 
Specifically we consider an extension of the dumbbell topology — a network with a 
single link shared by a large number of continuously transmitting TCP flows with similar 
round-trip times (RTTs). We concentrate our attention on the standard TCP Reno and two 
other TCP variants — CUBIC [56] and Compound [58] TCP — which are currently 
increasingly deployed in the Internet due to their inclusion in Linux and Windows® Vista 
and Server operating systems, respectively [109]. In the following we will be interested 
only in the equilibrium throughput and so we will ignore the transient convergence 
dynamics described by the fluid approximation differential equations model and 
concentrate on the equilibrium solution. As previously explained, because congestion 
control mechanisms regulate transmission speed by opening and closing the congestion 
window, it is this window rather than throughput that is typically the main variable in 
mathematical models of TCP. The throughput is roughly proportional to the congestion 
window size divided by the round-trip time (including propagation and queuing delays). 

The equilibrium mean congestion window size is described by a system of 
equations of the form 
 
                                                    w* = w(p*)                                                                 (12) 
 
                                                   p*  =  p(w*,C,B,T,N)  
 
where w* and p* are the equilibrium congestion window size and packet loss probability, 
respectively. In special cases w(p) may also depend on other network parameters such as 
the round-trip time (RTT). 

Generally speaking one might expect that the second equation in (12), describing 
the dependence of packet loss on network parameters and equilibrium congestion 
window size, is roughly the same for all congestion control algorithms that use ACK self-
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clocking, i.e., insert new packets into the network only in response to acknowledgments 
from the sink. The reason for this is that the sliding window algorithm in combination 
with ACK self-clocking largely determines the statistics of the aggregate packet arrival 
process at the bottleneck router, which, in turn, determines the statistics of packet loss. 
The packet loss statistics will vary with the TCP congestion control algorithm to the 
degree to which the equilibrium congestion window size distribution varies with 
congestion control algorithm. Unfortunately, due to the complexity of the problem 
relatively little is known about the properties of this distribution. For TCP Reno the 
stationary congestion window distribution has been computed under the assumption of 
Poisson losses [107, 110] and for more general additive-increase multiplicative-decrease 
algorithms [116]. On the other hand, the packet loss probability function under the 
assumption of exponential congestion window size distribution has also been derived 
[112]. 

We first, show how TCP variants can be qualitatively compared without knowing 
the form of the packet loss probability function provided it can be assumed to be 
approximately independent of the specifics of the congestion control algorithm. Indeed, if 
the second equation in (12) is independent of the specific algorithm, then the relative 
position of equilibria of TCP variants is determined by the first equation, which strongly 
depends on the particular congestion control algorithm used. The function w(p) is often 
referred to in literature as the response function of the congestion control algorithm. As 
one would intuitively expect it is a decreasing function of p — the less frequent the losses 
the larger the equilibrium congestion window. Since the congestion window growth 
functions used in congestion control typically exhibit polynomial growth due to stability 
requirements, the response function itself is also typically polynomial in p, i.e., w(p)=cp−α 
for some c, α>0. Since the packet loss instances form a random process the form of w(p) 
depends not only on the average loss probability but also on the statistics of the loss 
process. For simplicity, it is usually assumed that each packet is lost with probability p 
independent of previous losses, i.e., packet loss is a Bernoulli process. Suppose two TCP 
variants TCP0 and TCP1 have corresponding response functions w0(p) and w1(p). We will 
say that w0(p) dominates w1(p) if 110 )( )( pwpw >  for p∈[0,1]. If TCP throughput is 
approximated by (1−p*)w*/RTT , then if w0(p) dominates w1(p) (as in Figure A-1) for 
p∈[0,1] and p* not too close to 1, TCP0 will have strictly higher throughput than TCP1. 

In practice2, p* is usually less than 0.10. One must however keep in mind that this 
comparison in itself is an oversimplification in that it omits certain details such as 
bandwidth lost due to retransmissions, which may in practice lead to significantly lower 
overall throughput. For example, if we assume that the packet loss probability is equal to 
the blocking probability in an M/M/1/B queue (an admittedly optimistic scenario) it is not 
hard to show that the throughput increases with increasing w* even when p* is near 1, 
which translates into the best congestion control algorithm being no congestion control at 
all! That is, the faster the sources push packets into the network the higher the predicted 
throughput. Yet it is equally easy to see that this is a recipe for a congestion collapse, 

                                                 
2 For example, the global Internet packet loss rate for 24 hours starting at 12:55 PM on April 22, 2010 
averaged just below 7 %, as measured by the Internet Traffic Report. For the preceding month, the 
measured average loss rate did not reach 10 %.  http://www.internettrafficreport.com/ 
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since with packet loss near 1 the network will quickly fill with retransmitted copies of 
lost packets driving overall throughput to zero. 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Figure A-1. Response curves of two hypothetical TCP variants TCP0 (blue) and TCP1 (red) and the 
graph of a hypothetical packet loss function (black). 

 
If a dominance relationship between response functions cannot be established, 

then information about the packet loss function p(w,…) is necessary to compare 
congestion control algorithms. We will base our quantitative comparisons of TCP 
variants below on the packet loss model [112] discussed in Sec. A.1.3 above, since it was 
shown to produce more accurate results than models based on M/M/1/B queuing systems. 

A.2.1 Computing Response Functions 
We begin by computing the congestion response functions of TCP Reno, TCP CUBIC 
and Compound TCP. The response function of TCP Reno is well known and has been 
extensively experimentally verified [117]. We present a brief outline of the derivation as 
a simple illustration, since the computations become more involved for the other two 
variants. 
 
A.2.1.1 TCP Reno. Suppose the per packet loss probability is p, then the average number 
of packets transmitted before a loss occurs is N = (1−p)/p. Suppose the equilibrium 
congestion window size just after a packet loss is w0. Let a round be the number of 
packets equal to the current congestion window size and suppose for simplicity that 
between consecutive losses the number of rounds delivered is always an integer. Then the 
number of rounds k between consecutive losses is related to N by the equation  
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    N= ∑
i=0

k
 w0+k=(k+1)w0+ 

1
2k(k+1). 

 
Solving for k gives  
 

         k= 
1
2(−2w0−1+ (2w0−1)2+8N). 

 
Thus at the end of a loss free period, just before packet loss occurs, the expected 
congestion window size will be  
 

       w0+k=w0+ 
1
2(−2w0−1+ (2w0−1)2+8N). 

 
Since we assume the connection to be in equilibrium w0 should be constant on average so  

   w0= 
1
2 ⎝⎜

⎛
⎠⎟
⎞w0+ 

1
2(−2w0−1+ (2w0−1)2+8N) . 

 
Solving the above equation for w0 and discarding constant terms small in comparison 
with N we get  
 

   w0=  
2/3
N =  

2/3(1−p)
p  

 
Finally, to obtain the equilibrium mean congestion window size we multiply w0 by 3/2  
 

w(p)=  
3/2(1−p)

p . 

 
Since in practice p is usually close to 0 an approximation w(p)= (3/2)/p is often used. 
 
A.2.1.2 Cubic TCP. CUBIC TCP differs from TCP Reno in several important respects, 
two of which make computation of the response function considerably more difficult as 
compared to the Reno computations outlined above. First, CUBIC’s congestion window 
growth function depends on time rather than the number of acknowledged packets. 
Second, the congestion window growth function depends not only on the congestion 
window size before the packet loss (as in Reno) but also on how this value compares with 
the congestion window size at the end of the previous loss free period. Thus congestion 
window size alone no longer determines the full state of the algorithm and an additional 
parameter — last maximum achieved — must also be tracked to have a full state. Finally, 
nonlinearity of the congestion window growth function, the very feature that is supposed 



Study of Proposed Internet Congestion Control Mechanisms NIST 
 

Mills, et al. Special Publication 500-282 473 

to improve performance, makes computation of expectations hard. In view of these 
difficulties we are forced to content ourselves with the few rough approximations that are 
computable. 

Let us begin by considering a very simple case when the packet losses are 
periodic in time. In this case the congestion window growth function can be shown to 
converge to the convex part of the cubic root, which drastically simplifies computations. 
Let the time between losses be τ and the congestion window just before a loss be w0 then 
the congestion window at the end of the loss free period will be  
 

( ) 0
3 +− wkc τ  

where 3 /= cwk β  and β and c are constants [56]. Since in equilibrium the w0 is constant 
we have  
 

        ( ) .=+− 00
3 wwc κτ  

 
Substituting in for k and solving for w0 we get  

w0= 
cτ3

β . 
 
Thus in equilibrium k=τ. We can now compute the equilibrium mean congestion window 
size as a function of τ  
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To convert this into a function of p we compute the number of packets sent during a loss 
free period, which is approximately  
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where T is the round-trip time, which we assume to be approximately constant. Solving 
for τ we get  
 
 

   .
−4
4

= 4
β

β
c

NTt  

 
Substituting for τ in (13) we get  
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Finally, assuming only one packet is lost in each congestion event so that p=1/N we get  
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which for the default settings of β=.2 and c=.4 gives  
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p
Tpw )(   (14) 

 
This is the formula derived by the designers of CUBIC [56]. 

In practice, however, packet losses are never periodic even in the case when there 
is only one connection on the link. Therefore, we consider a more realistic case of a 
Poisson loss process with rate λ. That is, we assume that a loss event occurs on average 
every 1/λ seconds. Two possibilities have to be considered because the congestion 
window at the end of a loss free period can now fall below as well as above the last 
maximum. We assume that w0 and k are stationary independent random variables. This is 
still not enough to make explicit computations possible, so we further replace w0 and k by 
deterministic variables equal to the mean values of the respective random variables. With 
these, admittedly very crude, simplifying assumptions we can write down a pair of fixed 
point equations for w0 and k  
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The first equation can be solved numerically in terms of k. Substituting the resulting 
equation into the equation for k and solving numerically over a range of λ indicates, as 
one might expect, that the equilibrium value of k is very nearly proportional to 1/λ with 
coefficient of about 1.3. This gives  
 

w0= 
c(3+0.8β)

βλ3 . 

 
for equilibrium congestion window just before a loss and  
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3

3.8+.3
=)

λβ
λ cbw(  

 
for mean congestion window size. Expressing the above in terms of losses per number of 
packets sent and substituting the default values for β and c we get  
  

3/4

⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
1.67≈

p
Tpw )( ,                                                 

(15) 
 
which is remarkably close to the simple formula (14). 
 
A.2.1.3 Compound TCP. Compound TCP (CTCP) attempts to use delay measurements to 
estimate the number of buffered packets and alleviate congestion. CTCP’s congestion 
window is decomposed into two components: the standard Reno congestion window, 
which increases by one over the window size for every acknowledgment received, and 
the delay based component which grows polynomially but only as long as the number of 
buffered packets, as measured by the increase in the round-trip delay, is below a certain 
threshold γ, which is itself dynamically adjusted to match available buffer space. Because 
the queue length measurements are performed for every returning acknowledgment and 
the congestion window growth rate modified accordingly, the window growth function is 
tightly coupled to the queue length. Thus, in general, analysis of CTCP must include an 
explicit model of queue lengths along the connection’s path. Unfortunately, modeling 
queuing dynamics is in itself a complex and largely unsolved problem and so we are 
again forced to make crude simplifying assumptions. Specifically, we will assume that 
statistical fluctuations dominate dynamics so that the smoothed round-trip delay remains 
roughly constant once the network reaches equilibrium. Under this assumption analysis 
of the congestion window response function simplifies because γ does not change over 
time. Moreover, dynamic γ tuning insures that on average congestion window growth is 
polynomial right up to the moment of loss. Proceeding as before we thus have  
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for the congestion window size at the end of a loss free period of duration τ given that the 
starting congestion window size is w0 [58]. Since the window is reduced by 1−β upon 
detection of packet loss the equilibrium w0 is determined by the equation  
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Computing the equilibrium mean congestion window size as a function of τ we get  
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Substituting for w0 we have  
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     γ = 
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The number of packets transmitted in a time interval τ is given by  
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which gives  
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Finally, substituting τ into (16) and assuming p=1/N as before, we obtain  
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for the response function of CTCP. For the default values of α=1/8, β=1/2 and k=3/4 [58] 
this is  
 

w(p)≈0.25 
1

p4/5 .                                                                (17)    

A.2.2 Comparing Congestion Control Algorithms 
We begin performance comparison with the qualitative method described in the A.2 (see 
Fig. A-1).  Since all computed response functions are approximations we must allow for 
errors in the resulting models. At present, however, there is no theoretical framework for 
computing fluid model error bounds and we are forced to make a somewhat arbitrary, but 
we hope conservative, assumption that the model equilibrium congestion window size is 
within 50% of the average window size that would be observed in a similar physical 
network. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure A-2. Response curve for CUBIC (blue) with a ±50% error region (blue) vs. TCP Reno (red). 

 
Fig. A-2 shows congestion window size as a function of packet loss for CUBIC 

and TCP Reno. For TCP Reno we do not plot the error region because the TCP Reno 
response function has been shown to be reasonably accurate [117]. As can be seen from 
the diagram, for the same probability of packet loss, CUBIC is likely to have a larger 
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congestion window, and so a higher throughput, for equilibrium packet loss rates up to 
about 1 %. We did not compute the response curve for higher loss rates because both 
CUBIC and TCP are likely to have limited throughput as loss rates become substantially 
higher. The response function plot for CTCP (Fig. A-3) shows that it will likely have a 
higher throughput than TCP Reno if equilibrium packet loss is below about .3 %. The 
plot also suggests that for equilibrium packet loss rates above about .5 % TCP Reno may 
actually outperform CTCP.  

 
 
 
 
 
 

 
 
 
 
 
 
 
 
 
 
 
 
 

Figure A-3. Response curve for CTCP (blue) with a ±50% error region (blue) vs. TCP Reno (red) 

 

Comparing response functions of CTCP and CUBIC (Fig. A-4) we observe that 
CUBIC is likely to have higher throughput than CTCP for the same equilibrium packet 
loss rate. However, because the error regions overlap considerably it is hard to say 
conclusively which of the two algorithms is likely to achieve higher throughput in 
practice. 

We can also obtain some quantitative measures of the algorithms’ performance by 
using a specific packet loss model, such as the one we introduced [112], to compute 
equilibrium throughput over a range of network parameters. Specifically we take  
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where N is the number of concurrent flows, T is round-trip propagation delay, C is router 
capacity and B is buffer size. Tables A-1 through A-3 show average throughput for 1000 
continuously transmitting flows over a 1 Gbps link for a range of propagation delays and 
buffer sizes. These quantitative results, unsurprisingly, largely agree with the above 
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qualitative analysis, but they also suggest some unanticipated conclusions. First, for 
round trip propagation times below 150 ms the alternative TCP variants do no better, and 
sometimes worse, than TCP Reno. This is presumably because the equilibrium packet 
loss rate for these scenarios is relatively high. Of course, CUBIC and CTCP were by 
design optimized for links with high capacity and long propagation delay (also called 
“long-fat pipes") and so their under-performance on links with relatively low bandwidth-
delay product may be a chosen and accepted trade-off. Note, also, that this justifies the 
Reno-to-alternative mode switch present in most of the new TCP variants, including 
CUBIC and CTCP. 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Figure A-4. Response curves for CUBIC (thick blue) and CTCP (thick red) with corresponding error 
regions 
 

A second unexpected observation is that CTCP does not perform significantly 
better than TCP Reno even when round-trip delay becomes large, at least for the network 
parameters considered. Examining the graph of the CTCP response function (Fig. A-3), 
we see that this is most likely the result of a relatively high equilibrium packet loss rate, 
in the range of .3 % to .5 %, where the difference between response functions for CTCP 
and TCP Reno is small. On the other hand, in agreement with the qualitative analysis, 
CUBIC comes out ahead with an estimated improvement in throughput in the range of 10 
% to 15 % over TCP Reno for networks with round-trip propagation delays longer than 
150 ms. 

While far from being exact or scalable to a network as large and complicated as 
the Internet, the mathematical models and methods presented here provide a cheap and 
fast way for evaluating alternative TCP congestion control algorithms even before any 
code is written. The value of these techniques is even greater when they are used as 
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design guideposts in the earliest stages of the development process of new TCP 
congestion algorithms. 

 

Table A-1. Estimated throughput (p/ms) for CUBIC for 1000 concurrent flows on a link with a 122 
p/ms capacity (for 1 KB packets) 
 

CUBIC 
B (pkts) 

50 100 150 200 250 300
50 108 114 116 118 118 118

100 98 107 111 113 114 115
T (ms) 150 90 101 106 109 111 112

200 84 96 102 105 108 110
250 79 91 98 102 105 107
300 76 88 94 99 102 105

 
 

Table A-2. Estimated throughput (p/ms) for CTCP for 1000 concurrent flows on a link with a 122 
p/ms capacity (for 1KB packets) 
 

CTCP 
B (pkts) 

50 100 150 200 250 300
50 112 115 117 117 118 118

100 98 107 111 113 115 116
T (ms) 150 87 98 104 108 110 112

200 78 91 98 102 105 107
250 70 84 92 97 101 103
300 65 79 87 92 96 99

 
 

Table A-3. Estimated throughput (p/ms) for TCP Reno for 1000 concurrent flows on a link with a 
122 p/ms capacity (for 1 KB packets) 
 

TCP Reno 
B (pkts) 

50 100 150 200 250 300
50 115 116 116 117 117 118

100 102 109 112 114 115 116
T (ms) 150 89 99 105 108 110 112

200 78 91 97 101 104 107
250 70 83 90 95 99 102
300 64 77 85 90 94 97
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A.3 Future Work 
Given that accurate modeling of packet loss is the key to accurate fluid approximation 
models, an important direction for future research is in the improvement and refinement 
of queuing models for TCP traffic. While the new packet loss model described in Sec. 
A.1.3 performs better than the commonly used, but highly inaccurate, M/M/1/B model, 
there is still room for improvement. In particular, the packet loss model in Sec. A.1.3 
includes a finite buffer correction factor that is a rather crude patch in lieu of a solution 
for the finite buffer system. The model given in Sec. A.1.3 can also be improved by 
considering sources with non-exponentially distributed on-off periods since there is 
reason to expect that congestion window sizes have a non-exponential distribution. 

Utility of the fluid approximation framework would also be greatly improved if 
response functions of the various new alternative congestion control algorithms could be 
computed more precisely. An important related question is: how do the specifics of the 
congestion control algorithm affect the congestion window size distribution? Answering 
this question would determine the sensitivity of the packet loss model to the TCP variant 
and hence the robustness of the comparison above. 

The question of how network topology affects the equilibrium and stability of 
TCP traffic is another important direction for future work. Recently fluid approximation 
models have begun to be used for numerical simulations of large networks [108]. The 
low resource demands and high speed of these simulators permit, for the first time, an 
extensive exploration of the space of network topologies under a variety of simulated 
network conditions. 



Appendix B – Computational Requirements:   
                       MesoNet vs. Hybrid Model 
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Appendix B Computational Requirements: MesoNet  
                     vs. Hybrid Model 
Junsoo Lee and colleagues [71] observe that packet-level network simulations, such as 
ns2 [79], require substantial computational resources for large-scale simulations and also 
entail so many parameters that it becomes difficult to understand the influence of specific 
factors on overall system performance. Lee also points out that aggregate fluid-flow 
models [e.g., 73] address these shortcomings but can only capture steady-state behaviors 
averaged over long time intervals. Lee describes a hybrid modeling framework that 
continuously approximates discrete variables by averaging over short intervals of time. 
Constraining the averaging interval allows generation of significant events, such as 
packet drops and related adjustments in congestion windows. Like MesoNet, Lee’s 
hybrid framework aims to simulate a manageable parameter space and thereby illuminate 
the influence of specific factors on system behavior, while reducing computational 
requirements.  

In this appendix, we use MesoNet to replicate a simulation experiment reported 
by Lee and colleagues [71]. The specific experiment conducted by Lee uses a hybrid 
model to simulate an 11-hour scenario involving 30 long-lived flows transmitting data 
across a subset of the Abilene topology. Lee reports that this scenario was infeasible 
using ns2 because his available computer had only 512 Mbytes of memory, which proved 
insufficient. Replicating this experiment with MesoNet serves three purposes: (1) to 
illustrate that MesoNet can simulate a scenario found to be infeasible with a commonly 
used network simulator, (2) to show that MesoNet produces behavior similar to Lee’s 
hybrid simulator (which was validated against predictions from a widely accepted 
analytical model) and (3) to compare computational requirements of MesoNet against 
reported computational requirements for Lee’s hybrid model. In the process of achieving 
these objectives, we raise confidence in MesoNet and we demonstrate that hybrid 
network models hold promise as replacements for discrete-event network simulations.  

We begin in Sec. B.1 by describing our experiment design. Where applicable, we 
identify and justify specific differences in the MesoNet experiment setup and the 
configuration used by Lee. In Sec. B.2, we outline how we executed the simulations and 
how we collected the required data. Next, in Sec. B.3, we present results regarding flow 
behavior. In Sec. B.4, we compare our findings with those reported by Lee. We conclude 
in Sec. B.5.  

B.1 Experiment Design 
The fundamental purpose of the experiment designed by Lee and colleagues [71] was to 
investigate the effect of buffer size on relative fairness among long-lived TCP flows that 
transit network routes with differing propagation delays and a shared bottleneck link. The 
expected result is that smaller buffer sizes allow propagation delay to be the dominant 
component of round-trip time (RTT), which implies that flows transiting longer paths 
should receive lower throughputs than flows transiting shorter paths. As buffer size 
increases, queuing delay becomes the dominant component of RTT, which implies that 
the throughput of all flows will come closer together. This expectation arises from a 
widely accepted analytical formula to predict TCP throughput, which generally 
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underestimates the fairness ratio, as confirmed by ns2 simulations with small network 
topologies. Lee and colleagues show that their hybrid model yields the expected behavior 
in a large network based on the original Abilene topology. We aim to show that MesoNet 
also exhibits the expected behavior in the same topology used by Lee. This will increase 
our confidence in MesoNet. We will also be able to compare resource requirements of 
MesoNet against reported requirements for the hybrid model. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure B-1. Experiment Topology 
 

Fig. B-1 shows the network topology we simulated. The backbone is derived from 
the original Abilene topology, as given by Lee [71]. The backbone consists of 11 routers 
(grey circles designated A-K in our topology) that each serve a different location within 
the United States. The backbone routers are connected by 14 bidirectional links. We 
assigned a propagation delay to each link, as specified in Table B-1. We used the same 
propagation delay for each direction on a given link (e.g., links A→B and B→A both 
have 17 ms propagation delays). We adopted the propagation delays used by Lee, except 
that we rounded to the nearest millisecond.  

The seven grey links in Fig. B-1 are not used in this experiment because Lee 
focused on three sets of flows, where each set transits a different route and where the 
routes share a bottleneck link (G-I), rendered in red in Fig. B-1 (remaining links used by 
flows are shown in black). Flow sources are rendered as green circles in Fig. B-1 and 
flow receivers are rendered as red circles. As required by MesoNet, each source and 
receiver must be connected to an access router (yellow circles in Fig. B-1), and for this 
experiment each access router is connected directly to a backbone router (i.e., there are 
not Point of Presence routers in the topology). This differs from Lee’s configuration, 
where sources and receivers connected directly to backbone routers. 
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Table B-1. One-Way Propagation Delay on Each Link in the Simulated Topology 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
Table B-2 reports relevant characteristics for each set of simulated flows. The first 

set of flows has 10 sources under access router H0a. Each source transmits to one of 10 
receivers located under access router I0a. In MesoNet, packets transiting access routers 
experience queuing delay but no propagation delay; a packet experiences propagation 
delay only when crossing backbone links. MesoNet sends data packets for these 10 flows 
over backbone route (H-G-I) and returns acknowledgments1 over the reverse route (I-G-
H); thus, the round-trip propagation delay between a data packet and its acknowledgment 
is 30 ms (twice the 15 ms propagation delay on the route). Similar information is 
provided for two additional sets of 10 flows. As the backbone route increases from two to 
three to five hops with each set of flows, relative propagation delay approximately 
doubles. Table B-2 highlights the bottleneck link shared by all flows. 

Lee’s experiment simulates backbone links operating at 10 Gbps. While Lee does 
not report the speed of simulated sources and receivers, we assume their speed is 
sufficient to achieve more than 10 Gbps when 30 flows are aggregated across the 
bottleneck link. Lee allows each flow to start at a random time, uniformly distributed 

                                                 
1 Note that Lee’s hybrid model does not specifically simulate acknowledgments. This represents another 
difference with MesoNet. Also, in MesoNet, packets have no specific size, so each acknowledgment 
consumes one packet of buffer space, which is also the buffer space consumed by each data packet.  
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over one second, and then the flows continue transmitting (as congestion permits) for just 
over 11 hours. Lee repeats this simulation six times, while increasing buffer sizes in 
increments of 25 x 103 (1000-byte) packets from 25 x 103 to 150 x 103. 

 
 

Table B-2. Characteristics of Three Flow Sets Simulated in the Experiment 
 
 
 
 
 
 
 
 
 
 
 

Table B-3. MesoNet Parameter Settings for the Experiment 

Parameter Value

M 60 x 103

MI 660

R1 1250 p/ms

BBspeedup 1

R2 1

R3 1

Bdirect 1

QszAlg Directly Set

Hfast 80

Flow Start uniform (0..1s)
 

 
To match Lee’s conditions, we assigned MesoNet parameters as specified in 

Table B-3. MesoNet assigns a speed to each router in the topology. Parameter R1 
specifies that backbone routers process 1250 packets/millisecond. Setting related 
parameters (BBspeedup, R2, R3 and Bdirect) to one ensures that all routers operate at the 
same speed. Assuming 1000-byte packets, each of the backbone and access routers then 
operate at 10 Gbps (1250 packets/milliseconds x 1000 milliseconds/second x 1000 
bytes/packet x 8 bits/byte). We assigned sources and receivers to operate at (Hfast =) 80 
packets/millisecond, which equates to a maximum of 640 Mbps (80 packets/milliseconds 
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x 1000 milliseconds/second x 1000 bytes/packet x 8 bits/byte). When 30 flows cross the 
bottleneck, the potential demand of 19.2 Gbps (640 Mbps/flow x 30 flows) exceeds the 
available link capacity. We measured system state every (M =) 60 x 103 milliseconds (i.e., 
once a minute) and we run the simulation for (MI =) 660 measurement intervals (i.e., for 
660/60 = 11 hours). We set the buffer size in each router directly to the appropriate value 
for each repetition: we vary buffers from 25 x 103 to 200 x 103 packets2 in 25 x 103 packet 
increments. Table B-4 gives the domain view of the parameter settings shown in Table B-
3. 
 

Table B-4. Domain View of the Simulated Network Characteristics 

Characteristic Value(s)

Measurement Interval Size 60 seconds

Simulation Duration 11 hours/run

Backbone Router Speed 10 Gbps

Access Router Speed 10 Gbps

Router Buffer Sizes 25 x 103 – 200 x 103 packets

Maximum Host Speed 640 Mbps

Max. Link Demand on G-I 19.2 Gbps
 

 
 

For each simulation run, we make the same measurements taken by Lee. 
Specifically, we measure throughput fairness (FRi,j) and RTT fairness (RRi,j). In 
equations (1) and (2), i and j (i not equal to j) each denote a specific set of flows. Thus, 
we average either the throughput (1) or RTT (2) for each set and then take the ratio of 
each pair of sets, where the denominator is chosen from the set expected to have the 
lower value in a given pair. 
 
 

(1) 
 
 
 
 

(2) 
 
 

                                                 
2 While Lee simulated only six buffer sizes, we simulate eight buffer sizes because we had access to a 
server with eight processors. We ran the eight simulations in parallel on the server. 

FRi j, 
mean Throughput i( )
mean Throughput j( )≡FRi j, 
mean Throughput i( )
mean Throughput j( )≡

RRi j, 
mean SRTTi( )
mean SRTTj( )≡RRi j, 
mean SRTTi( )
mean SRTTj( )≡
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B.2 Experiment Execution and Data Collection 
We ran eight, parallel instances (one per buffer size) of the MesoNet simulator, where 
each instance ran within one 32-bit SLX process on one processor within a computation 
server, configured as shown in Table B-5. Table B-6 reports the computation and 
memory resources required for each simulation. 
 

Table B-5. Configuration of Compute Server for Simulations 
 
 
 
 
 
 
 
 
 
 
 
 
 

Table B-6. Resource Requirements for Simulations 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Every minute, we measured the instantaneous (60-second) average throughput 
and smoothed RTT seen on each of the 30 long-lived flows. This enabled us to collect 
660 samples per metric per flow over an 11-hour simulation. We then averaged (660 x 10 
=) 6600 samples to generate a mean throughput for each set of 10 flows. We similarly 
obtained an average RTT for each set of flows. We used these averages to form the 
fairness ratios defined in equations (1) and (2).    

(4 x 2 =) 8Total Processors

Four Dual-Core AMD Opteron Processors 8222SEProcessor Chip
3 GHzProcessor Speed

SLX 32-bit Version Release 2.3 (PR229)Simulation Environment

32 GbytesServer Memory
Dell Server PE6950Server
Microsoft Windows Server 2003 R2 x64 Edition SP2Operating System
CharacteristicsProperty

(4 x 2 =) 8Total Processors

Four Dual-Core AMD Opteron Processors 8222SEProcessor Chip
3 GHzProcessor Speed

SLX 32-bit Version Release 2.3 (PR229)Simulation Environment

32 GbytesServer Memory
Dell Server PE6950Server
Microsoft Windows Server 2003 R2 x64 Edition SP2Operating System
CharacteristicsProperty

80122.39200000
73129.08175000

67110.79150000
60102.19125000
55123.21100000
4799.2375000
4180.4150000
3480.3325000

Memory (Mbytes)Processor HoursBuffer Size (packets)

80122.39200000
73129.08175000

67110.79150000
60102.19125000
55123.21100000
4799.2375000
4180.4150000
3480.3325000

Memory (Mbytes)Processor HoursBuffer Size (packets)
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B.3 Results 
Fig. B-2 plots the changing RTT fairness ratios as buffer size increases. Fig. B-3 shows 
variation in throughput fairness. These two plots exhibit the expected convergence in 
fairness as buffer size increases. The curves for throughput fairness bump up slightly, as 
buffer size moves from 100 x 103 to 125 x 103 packets, before continuing the downward 
trend. This bump arises from a dip in average throughput for flow set number 3, coupled 
with a slight increase in average throughput for flow set number 2, as shown in Fig. B-4. 
We attribute these fluctuations to randomness arising from using a single repetition of the 
simulation to generate each set of data points.  
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure B-2. Changes in RTT Fairness with Increasing Buffer Size 
 

B.4 Discussion 
As expected, mirroring the results of Lee and colleagues, RTT and throughput fairness 
converge with increasing buffer size. These results enhance our confidence in MesoNet. 
Further, Table B-6 shows that we can execute the required MesoNet simulations in under 
100 Mbytes of memory, whereas Lee and colleagues found that they could not execute 
these simulations using ns2 in a machine with 512 Mbytes of memory. On the other hand, 
running these MesoNet simulations took just under 5 ½ days, the time required by the 
maximum simulation run (buffer size of 175 x 103 packets). From reading the information 
provided by Lee and colleagues, we would expect the hybrid model, running all eight 
simulations in parallel, to complete in less than one day. This comparison of processing 
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requirements shows that hybrid models have the potential to significantly accelerate 
simulation in scenarios such as the one here. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure B-3. Changes in Throughput Fairness with Increasing Buffer Size 
 

When considering the use of a hybrid model for other scenarios, such as those 
described throughout this report, we note that Lee’s model would need to be extended to 
include many features not currently present. Such features include: multiple routing tiers 
and router classes, arriving and departing flows, variety in flow types, many more 
measurements, connection establishment procedures, and support for arbitrary topologies. 
In principle, we expect that such features could be incorporated into a hybrid model. 
Further, we suspect that such a hybrid model would execute more swiftly that our 
MesoNet simulation. Confirming these hypotheses requires future work. 

B.5 Conclusions 
In this section, we used MesoNet to repeat an experiment conducted by Lee and 
colleagues. We compared the results obtained by Lee with MesoNet results, finding 
general agreement. We also demonstrated that MesoNet requires significantly fewer 
memory resources than ns2. Further, we showed the Lee’s hybrid model could likely 
simulate scenarios involving long-lived flows at a rate more than five times faster than 
MesoNet, which relies on discrete-event simulation. Further work remains to extend 
Lee’s hybrid model with features needed to conduct the full suite of experiments used in 
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the remainder of our study. We believe hybrid modeling holds the promise of 
significantly reducing resource requirements for network simulations. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure B-4. Changes in Average Throughput with Increasing Buffer Size 
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Appendix C Supplementary Sensitivity Analysis Results 
 
As pointed out in Chapter 2 and Chapter 4, two-level experiment designs exhibit some 
limitations, arising from the small number of values assigned to each parameter. First, 
conclusions drawn from such experiments are valid only for the combinations of levels 
investigated. Second, the system under investigation is assumed to exhibit monotonic 
behavior between the lower and higher values assigned to each factor. We addressed 
these shortcomings in part by running several experiments to explore system behavior 
with different pairs of values for selected factors and by subjecting the system to various 
scenarios. In this section, we provide a supplementary sensitivity analysis, repeating the 
experiment described in Chapter 4, but selecting alternate values for the two levels used 
for each of the 11 input factors. We expect this second sensitivity analysis to increase our 
confidence in MesoNet by confirming relationships consistent with earlier analyses, by 
identifying any new relationships not revealed previously and by allowing us to explain 
variances with previously established relationships. Increasing confidence in the validity 
of MesoNet should also increase confidence in our other experiments comparing 
behavior among various congestion control algorithms proposed for use on the Internet.    

We begin in Sec. C.1 by describing our experiment design, which follows the 
same general approach explained in Chapter 4. In Sec. C.2, we outline how we executed 
the simulations to collect the required data. Next, in Sec. C.3, we present results 
regarding MesoNet sensitivity with respect to the two selected levels for each of 11 
factors. In Sec. C.4, we compare and contrast our findings with those reported for the 
earlier sensitivity analysis (described in Chapter 4). We conclude in Sec. C.5. 

C.1 Experiment Design 
We adopt a 211-5 orthogonal fractional factorial design, encoded with the same template 
shown previously in Fig. 4-1, and we use the 11 factors identified in Table 4-10, but here 
we select different values for the two levels assigned to each factor. Table C-1 identifies 
values we chose for the two levels of each factor. The reader may compare this with 
Table 4-11 to identify similarities and differences in factor settings between the current 
and earlier sensitivity analyses. Table C-2 defines values for selected fixed parameters. 
The three parameters highlighted in red have changed1 from the previous sensitivity 
analysis: the network now contains more sources (baseSources is 103 instead of 100) and 
faster sources (Hbase is 8 p/ms instead of 1 and Hfast is 80 p/ms instead of 8). We 
deployed our sources over the same topology (recall Fig. 3-1), possessing defined link 
propagation delays (see Table 3-1) and leading to specific minimum round-trip times on 
designated routes (recall Table 3-2). 

 Three factors parameterize network properties, including propagation delay (x1), 
speed (x2) and buffer sizing (x3). Here, most markedly, we increase the network speed 
by an order of magnitude over the previous sensitivity analysis. The current experiment 
simulates network backbone speeds approximating up to 192 Gbps, while the previous 
experiment topped out at 9.6 Gpbs. Further, we increase the difference in speed to 
eightfold between the minus and plus levels, whereas the previous experiment evinced 

                                                 
1 Unless otherwise noted, we assigned fixed parameters the same values used in Chapter 4. 
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only a doubling. The speed increase occurs for all router classes, as shown in Table C-3, 
because the speed of the backbone routers determines the relative speed of other routers. 
The increase in network speed justifies our choice to increase the number and speed of 
simulated sources and receivers in order to match the additional network capacity. We 
also extend, over the previous sensitivity analysis, the difference in propagation delays 
considered, increasing by a factor of two (plus level) or reducing in half (minus level) the 
base delays encoded within the topology. While we use the same two buffer-sizing 
algorithms adopted previously, we reduce buffer size computed from the RTTxC 
algorithm (plus level) by ½ and we increase buffer size computed from the 
RTTxC/sqrt(n) (minus level) by a factor of 2. The net effect of this modest change in 
buffer-sizing algorithm is overwhelmed by the increases in network speed and changes in 
propagation delay, both of which influence buffer size. In the previous sensitivity 
analysis, backbone buffer size averaged below 103 packets in 32 configurations and 
averaged above 16 x 103 packets in the other 32 configurations, reaching a maximum of 
just over 65 x 103 packets. In the current experiment (see Table C-4) backbone buffer size 
averaged below 103 packets in only 8 configurations, while exceeding 65 x 103 packets in 
24 configurations. In general, the current experiment provides increased buffers under 
most configurations because the network speed has increased substantially. 
 

Table C-1. Two-Level Settings for Each of 11 Factors in Sensitivity Analysis 

Factor Factor Name Plus Level Minus Level

Network 
Factors

x1 Propagation Delay 2.5 times base delay 0.5 times base delay

x2 Network Speed 16 x 103 p/ms 2 x 103 p/ms
x3 Buffer Sizing RTTxCx(Qfactor = 0.5) RTTxC/sqrt(n)x(Qfactor= 2)

User
Factors

x4 File Size 200 packets 25 packets

x5 Think Time 10 seconds 1.25 seconds

x6 Large File Probability 0.04 0.005

Source &
Receiver
Factors

x7 Fast Host Probability 0.80 0.10

x8 Number of Sources 3 times base sources 1 times base sources

x9 Source Distribution 0.1/0.3/0.6 0.3/0.1/0.6

x10 Receiver Distribution 0.1/0.3/0.6 0.3/0.1/0.6

Protocol 
Factors

x11 Initial Slow-Start 
Threshold 1.07x109 packets 20 packets

 
 

User behavior is defined by three factors: average file size (x4), average think 
time (x5) and probability of transferring a (Fx = 10 times) larger file (x6). We increased 
the spread among the plus and minus values for each factor, when compared with the 
values chosen in Chapter 4. These choices implement a general strategy to increase the 
distance between the plus and minus settings for each factor in order to determine if such 
increases reveal strengthened relationships between factors and responses. For example, 
for the sole protocol factor, initial slow-start threshold (x11), we lower the minus level 
from 43 packets in the previous sensitivity analysis to 20, while keeping the plus value at 
the same arbitrarily high value used in Chapter 4. 
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Table C-2. Selected Fixed Parameters   

Parameter Name Fixed Value
BBspeedup Backbone Router Speed Multiplier 1
R2 POP Router Speed Divisor 4
R3 Access Router Speed Divisor 10
Bfast Fast Access Router Speed Multiplier 2
Bdirect Directly Connected Access Router Speed Multiplier 10
Hbase Speed of Normal Network Interfaces 8 p/ms

Hfast Speed of Fast Network Interfaces 80 p/ms
baseSources Base Number of Sources Per Access Router 103

Fx Large File Size Multiplier 10
alpha File Size Shape Parameter 1.5

 
 

Table C-3. Router Speeds (p/ms) by Router Class for Each Level of Network Speed (x2)   

Router Type Plus Minus
Backbone 16 x 103 2 x 103

POP 4 x 103 500
Typical Access 400 50
Fast Access 800 100
Directly Connected Access 4 x 103 500

 
 

Table C-4. Average Buffer Size (in packets) by Router Class for Specific Combinations of 
Propagation Delay (x1), Network Speed (x2) and Buffer-Sizing Algorithm (x3) 

x1 x2 x3
Backbone Router 

Buffers (avg.)
POP Router 

Buffers (avg.)
Access Router 
Buffers (avg.)

- - - 368 140 48
+ - - 3.36 x 103 1.306 x 103 435
- + - 4.453 x 103 1.789 x 103 600
+ + - 12.335 x 103 5.308 x 103 1.751 x 103

- - + 20.800 x 103 5.200 x 103 827
+ - + 102.182 x 103 25.545 x 103 4.062 x 103

- + + 166.400 x 103 41.600 x 103 6.614 x 103

+ + + 817.455 x 103 204.363 x 103 32.492 x 103
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The remaining factors determine the speed, number and distribution of the sources 
and receivers deployed in the topology. In this experiment, fast network interfaces for 
sources and receivers operate at a maximum of 80 p/ms (960 Mbps), while we 
parameterized slower network interfaces to operate at a maximum of 8 p/ms (96 Mbps). 
The probability that a given source or receiver has a fast network interface is determined 
by the fast host probability (x7), which we set to either .8 (plus) or .1 (minus), a .7 
difference compared with the .2 difference used in the earlier sensitivity analysis. The 
previous experiment determined that this factor had little influence on system responses 
so we decided to increase the difference in probabilities in order to probe the invariance 
of this finding. 

A combination of three factors, number of sources (x8) and distribution of sources 
(x9) and receivers (x10), determine the probability that flows go between specific 
combinations of access router classes: directly connected to directly connected (DD), 
directly connected to fast (DF), directly connected to normal (DN), fast to fast (FF), fast 
to normal (FN) and normal to normal (NN). We call these flow classes. Table C-5 shows 
the influence of these factors on the number and distribution of sources in the topology, 
while Table C-6 gives similar information regarding the number and distribution of 
receivers. 
 

Table C-5. Relation between Factors and Number and Distribution of Sources 

x8 x9 x10 Total Sources
% under

D Routers
% under

F Routers
% under

N Routers
1 + + 67.500 x 103 16 37.33 46.67
3 + + 202.395 x 103 16 37.35 46.64
1 - - 113.700 x 103 9.5 7.4 83.11
3 - - 341.072 x 103 9.5 7.4 83.11
1 + - 67.500 x 103 16 37.33 46.67
3 + - 202.396 x 103 16 37.33 46.67
1 - + 113.700 x 103 9.5 7.4 83.11
3 - + 341.072 x 103 9.5 7.4 83.11

 
 
Table C-7 reports the influence of x8, x9 and x10 on the probability of various 

flow classes. Four combinations of parameters, the rows highlighted in purple, represent 
traffic patterns consistent with Web browsing augmented with some peer-to-peer (P2P) 
exchanges. Two parameter combinations, the rows highlighted in rose, represent traffic 
patterns with a slightly increased proportion of Web browsing compared to P2P 
exchanges. The remaining (white) rows show traffic patterns shifted substantially toward 
P2P traffic. The probabilities in Table C-7 represent a shift toward more Web-based 
traffic patterns when compared with the previous sensitivity analysis (see Table. 4-15), 
which had an even balance of configurations with Web and P2P traffic patterns. In 
addition, the P2P configurations in the current experiment represent a somewhat more 
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pronounced probability of DN, FN and NN flows. Further, the current experiment 
increases the proportion of DD flows for all configurations. Finally, while increasing the 
number of sources and receivers by about an order of magnitude over the previous 
sensitivity analysis, the current experiment expands the difference in number of sources 
and receivers among the configurations. 
 

 Table C-6. Relation between Factors and Number and Distribution of Receivers 

x8 x9 x10
Total 

Receivers
% under

D Routers
% under

F Routers
% under

N Routers
1 + + 270.000 x 103 16 37.33 46.67
3 + + 809.856 x 103 16 37.34 46.66
1 - - 454.800 x 103 9.5 7.4 83.11
3 - - 136.437 x 104 9.5 7.4 83.11
1 + - 454.800 x 103 9.5 7.4 83.11
3 + - 136.437 x 104 9.5 7.4 83.11
1 - + 270.000 x 103 16 37.34 46.67
3 - + 809.856 x 103 16 37.34 46.67

 
 

Table C-7. Relation between Factors and Distribution of Flow Classes 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

To summarize the differences from the earlier sensitivity analysis: we increased 
network speed and size by an order of magnitude, we stretched the range of parameter 
values covered by the plus and minus settings of each factor, and we shifted the traffic 
patterns slightly to generate more DD flows and to give a higher prominence to Web 
browsing activity over P2P exchanges. These changes provided a very different set of 
configurations under which we could evaluate the relationship between model input 

38.7934.482.7617.734.731.52+-3
38.7934.482.7617.734.731.52+-1
38.7934.482.7617.734.731.52-+3
38.7934.482.7617.734.731.52-+1
69.0812.280.5515.791.40.9--3
69.0812.280.5515.791.40.9--1
21.7634.8413.9414.9311.952.56++3
21.7834.8413.9414.9311.952.56++1

% NN
Flows

% FN
Flows

% FF
Flows

% DN
Flows

% DF
Flows

% DD
Flowsx10x9x8

38.7934.482.7617.734.731.52+-3
38.7934.482.7617.734.731.52+-1
38.7934.482.7617.734.731.52-+3
38.7934.482.7617.734.731.52-+1
69.0812.280.5515.791.40.9--3
69.0812.280.5515.791.40.9--1
21.7634.8413.9414.9311.952.56++3
21.7834.8413.9414.9311.952.56++1

% NN
Flows

% FN
Flows

% FF
Flows

% DN
Flows

% DF
Flows

% DD
Flowsx10x9x8



Study of Proposed Internet Congestion Control Mechanisms NIST 
 

Mills, et al. Special Publication 500-282 498 

parameters and responses. We made no changes in fixed parameters controlling the 
simulation duration or the length of measurement intervals.  

To permit ready comparison between results from both the earlier and current 
sensitivity analyses, we elected to measure the same responses in both experiments. One 
set of responses (repeated here as Table C-8) measured macroscopic behavior of the 
entire network and a second set of responses (see Table C-9) measured average 
instantaneous throughput on each of the six flow classes.  
 

Table C-8. Responses Characterizing Macroscopic Network Behavior 
   
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
Table C-9. Responses Characterizing Average Instantaneous Throughput by Flow Class 

 
 
 
 
 
 
 

C.2 Experiment Execution and Data Collection 
The experiment plan required 64 simulation runs, each simulating a different combination 
of factor settings, as constructed by mapping values from Table C-1 into the template 
shown in Fig. 4-1. We had 48 physical processors on which we could run our 
experiments, so we conducted simulations in parallel. We were sharing these processors 
with other projects, so we could not always use all of the available processors. Below, we 
give a brief discussion of the resource requirements for the simulations. 

Table C-10 reports the characteristics of the 48 processors2 available for our 
sensitivity analysis. Since MesoNet is implemented in SLX, each of the processors had 
access to an SLX simulation environment. SLX comes in two varieties: one configured to 
                                                 
2 These 48 processors amounted to 6 servers that each had 8 processor cores. 

Response Definition 
y1 Active Flows – flows attempting to transfer data 
y2 Proportion of potential flows that were active: Active Flows/All Sources 
y3 Data packets entering the network per measurement interval 
y4 Data packets leaving the network per measurement interval 
y5 Loss Rate: y4/(y3+y4) 
y6 Flows Completed per measurement interval 
y7 Flow-Completion Rate: y6/(y6+y1) 
y8 Connection Failures per measurement interval 
y9 Connection-Failure Rate: y8/(y8+y1) 
y10 Retransmission Rate 
y11 Congestion Window per Flow 
y12 Window Increases per Flow per measurement interval 
y13 Negative Acknowledgments per Flow per measurement interval 
y14 Timeouts per Flow per measurement interval 
y15 Smoothed Round-Trip Time 
y16 Relative queuing delay: y15/(x1x41) 

 

Response Definition
y17 Average Throughput for Active DD Flows 
y18 Average Throughput for Active DF Flows 
y19 Average Throughput for Active DN Flows 
y20 Average Throughput for Active FF Flows 
y21 Average Throughput for Active FN Flows 
y22 Average Throughput for Active NN Flows 
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run in a 32-bit address space and one configured to run in a 64-bit address space. We 
chose to run all our simulations using the 32-bit version of SLX because our simulations 
could fit easily within a 32-bit address space and 32-bit simulation runs faster than 64-bit 
simulation. 
 

Table C-10. Configuration of Compute Servers for Simulations 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

We executed the simulations continuously over about three days, starting as many 
simulations as available processors and then initiating a new simulation when one 
finished. Table C-11, organized into four three-column, color-coded groups of 16 
simulations, reports the number of processor hours required by each simulation on a 
specified compute-server node. The average processor time for a simulation was 46.4 
hours, about 5.5 times more than the average processor time required for the earlier 
sensitivity analysis, which simulated a slower and smaller network. The average memory 
used for a simulation was 1.1 Gbytes, nearly a tenfold increase over the earlier sensitivity 
analysis. We collected and summarized data using the same techniques adopted for the 
earlier sensitivity analysis. Refer to Sec. 4.3.2 for the details.  
 

Table C-11. Execution Time (Processor Hours) Required for Each Simulation Run 
 

 
 
 
 
 
 
 
 
 
 
 

Node Processor 
Count 

Speed 
(GHz) Processor Type Memory 

(GB) Operating System 

ws9 8 2.6 Dual-Core AMD 
Opteron 8218 32 Windows Server 2003 R2 

x64 Edition SP2 

ws10 8 2.6 Dual-Core AMD 
Opteron 8218 32 Windows Server 2003 R2 

x64 Edition SP2 

ws11 8 3.0 Dual-Core AMD 
Opteron 8222SE 32 Windows Server 2003 R2 

x64 Edition SP2 

ws12 8 3.0 Dual-Core AMD 
Opteron 8222SE 32 Windows Server 2003 R2 

x64 Edition SP2 

ws13 8 3.0 Dual-Core AMD 
Opteron 8222SE 32 Windows Server 2003 R2 

x64 Edition SP2 

ws14 8 3.0 Dual-Core AMD 
Opteron 8222SE 32 Windows Server 2003 R2 

x64 Edition SP2 
 

Run Node Time Run Node Time Run Node Time Run Node Time
1 ws9 36.6 17 ws11 11.4 33 ws14 36.4 49 ws11 7.8 
2 ws9 14.8 18 ws11 1.3 34 ws14 23.4 50 ws11 3.7 
3 ws9 14.7 19 ws11 1.3 35 ws14 29.8 51 ws11 3.2 
4 ws9 70.3 20 ws11 8.0 36 ws14 46.8 52 ws12 7.4 
5 ws9 27.7 21 ws11 2.6 37 ws14 17.8 53 ws12 1.9 
6 ws9 32.2 22 ws11 6.8 38 ws14 34.6 54 ws9 14.9 
7 ws9 56.8 23 ws11 4.9 39 ws14 96.0 55 ws9 15.8 
8 ws9 19.8 24 ws11 2.4 40 ws11 14.2 56 ws9 1.8 
9 ws10 31.0 25 ws12 22.9 41 ws11 30.7 57 ws14 19.5 

10 ws10 47.1 26 ws12 30.3 42 ws11 42.9 58 ws14 36.3 
11 ws10 233.7 27 ws12 48.7 43 ws11 218.9 59 ws11 100.0 
12 ws10 156.8 28 ws12 20.7 44 ws13 78.4 60 ws11 15.6 
13 ws10 42.5 29 ws12 35.8 45 ws14 36.5 61 ws9 43.3 
14 ws10 32.7 30 ws12 11.0 46 ws13 31.4 62 ws12 27.7 
15 ws10 97.0 31 ws12 10.7 47 ws11 172.8 63 ws12 23.1 
16 ws10 238.6 32 ws12 70.2 48 ws11 239.0 64 ws12 55.1 
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C.3 Results 
Below, we report results from subjecting (22 x 64 =) 1408 responses to three treatments: 
correlation analysis, principal components analysis and main effects analysis. We also 
employed some exploratory analyses, as used in Chapter 4. We discuss each analysis in 
turn.  

C.3.1 Correlation Analysis 
Given 64 average values (one per run) for 22 responses, we conducted a correlation 
analysis to investigate the degree to which pairs of responses are linearly correlated. We 
used the same techniques applied in the earlier sensitivity analysis (Sec. 4.4). We began 
by generating a scatter plot and computing the correlation for each pair of responses, as 
plotted together in Fig. C-1, which should be interpreted as explained earlier in Sec. 
4.1.3.3. Of particular interest, correlations with magnitudes of .8 and above are colored 
red, magnitudes between .3 and .79 are blue and magnitudes below .3 are green. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure C-1. Combined Matrix of Scatter Plots and Correlation Values for 22 Responses 
 

Scanning Fig. C-1 reveals some mutual correlations, for example among 
responses y17 through y22, which represent throughput for various flow classes. The 
figure also reveals some strongly correlated pairs: y1 and y2 (active flows and proportion 
of sources that are active), y3 and y4 (packets input and output), y5 and y10 (loss rate and 
retransmission rate), y8 and y9 (connection failures and connection-failure rate) and y13 
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and y14 (negative acknowledgments and timeouts). A few responses (e.g., y6 and y16) 
appear largely uncorrelated with other responses. Comparing Fig. C-1 with Fig. 4-13 
from the earlier sensitivity analysis, one finds fewer strong correlations overall in the 
current experiment. Also of note, unlike the previous experiment, which correlated 
throughput for flow classes into three groupings, the current experiment shows strong 
positive correlation in throughput among all flow classes. 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure C-2. Frequency Distribution of the Absolute Value of Correlations for All Pairs of Responses 
 
Fig. C-2 shows the frequency distribution of the absolute value of correlations for 

all pairs of responses. The five, highlighted bins represent correlations with magnitude 
greater than 0.65, which we chose (consistent with our choice in Chapter 4) as the cutoff 
for correlations to be considered significant. Comparing Fig. C-2 with Fig. 4-14 from the 
earlier analysis indicates that the current analysis has 36 pairs that are significantly 
correlated, while the earlier analysis found 42 such pairs. We show (Fig. C-3) the 36 
significantly correlated pairs as an index-index plot, ordering the indices on both axes as 
ordered in Fig. 4-14 in order to facilitate comparison. Comparing Fig. C-3 with Fig. 4-14 
confirms that throughput among flow classes, previously organized into three groups 
([y17], [y18, y20] and [y19, y21, y22]) are now mutually correlated. Other changes can 
also be noted. For example, y15 (round-trip time) and y16 (relative queuing delay) are no 
longer correlated. Further, y8 (connection failures), y9 (connection-failure rate) and y14 
(timeouts) remain correlated but are no longer correlated with y5 (loss rate) and y10 
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(retransmission rate). In the current experiment, y5 (loss rate) and y10 (retransmission 
rate) are correlated with the y1 and y2 (active flows and proportion of sources active); the 
number of active flows was not a factor in the previous sensitivity analysis. This 
difference likely arises because the current experiment uses a faster network, requiring 
more active flows to generate load. In the current sensitivity analysis, congestion seems 
driven by the number of active flows. Throughput among all flow groups now seems 
correlated and thus likely driven by some common factors, but note that congestion 
window size (y11) is not correlated with throughput on DD flows (y17). In fact, the y11-
y17 correlation is 0.60, which falls just below our cutoff (0.65). Finally, round-trip time 
(y15) and queuing delay (y16) are now uncorrelated. These correlation changes are 
considered in the discussion (Sec. C.4) after assessing the main factors that influence 
model responses.   
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
 
 

Figure C-3. Index-Index Plot for Correlation Pairs where |Correlation (Yi, Yj)| > 0.65 
 

C.3.2 Principal Components Analysis 
Given the changes noted in the correlation analysis, we should expect to see some 
changes in the principal components analysis (PCA) as well. Fig. C-4 shows the PCA for 
all 22 responses generated in the current experiment. The first four principal components 
account for 95 % of the response variance and thus we select these components for 
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further examination, as given in Fig. C-5, where we plot the relevant weight vectors. 
Comparing Fig. C-5 with Fig. 4-17 from the previous sensitivity analysis illustrates that 
the top four principal components have changed configurations. In fact, the principal 
components from the current experiment appear more difficult to interpret than those 
from the previous experiment. To provide additional information, we introduce Fig. C-6, 
containing four main effects plots, one per principal component, analogous to Figs. 4-26 
through 4-29. Fig. C-6 shows that many of the same factors influence the top four 
principal components, suggesting we will be unable to find a clear and satisfying 
interpretation. We will do the best we can.  
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 

 

 

 
 
Figure C-4. Histograms for 22 Principal Components (x axis of each sub-plot identifies bins of 
normalized component values ranging from -20 to +20 and y axis the count of values within each bin). 
Above each sub-plot is the standard deviation in the data accounted for by the Principal Component. The 
first sub-plot gives the distribution of the normalized responses. 
 
 
 
 
 
 
 
 
 

Figure C-5. Weight Vectors for the First Four Principal Components 



Study of Proposed Internet Congestion Control Mechanisms NIST 
 

Mills, et al. Special Publication 500-282 504 

The first principal component groups 12 responses in four main categories: active 
flows (y1 and y2), loss and retransmission rates (y5 and y10), congestion window size 
and increase rate (y11 and y12) and throughput among all flow classes (y17-y22). The 
main effects plot for PC1 indicates that slower network speed, longer propagation delay, 
shorter think time and more sources lead to a positive component value – a negative 
component value is produced by the opposite setting for these factors. From this, we may 
infer that higher network congestion yields a positive value for PC1 and lower network 
congestion yields a negative value. This inference suggests that PC1 represents the 
influence of network congestion (y1, y2, y5 and y10) on congestion window size (y11) 
and increase rate (y12), which determines throughput on flows of all classes (y17-y22). 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure C-6. Main Effects Plots for Top Four Principal Components 
 

The second principal component appears to characterize throughput on more 
advantaged DD (y17), DF (y18) and FF (y20) flows. Provided congestion is not too 
heavy, larger file sizes (x4) and shorter propagation delays (x1) should lead to higher 
throughputs, especially for advantaged flows. The main effects plot for PC2 suggests that 
higher throughputs are coincident with a positive value of the component. At the same 
time, the network would transport more packets (y3 and y4) for more flows (y1 and y2), 
which would lead to more losses (y5) and retransmissions (y10), especially for less 
advantaged flows (y19, y21 and y22), which would experience more negative 
acknowledgments (y13) and timeouts (y14). 

PC1 PC2

PC3 PC4

PC1 PC2

PC3 PC4
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The third principal component appears to characterize queuing delay (y16), which 
is grouped together with the number of packets flowing in (y3) and out (y4) of the 
network. Referring to the main effects plot for PC3, longer propagation delay (x1), faster 
network speed (x2), larger buffer sizes and larger file sizes (x4) generate a positive value 
for the component. We can infer that such conditions permit the larger network buffers to 
hold more packets, leading to longer queuing delays. 

The fourth principal component appears to characterize network throughput 
measured in terms of flows completed (y6) and packets transferred (y3 and y4). Shorter 
files sizes (x4) combine with higher network speed (x2) and shorter think times (x5) to 
permit more flows to be completed per unit time (y6). Comparing the main effects plot 
for PC4 from Fig. C-6 with the main effects plot for PC4 from Fig. 4-29 reveals 
similarity. 

The forgoing discussion illustrates that the PCA conducted for the second 
sensitivity analysis produced results more difficult to interpret than was the case for the 
original sensitivity analysis reported in Chapter 4. For this reason, we postpone until the 
discussion (Sec. C.4) further consideration of the principal components.  

C.3.3 Exploratory Analysis of y7-y22 Scatter Plot Bifurcation 
In Fig. 4-10 of Sec. 4.1.6, we reported a scatter plot of y7 (flow completion rate) vs. y22 
(throughput on NN flows) that showed a bifurcation. We used an exploratory technique, 
altering the plot symbols to represent minus and plus settings for each factor, to discover 
that the bifurcation arose due to factor x4 (average file size). Shorter file sizes resulted in 
higher completion rates (y7) and yet led to lower average throughputs for NN flows 
(y22). This made sense because shorter files spend a higher percentage of their transfer in 
TCP slow start, during which throughputs are lower. On the other hand, shorter files are 
generally transferred more quickly because they involve fewer packets. Since shorter files 
take less time, more flows complete per unit of time and the flow completion rate is 
higher. Longer files spend a higher percentage of their transfer beyond TCP slow start, 
during which throughputs are higher. On the other hand, longer files require transferring 
more packets, taking more time and completing fewer flows per unit of time. Since we 
increased the distance between the minus and plus file sizes (from 50/100 to 25/200), we 
expected the bifurcation to appear in enhanced form in this sensitivity analysis. 

Fig. C-7 shows twelve y7-y22 scatter plots generated from the 64 simulations in 
the current experiment. The first scatter plot contains the bifurcation data. Each of the 
next 11 plots distinguishes the minus and plus level settings for a given factor. The plots 
clearly identify average file size (x4) as the factor responsible for the bifurcation. 
Comparing Fig. 4-10 with Fig. C-7 shows that, as expected, the bifurcation is enhanced in 
the current sensitivity analysis. 

C.3.4 Main Effects Analysis 
In this section, we provide main effects plots generated from the data captured in the 
current experiment. To facilitate comparison we plot main effects for the same responses 
used in the original sensitivity analysis, including those listed in Table 4-19, and adding 
the average congestion window size, used previously as an example in Fig. 4-9. 
Analyzing the same responses should allow us to identify similarities and differences in 
factor-response relationships between the two sensitivity analyses. We expect that most 
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of the factor-response relationships will remain unchanged, but differences in the 
correlation and principal components analyses suggest that some relationships might be 
different. We organize the exposition into four categories, responses related to 
congestion, responses related to delay, responses related to macroscopic throughput and 
responses related to throughput for advantaged flows, as shown in Table C-12. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure C-7. Y-Y-X plot for Responses y7 and y22 
 

 
Table C-12. Responses Selected for Investigation in Sensitivity Analysis 

 
 Response Definition 

Congestion 

y1 Average number of active flows 
y10 Average retransmission rate 
y11 Average congestion window size 
y22 Average instantaneous throughput for NN flows 

Delay y15 Average smoothed round-trip time 
Macroscopic 
Throughput 

y4 Average number of packet output per measurement interval 
y6 Average number of flows completed per measurement interval 

Advantaged 
Flows 

y17 Average instantaneous throughput for DD flows 
y20 Average instantaneous throughput for FF flows 
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C.3.4.1 Congestion-Related Responses. We begin by examining the main factors 
influencing the average number of active flows (y1). Fig. C-8 shows the relevant main 
effects plot, which can be compared with Fig. 4-18. We find the same main factors 
influencing the number of active flows in both experiments, though the order of the 
factors shifts slightly. The main factors appear to fall into three categories: (a) number of 
sources underneath N-class access routers, (b) duration for which flows remain active and 
(c) idle interval for those sources. The number of sources (x8) claims the main influence, 
followed by the average file size (x4). The longer it takes to transfer files, the more likely 
flows are to be active. The duration of transfer time is influenced not only by file size, but 
also by network speed3 (x2) and congestion, which is influenced by number (x8) and 
distribution (x9) of sources and by average think time (x5). These relationships are 
evident in Figs. C-8 and 4-18. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Figure C-8. Main-Effects Plot for Response y1 (Average Number of Active Flows) – x axis lists 11 
model parameters with a – and + value for each parameter, y axis gives average number of active flows, 
two averages are given for each parameter, one average when the parameter is set to its – level and one 
average when the parameter is set to its + level, and a line connects the pair of average sizes for each 
parameter. Dashed line is the overall average number of active flows (about 52.250 x 103 here) 
 

                                                 
3 Recall that in the previous sensitivity analysis we miscoded network speed (minus was higher network 
speed) and distribution of sources (plus was a more P2P-like traffic pattern). In this sensitivity analysis the 
levels were properly coded, so care should be taken in comparing the slope for these factors on the main 
effects plots in Chapter 4 against the main effects plots in Appendix C. 
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Fig. C-9 gives the main-effects plot for retransmission rate (y10). Comparing this 
with Fig. C-8 shows that the same factors influence both the number of active flows and 
retransmission rate. This mirrors the same relationship found in Chapter 4, where Fig. 4-
18 and Fig. 4-19 also show the same influential factors. Figs. C-9 and 4-19 exhibit one 
main difference: buffer sizing algorithm does not play as significant a role in Fig. C-9. 
This makes sense because buffer sizing for the former sensitivity analysis led to very 
small buffer sizes under the minus setting. Buffer sizes were not as constrained under the 
minus setting in the current sensitivity analysis. One other difference can also be 
discerned: the number of sources plays a larger role and the distribution of sources a 
smaller role in Fig. C-9 than in Fig. 4-19. This makes sense because in the current 
sensitivity analysis the variation in number of sources was larger and the variation in the 
distribution of sources was smaller. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
Figure C-9. Main-Effects Plot for Response y10 (Average Retransmission Rate) – y axis gives the 
proportion of packets resent 
 

Fig. C-10 gives the main-effects plot for average congestion window (CWND) 
size. This figure can be compared with Fig. 4-9 when assessing similarities and 
differences among the two sensitivity analyses. Fig. C-10 reveals the CWND size is 
influenced mainly by two factors: average file size (x4) and network speed (x2). This 
differs somewhat from Fig. 4-9, which identified network speed (x2) as the main factor 
followed by four closely grouped factors: buffer sizing algorithm (x3), initial slow-start 



Study of Proposed Internet Congestion Control Mechanisms NIST 
 

Mills, et al. Special Publication 500-282 509 

threshold (x11), think time (x5) and distribution of sources (x9). We previously explained 
why buffer sizing algorithm and distribution of sources should be less influential with 
respect to congestion in the current sensitivity analysis. What about other differences 
between Figs. C-10 and 4-9? 

Fig. C-10 identifies average file size (x4) as a significant factor, while Fig. 4-9 
does not. In the current sensitivity analysis the difference between the plus and minus 
settings for average file size was increased substantially, which accounts for the increase 
in influence of factor x4. Average think time (x5) is the third most significant factor in 
both sensitivity analyses. What accounts for the diminished influence in the initial slow-
start threshold? This appears related to increased congestion. The factor settings for the 
current sensitivity analysis allowed higher levels of congestion, as expressed for example 
by retransmission rates, which averaged around 9.5 % compared with only 8.8 % in the 
previous sensitivity analysis. Higher levels of congestion reduce the influence of the 
initial slow-start threshold because flows can incur lost packets sooner, and thus 
transition to congestion avoidance sooner. 
 
   
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Figure C-10. Main-Effects Plot for Response y11 (Average Congestion Window Size) – y axis gives 
average congestion window size in packets 
 

Fig. C-11, which can be compared with Fig. 4-20, displays main effects driving 
throughput on NN flows. The previous sensitivity analysis showed throughput on NN 
flows to be driven primarily by a relationship between available bandwidth (network 
speed) and number of active flows. Fig. C-11 also reflects this relationship: throughput is 
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higher under increased network speed (x2) when fewer flows are active. Factors leading 
to fewer active flows include a lower number of sources (x8 minus) and a source 
distribution (x9 plus) that leads to fewer NN flows, as well as longer think times (x5 
plus). The main differences between Fig. C-11 and Fig. 4-20 relate to buffer sizing 
algorithm (previously explained) and average file size (x4). In the previous sensitivity 
analysis we found, surprisingly, that smaller file sizes led to higher throughputs on NN 
flows. This finding was surprising because larger file sizes can generally achieve higher 
throughputs. We attributed this to the fact that smaller files finished more quickly, which 
helped to reduce the number of active flows. This attribution made sense because the 
difference in average file size between the plus and minus settings was relatively small 
(50 packets), so file size could not have much influence on throughput. In the current 
sensitivity analysis, the difference in average file size between the plus and minus 
settings was significantly larger (175 packets). These larger files can achieve much 
higher instantaneous throughput than the much smaller files. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Figure C-11. Main-Effects Plot for Response y22 (Average Throughput on NN Flows) – y axis gives 
average goodput in pps 

 
C.3.4.2 Delay-Related Responses. Fig. C-12 reports the influence of each input factor on 
response y15: average smoothed, round-trip time (SRTT). Both Fig. C-12 and the 
comparable Fig. 4-21 identify propagation delay (x1) and buffer sizing algorithm (x3) as 
the two main factors influencing SRTT. The influence of buffer sizing algorithm is less 
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significant in Fig. C-12 because fewer configurations exhibit small buffer sizes in the 
current sensitivity analysis. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Figure C-12. Main-Effects Plot for Response y15 (Average Smoothed Round-Trip Time) – y axis 
gives average round-trip time in ms 
 
C.3.4.3 Responses Related to Macroscopic Throughput. To represent macroscopic 
network throughput, we selected two responses: data packets output per interval (y4) and 
flows completed per interval (y6). The first response represents the rate at which packets 
are flowing through the network, while the second response represents the rate at which 
flows are being completed by the network. We begin by considering the rate of packet 
output. 

Fig. C-13 identifies the same main factors influencing rate of packet output as 
revealed in Fig. 4-22. The main influence on the rate of packet output is network speed: 
higher network speed (x2 plus) means a greater rate of packet output. This stands to 
reason in a network with a sufficient number of active flows. The combination of shorter 
think times (x5 minus) and more sources (x8 plus) leads to an increase in the number of 
active flows and the higher network speed implies that each flow can transmit faster. 
Thus, the aggregate rate of packet output should be greater under these circumstances. 
File size is another factor significantly affecting the rate of packet output. Larger file 
sizes (x4 plus) lead to greater throughputs because a smaller portion of the transfer occurs 
during slow-start, the transfer phase during which a flow’s congestion window is lowest. 
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Flows transferring with a larger congestion window achieve higher throughput, which 
helps to increase the aggregate network throughput. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
Figure C-13. Main-Effects Plot for Response y4 (Average Packets Output per Measurement Interval) 
– y axis gives average number of packets output per 200 ms 
 

As shown in Fig. C-14 (and also Fig. 4-23), with one major exception, the story 
regarding the rate of flow completions is quite similar to the story regarding the rate of 
packet outputs. A sufficient number of connections (x5 minus and x8 plus) combined 
with higher network speed (x2 plus) contributes to a higher rate of flow completion. The 
exception involves file size (x4). In the case of packets output, larger file sizes (x4 plus) 
led to higher throughputs and thus to more packets output. On the contrary, for flows 
completed, a smaller average file size led to a higher completion rate. This stands to 
reason; smaller flows will be completed sooner. The sooner flows can be completed, the 
more flows can be completed per unit of time. 

 
C.3.4.4. Responses Related to Advantaged Flow Classes. The final two responses we 
investigate represent throughputs achieved over advantaged flow classes, which are flows 
that transit between sources and receivers located under directly-connected and fast 
access routers. We examine the average instantaneous throughput of DD (y17) and FF 
(y20) flows. We begin by considering DD flows. 

In the previous sensitivity analysis (see Fig. 4-24) we found that throughput on 
DD flows was influenced by only two factors: propagation delay (x1) and file size (x4). 
Shorter propagation delay (x1 minus) permitted faster feedback on DD flows, which 
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allowed the congestion window to increase more quickly. The rate of feedback was most 
important during the initial slow-start phase, where the congestion window started at a 
small size but doubled with each acknowledgment received. The influence of file size 
was also clear. Larger file sizes (x4 plus) allowed more of the packets in a file to be 
transferred after the flow reached its peak sending rate. Smaller file sizes (x4 minus) 
implied that more of the packets in a file were sent early in the slow-start phase, when a 
flow is building up toward its peak sending rate. Throughput early in slow-start will be 
much smaller than throughput after a flow reaches its peak rate. 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Figure C-14. Main-Effects Plot for Response y6 (Flows Completed per Measurement Interval) – y 
axis gives average number of flows completed per 200 ms 
 

The current sensitivity analysis (Fig. C-15) also identifies propagation delay (x1) 
and file size (x4) as the two main factors influencing throughput on DD flows. Fig. C-15 
also identifies network speed (x2) as a significant factor. This makes sense because the 
speed difference between the plus and minus settings was much larger (14 x 103 p/ms) 
here than in the previous sensitivity analysis (400 p/ms). The higher difference in 
network speed would certainly contribute to a larger throughput on DD flows. Fig. C-15 
identifies a few other factors having some influence. For example, lower congestion 
arising from fewer sources (x8 minus) and longer think times (x5 plus) allow for higher 
throughputs on DD flows. Finally, the larger difference in file sizes (175 packets instead 
of 50 packets) enables a higher initial slow-start threshold to contribute more to higher 
throughputs on DD flows. 
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In the previous sensitivity analysis (see Fig. 4-25) we found throughput on FF 
flows to be influenced by a more complex mix of factors than DD flows. The significance 
of propagation delay (x1) and file size (x4) were two clear common factors between all 
advantaged flow classes. Shorter propagation delay meant quicker feedback, which led to 
faster increase in the congestion window for flows that were not impeded by congestion. 
Larger file sizes allowed more of a flow’s packets to be transferred at a higher sending 
rate. Less advantaged (DN, FN and NN) flows were influenced mainly by congestion, so 
propagation delay had less affect on those flows. 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
Figure C-15. Main-Effects Plot for Response y17 (Average Instantaneous Throughput on DD Flows) 
– y axis gives average goodput in pps 
 

As shown in both Figs. C-16 and 4-25, FF flows, unlike DD flows, can face some 
congestion because selected source distributions lead to higher numbers of FN flows. 
Specifically, a source distribution (x9 plus) that gives the network a Web-centric 
characteristic leads to more FN flows, which compete for throughput with FF and DF 
flows. In addition, more sources (x8 plus) and lower average think time (x5 plus) lead to 
more active flows that can compete for throughput. Under these circumstances, higher 
network speed (x2 plus) allows competing flows to achieve higher throughputs. In the 
current sensitivity analysis buffer sizing algorithm has less influence on throughput 
because buffer sizes tend to be larger and initial slow-start threshold has more influence 
on throughput because the spread in file sizes and the higher network speed enabled 
increased use of initial slow-start. 
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C.3.5 Summary of Findings from Sensitivity Analysis 
We use a rank analysis to summarize the findings from the current sensitivity analysis. 
We use one response to represent each characteristic: packet throughput (y4), flow 
completion throughput (y6), congestion (y10), delay (y15) and throughput of DD (y17) 
and FF (y20) flows. Table C-13 shows the results of our rank analysis, where the relative 
influence of each factor on each of the six responses is assigned a rank from one (most 
influential) to 11 (least influential) based upon the degree to which the factor altered the 
response when moving from a plus to a minus setting. The average rank is computed for 
each factor, and then the average rank is converted into an ordinal ranking based on 
ordering the factors from most (one) to least (11) influential. The table shows that 
network speed (x2) is the most influential factor, followed by file size (x4) and 
propagation delay (x1). Next is think time (x5), followed by number of sources (x8). 
These five factors (x2, x4, x1, x5 and x8) are the same five factors identified as most 
influential in the earlier sensitivity analysis (see Table 4-25). The only difference is one 
of ordering: propagation delay has jumped from fifth to third most influential. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Figure C-16. Main-Effects Plot for Response y20 (Average Instantaneous Throughput on FF Flows) 
– y axis gives average goodput in pps 
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Table C-13. Rank Analysis of Sensitivity Analysis Responses 
 
 
 
 
 
 
 

 
 
 
This ordering shift can be justified. First, propagation delay affects many aspects 

of flow operation and the difference between the plus and minus settings in propagation 
delay has increased from 2 fold in the previous sensitivity analysis to 5 fold in the current 
sensitivity analysis. Second, the number of active sources (y1) is influenced by a 
relationship between think time and number of sources. The current sensitivity analysis 
has an order of magnitude more sources but these sources can see more than an order of 
magnitude greater network capacity and can have much longer think time (up to 10 
instead of 5 seconds). The combination of sources with potentially longer think times and 
operating in a network with up to 20 times more capacity leads to a slightly higher 
proportion (74 % vs. 72 %) of sources in the thinking state at any given time. Since we 
scaled number of sources, think time and network speed to match, we would expect 
propagation delay to exert increased influence in the current sensitivity analysis. 

In examining the less influential factors, we find that the sixth most influential 
parameter has become the initial slow-start threshold (x11). This makes sense because 
file sizes can be much larger and network speeds can be much higher in the current 
experiment, so more flows have opportunity to exploit the potential of a higher initial 
slow-start threshold. 

C.3.6 Exploring Effects of Buffer Sizing 
We decided to repeat the exploration of the effects of buffer sizing, which we applied to 
the earlier sensitivity analysis, as described in Sec. 4.7.2. Specifically, we consider the 
relative influence of propagation delay (x1), network speed (x2) and buffer-sizing 
algorithm (x3) on selected responses, chosen to represent macroscopic network behavior 
and user experience. To represent macroscopic behavior, we use packet throughput (y4), 
flow completion throughput (y6), retransmission rate (y10) and relative queuing delay 
(y16). To represent user experience, we use average throughput from three different flow 
classes: DD flows (y17), FF flows (y20) and NN flows (Y22). We aim to determine 
which of the three factors (x1, x2 or x3) has largest influence on the combined responses. 

We use a rank analysis to study the effects of our chosen factors on our selected 
responses. In this particular analysis, we elected to use a larger number to indicate higher 
rank and a smaller number to indicate lower rank. We began by combining our three 
factors into a condition that can be assigned one of eight settings, as illustrated in Table 
C-14 (which can be compared with Table 4-27). Next, we computed the average value for 
each of our responses under each condition. Table C-15 (comparable to Table 4-28) 
displays the results of this averaging. 

 

 x1 x2 x3 x4 x5 x6 x7 x8 x9 x10 x11 
y4 6.5 2 8 1 3 6.5 10.5 4 5 9 10.5 
y6 7 3 9 2 1 10 11 4 5 8 6 
y10 5 1 7 2 4 10 8 3 6 11 9 
y15 1 3 2 5 4 8.5 6.5 11 8.5 10 6.5 
y17 1 3 7 2 6 8 9.5 4 11 9.5 5 
y20 1 2 11 3 6 9 10 5 8 7 4 

Average Rank 3.58 2.33 7.33 2.50 4.00 8.67 9.25 5.17 7.25 9.08 6.83 
Ordinal Rank 3 1 8 2 4 9 11 5 7 10 6 
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Table C-14. Mapping of Factor Settings to Eight Conditions (M = minus; P = plus) 
 

 
 
 
 
 
 
 
 
 
 
 

 
Using the average responses from Table C-15, we next rank each condition from 

high (8) to low (1) for each response, based on the appropriate ordering criteria. For 
retransmission rate (y6) and relative queuing delay (y16) a lower value would be ranked 
higher. For the other responses in Table C-15, a higher value would be ranked higher. 
After ranking the conditions with respect to each response, we compute an average 
ranking. The results of our ranking are shown in Table C-16 (comparable to Table 4-29). 
 

Table C-15. Average Response Values for Each Condition 
 
 
 
 
 
 
 
 
 
 

We can assign the average rank for each condition to the vertex of a cube, where 
each vertex represents a specific combination of settings for propagation delay, network 
speed and buffer size. Fig. C-17 (comparable to Fig. 4-32) shows the cube corresponding 
to Table C-16. Moving along the edges among the vertices on the cube allows us to 
determine changes in ranking attributable to each factor. The change in each factor (x1, 
x2 and x3) across all conditions is represented by a set of four different edges from 
among the 12 edges contained in the cube. We extract the relevant changes in ranking 
and display them in Table C-17 (comparable to Table 4-30). 

Interpreting Table C-17 we see that changing network speed has the largest effect 
on the responses we selected. This agrees with the previous sensitivity analysis. Changing 
buffer sizing has the second largest effect, nearly the same as changing propagation 
delay, which has the smallest effect. Further, Fig. C-17 shows that changing from fewer 
to more buffers has a larger effect when network speed is low and propagation delay is 
short. This finding is counter to the earlier sensitivity analysis that found that changing 
from fewer to more buffers had a larger effect when network speed is high and 

 Values 

Condition 
Factor 

Settings 
x1:x2:x3 

Propagation 
Delay 

Multiplier 

Backbone 
Router 
Speed 

Buffer Sizing Algorithm 

C1 M:M:M 1 2 x 103 RTTxC/SQRT(n)x2 
C2 P:M:M 2 2 x 103 RTTxC/SQRT(n)x2 
C3 M:P:M 1 16 x 103 RTTxC/SQRT(n)x2 
C4 P:P:M 2 16 x 103 RTTxC/SQRT(n) x2 
C5 M:M:P 1 2 x 103 RTTxC/2 
C6 P:M:P 2 2 x 103 RTTxC/2 
C7 M:P:P 1 16 x 103 RTTxC/2 
C8 P:P:P 2 16 x 103 RTTxC/2 

 

 Response 
Condition y4 y6 y10 y16 y17 y20 y22 

C1 358 946.069 5561.8 0.211 1.6199 176.28 196.53 132
C2 316 517.564 3579.9 0.1946 1.3866 399.78 43.253 41.1
C3 1 308 862.84 8632.8 0.0379 1.9674 637.31 450.52 435
C4 839 113.623 11593 6E-05 1.4241 176.28 135 166
C5 347 508.785 4416.3 0.2679 2.9595 158.16 107.59 100
C6 336 533.732 5428.9 0.0445 2.0917 131.96 87.617 59.3
C7 1 080 811.29 14340 0.0024 2.143 652.1 535.56 498
C8 1 251 852.86 7983.3 0.0021 1.5581 172.49 123.35 132
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propagation delay is long. While counter to the previous findings, the effect can still be 
explained. In the previous sensitivity analysis, the network speeds were quite close and 
the small buffer size was very small for half the configurations. In the current sensitivity 
analysis, the network speeds are quite disparate. At the faster network speed (16 x 103 
p/ms) packets rarely need to be buffered and so increasing to a larger buffer size does not 
matter much. At the slower network speed the potential for buffering packets increases 
and so the increase in buffer size has a larger influence on responses. In addition, packets 
can be “buffered in flight” on network transmission links in proportion to the bandwidth-
delay product. For this reason, higher network speeds coupled with longer propagation 
delays mean more potential for in-flight buffering. Conversely, lower network speeds 
coupled with shorter propagation delay means less potential for in-flight buffering. For 
this reason, adding buffers when network speeds are lower and propagation delays are 
shorter should have more influence on responses. If nothing else, the two sensitivity 
analyses reveal a complicated interrelationship among network speed, propagation delay 
and buffer sizing. This interrelationship merits additional study. 
 

Table C-16. Ranking for Each Condition vs. Each Response 
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Figure C-17. Average Condition Ranking Displayed on Vertices of a Cube 

 Condition
Response C1 C2 C3 C4 C5 C6 C7 C8 

y4 4 1 8 5 3 2 6 7 
y6 4 1 6 7 2 3 8 5 

y10 2 3 5 8 1 4 6 7 
y16 5 8 4 7 1 3 2 6 
y17 4 6 7 5 2 1 8 3 
y20 6 1 7 5 3 2 8 4 
y22 5 1 7 6 3 2 8 4 

Average Rank 4.3 3.0 6.3 6.1 2.1 2.4 6.6 5.1 
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Table C-17. Changes in Ranking Attributable to Each Factor 

 
 
 
 
 
 
 

C.4 Discussion 
The supplementary sensitivity analysis confirmed the primary findings about main effects 
that were revealed in the previous sensitivity analysis, covered in Chapter 4. Both 
analyses found that system response was driven by the same primary input factors: 
network speed, file size, propagation delay, think time and number of sources. 
Propagation delay was found to be more influential in the current sensitivity analysis 
because the plus-minus level difference in propagation delay was substantially increased 
over the previous sensitivity analysis. Initial slow-start threshold moved to sixth (from 
eighth) because more flows had the opportunity to exploit a high initial slow-start 
threshold under the current sensitivity analysis, which allowed larger file sizes and much 
higher network speeds. The influence of buffer-sizing algorithm switched to eighth (from 
seventh) because in the current sensitivity analysis only 12.5 % of the configurations 
created average buffer sizes below 103 packets, compared with 50 % of the 
configurations in the previous sensitivity analysis. In comparing the main-effects plots, 
both sensitivity analyses identified the same input factors driving each system response. 
For particular responses, as explained above, small differences in factor influences could 
be discerned – all such differences were justified. 

 With respect to correlation among responses, both sensitivity analyses identified 
the same six response pairs to be correlated with magnitude greater than 0.95. The 
supplementary sensitivity analysis identified a seventh response pair (y17-y18) correlated 
above 0.95. In the range of 0.90 to 0.95, the supplementary sensitivity analysis found 
only three correlated pairs, while the previous sensitivity analysis indentified 10 such 
pairs. Among the seven missing pairs, four appeared at lower strength in the 
supplementary sensitivity analysis. 

Two main differences were noted among correlations in the sensitivity analyses. 
First, the supplementary analysis found throughputs in all flow classes were correlated, 
whereas the previous analysis found throughput on DD flows and to be uncorrelated with 
throughput on other flow classes, and also found throughputs on DF and FF flows to be 
correlated with each other but uncorrelated with the throughputs of other flow classes. 
Comparing the relevant main-effects plots for these responses found that the 
supplementary analysis showed all flow throughputs to be driven by the same top three 
factors: propagation delay, network speed and file size. The order shifted among the three 
flow classes: propagation delay the main influence on DD and FF flows and network 
speed the main influence on NN flows. While the main influence (propagation delay or 
network speed) also appeared in the previous sensitivity analysis, the second most 
influential factors differed for DD flows (average file size), FF flows (source distribution) 
and NN flows (average think time). This shows that throughputs for FF and NN flows 

 Propagation Delay (x1) Network Speed (x2) Buffer Sizing (x3)
Edge 1 1.3 2.0 2.2 
Edge 2 0.3 3.1 0.6 
Edge 3 0.2 4.5 0.3 
Edge 4 1.5 2.7 1.0 

Average 0.8 3.1 1.0 
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were driven more by congestion in the first sensitivity analysis and less so in the 
supplementary analysis. Further, in the supplementary analysis, increased differences in 
network speed and propagation delay had a greater influence on flow throughputs than 
congestion. Guided by this finding, we defined our experiments comparing congestion 
control algorithms to include situations where congestion played a significant role, as 
well as situations where congestion was less significant. 

 A second main difference in correlation appeared in the supplementary 
sensitivity analysis. In the previous analysis, round-trip time (y15) and queuing delay 
(y16) were moderately correlated (0.70), while the supplementary analysis found no 
correlation (-0.08). This correlation change is largely due to changes in the relationship 
between propagation delay and buffer sizing between the two analyses. In the 
supplementary sensitivity analysis, propagation delay had a much bigger influence on 
SRTT, which increases 113 % when moving from a minus to plus setting vs. only 52 % 
in the first sensitivity analysis. As a result, higher propagation delays in the 
supplementary analysis increased the numerator in the computation for relative queuing 
delay (y16), which reduces y16 more than is the case in the previous sensitivity analysis. 
As a result, in the supplementary analysis with generally increasing SRTT (driven by 
both propagation delay and buffer size), y16 increases for 32 conditions (smaller 
propagation delay) then drops drastically upon reaching the larger propagation delay, 
increasing again along with increasing buffer size. These two functions, round-trip time 
(y15) and queuing delay (y16), do not exhibit the same relationship under the settings 
associated with the previous sensitivity analysis, where a generally increasing SRTT 
mirrors a generally increasing buffer size, except for occasional dips associated with 
specific parameter combinations. From this, we concluded that we should not estimate 
queuing delay by dividing SRTT by average propagation delay. For the experiments 
comparing congestion control algorithms we decided to estimate queuing delay by 
subtracting the average round-trip propagation delay from the average SRTT. 

Similar to results from the correlation analysis, results from the principal 
components analysis (PCA) exhibited several differences between the two sensitivity 
analyses we conducted. Principal components analyses are notoriously difficult to 
interpret in many domains, especially when investigating a complex system with many 
factors. In the initial sensitivity analysis, we identified four principal components: 
congestion, delay, throughput on advantaged flows and network-wide throughput (flows 
and packets). For the supplementary PCA, identifying the top four principal components 
proved more difficult. As we explained above, the supplementary sensitivity analysis led 
us to group responses comprising four principal components that influence: throughput 
on all flow classes, throughput on advantaged flow classes, delay and network-wide 
throughput (flows and packets). The top four components bear general similarity among 
the two analyses, though they differ in the grouping of specific responses. The first 
component in both analyses could be said to characterize congestion and throughput for 
most typical users of the network. Delay is also a common component, playing more 
prominence in the first sensitivity analysis because half the configurations had very small 
buffers (compared to only 1/8 of the configurations in the supplementary analysis). The 
remaining two principal components were similar between the two analyses: throughput 
on advantaged flows and network-wide throughput. 



Study of Proposed Internet Congestion Control Mechanisms NIST 
 

Mills, et al. Special Publication 500-282 521 

We also compared two exploratory analyses: (1) seeking the source of a 
bifurcation in a (y7-y22) scatter plot and (2) investigating the relative influence of buffer 
sizing on system responses. As shown above, both sensitivity analyses revealed average 
file size (x4) as the cause of the y7-y22 bifurcation. Further, as expected, the 
supplementary sensitivity analysis led to an increased angle of bifurcation. With respect 
to the relative influence of buffer size, both sensitivity analyses found network speed to 
have much greater influence on system response than either propagation delay or buffer 
size. The supplementary and initial sensitivity analyses did vary with respect to the 
conditions under which increasing buffer size had larger influence on system responses, 
but these differences were explainable.  

C.5 Conclusions 
In this appendix, we conducted a supplementary sensitivity analysis following the general 
plan presented in Chapter 4, but changing the level settings for the 11 parameters. 
Specifically, we increased network speed and size by about an order of magnitude, we 
stretched the range of parameter values covered by the plus and minus settings of each 
factor, and we shifted the traffic patterns slightly to generate more DD flows and to give 
a higher prominence to Web browsing activity over P2P exchanges. We subjected the 
results to the same analyses applied in Chapter 4. Comparing our findings with those 
from Chapter 4, we identified general agreement in the main factors driving model 
responses. Where differences arose, we were able to attribute them to changes in level 
settings or relationships among level settings. On the whole, the results from this 
supplementary sensitivity analysis increased our confidence in the MesoNet simulation 
model. In addition, we gained increased confidence in our analysis methods, which were 
able to identify differences arising from parameter variations, as well as relationships 
remaining invariant across our two sensitivity analyses. Finally, comparing results from 
the two sensitivity analyses guided us to change our technique for estimating queuing 
delay and to select experiment designs to include configurations with little congestion, as 
well as configurations with significant congestion.  
 



Appendix D – 10-Step Graphical Analysis Technique 
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Appendix D 10-Step Graphical Analysis Technique 
We adopted a (NIST-developed) 10-step graphical analysis technique to evaluate the 
behavior of our model. The analysis technique uses 10 different plot types, listed in Table 
D-1, which allow us to identify the main factors influencing system behavior, to discover 
interactions among factors, to assess statistical significance of the factors, to propose 
linear models that match the data, to identify best and worse combinations of factors and 
to suggest additional factor settings that can drive system responses in particular 
directions. In this section, we introduce the technique through a sample sequence of the 
10 plot types, using as an example one response variable, y11, average congestion 
window (CWND). The sample plots were taken from our study. 
 

Table D-1. Identity and Purpose of 10 Plots in the 10-Step Graphical Analysis  
 
Plot Purpose 

Ordered Data Plot (D.1) Reveal how combinations of parameter 
settings influence response 

Multi-factor Scatter Plot (D.2) Reveal influence of individual parameter 
levels on response distribution 

Main Effects Plot (D.3) Reveal individual parameters having 
greatest influence on response 

Interaction Effects Matrix (D.4) Reveal degree of influence of parameter 
pairs on response 

Block Plot (D.5) 
Test robustness of statistically significant 
parameters in light of secondary or 
nuisance factors 

Youden Plot (D.6) Reveal parameters and parameter pairs 
with greatest influence on response 

|Effects| Plot (D.7) 
Reveal magnitude of a change in response 
due to specific parameters and parameter 
interactions 

Half-Normal Probability Plot of |Effects| 
(D.8) 

Separate influential parameters and 
parameter interactions from those that are 
not influential 

Cumulative Residual SD Plot (D.9) Provide information sufficient to construct 
a linear model to represent response data 

Contour Plot (D.10) 
Suggest how alterations in parameter 
settings could influence system response in 
predictable directions. 

 
The transmission control protocol (TCP) manages a congestion window (CWND) 

variable that represents the number of packets that can be sent prior to receipt of an 
acknowledgment. The larger the CWND, the more packets that can be sent per unit time 
and thus the greater will be the transmission rate. For that reason, a network with a high 
average CWND (y11) will be able to transmit more packets than a network with a lower 
average CWND. In general, a CWND is reduced when packets are lost, usually due to 
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congestion. Lowering the CWND slows the rate of packet transmissions in the network 
and thus should reduce congestion. Subsequent to a reduction, TCP increases the CWND 
linearly and so the rate of packet transmissions in the network should also increase. Once 
the transmission rate becomes too high, packets are lost and the CWND is reduced and 
the rate of transmission slows and so on. Thus the average CWND size might be used to 
represent the level of congestion in a network. Here, we analyze average CWND size 
with 10 plots, each representing one of the plot types listed in Table D-1. The changes in 
CWND were driven by a sensitivity analysis experiment, described in Chapter 4. 
 
D.1 Ordered Data Plot. Fig. D-1 shows an ordered data plot, which graphs a 
system response (y axis) against every combination of factors (x axis) investigated in an 
experiment. The data is arrayed from smallest (on the left) to largest (on the right) 
response value. Our sensitivity analysis used 64 combinations of the 11 factors (recall 
Fig. 4-1) and so the plot contains 64 points. The upper left-hand corner of the plot shows 
the number of factors (k =11) and the number of combinations of factors (n = 64) in the 
experiment that generated the data. Below the x axis, each point is labeled with the 
specific combination of factor (x1 to x11) levels (- or +) that led to the response. 
 

 
 

Figure D-1. Sample Ordered Data Plot 
 

A legend to the right of the plot gives shorthand names to identify each of the 11 
factors. Here the factors include: propagation delay (PDM/x1), network speed (BRS/x2), 
buffer-sizing algorithm (QSA/x3), average file size (AvFSWO/x4), average think time 
(AvThT/x5), probability that a user downloads a larger file (PrLF/x6), probability that a 
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source resides on a fast host (PrFH/x7), scaling factor for the number of sources and 
receivers (SFSR/x8), distribution of sources (SDist/x9) and receivers (RDist/x10) 
throughout the topology, and initial slow-start threshold (SST/x11). 

The plot can reveal the combination of factor settings that lead to the smallest 
(left-most) and largest (right-most) response from the system. In addition, the plot can 
reveal combinations of factor settings that appear to have greatest influence on the 
response. From Fig. D-1, we might conclude that the five right-most combinations had 
more significant influence (than other combinations) in increasing the average CWND 
per connection. Examining the factor settings associated with these data points reveals 
some common factors among them. For example, these points all have higher1 network 
speed (x2 = -) and higher initial slow-start threshold (x11 = +) and four of the five points 
have larger (x3 = +) buffer sizes. Looking across the row of settings for network speed 
(factor x2) one can see that higher network speeds (x2 = -) seem to result more often in 
higher average CWND. Similar views can be taken of the other factors. 

As a result of viewing the ordered data plot, an experimenter begins to see how 
various factors could be driving system response. From Fig. D-1 alone, an experimenter 
knowledgeable in the domain could begin to get a sense that faster networks with less 
congestion, higher initial slow-start threshold and larger buffer sizes lead to higher 
average CWND. More detailed information on the influence of these and other factors 
becomes available from subsequent plots.  
 
D.2 Multi-factor Scatter Plot. Fig. D-2 shows a sample multi-factor scatter plot, 
which groups responses for each factor by setting (+ or -) and then plots the responses (y 
axis) together with the average response (dashed horizontal line). The plot also gives the 
number of factors (k = 11) and observations (n = 64). The x axis shows each factor (x1 to 
x11) as two vertical scatter plots, one when the factor setting is a minus and one when the 
factor setting is a plus. Thus, each individual scatter plot has half of the observations 
(here 32 of 64). The plot shows the distribution of response values and identifies the 
minimum and maximum values. From Fig. D-2 one can see that average CWND tends to 
be under 10 for most observations, which might suggest that many of the experiment 
combinations constrained CWND. The plot also reveals a clear setting for each factor in 
order for CWND to achieve its maximum value (near 30). This combination of factors 
will correspond with the right-most combination of factors in the ordered data plot. 

Interpreting Fig. D-2, an experimenter can see the following settings leading to 
highest average CWND: shorter propagation delay (x1 = -), higher network speed (x2 = -
), larger buffer sizes (x3 = +), larger file sizes (x4 = +), longer think times (x5 = +), 
higher probability of transferring larger files (x6 = -)2, lower probability of fast hosts (x7 
= +)3, more sources (x8 = +), less uniform distribution of sources (x9 = -), more uniform 
distribution of receivers (x10 = +), and higher initial slow-start threshold (x11 = +). The 
experimenter might wonder which of the factors and settings are most influential. The 
next plot provides this information. 
 

                                                 
1 Recall the miscoding of factor x2: minus is higher network speed and plus is lower network speed. 
2 The coding for factor x6 was reversed (plus was a lower probability and minus was a higher probability). 
3 The coding for factor x7 was also reversed (plus was a lower probability and minus was a higher 
probability). 
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Figure D-2. Sample Multi-factor Scatter Plot 
 
D.3 Main Effects Plot. Fig. D-3 gives a sample main effects plot, which is the 
most essential plot to identify the factors and settings driving a system’s response. The 
basic framing of the plot is similar to that of the multi-factor scatter plot; however, each 
vertical scatter plot is replaced by an average of the response. For each factor, the 
averages are connected with a line that indicates the magnitude and direction the response 
changes when moving from a minus to a plus setting for the factor. On the x axis, each 
factor is annotated with the absolute change in response and the change relative to (i.e., as 
a % of) the mean response. 

Fig. D-3 reveals that the most influential factor in determining CWND is network 
speed (70 % of the mean) followed by three closely grouped factors: buffer-sizing 
algorithm (54 %), initial slow-start threshold and think time (each 53 %). The distribution 
of sources also has a significant (50 %) influence. Notice that the plot reveals a smaller 
number of sources and receivers (x8 = -) leading to a (1.7 packet) larger average CWND 
than a larger number of sources – this is true despite the fact that the ordered data plot 
and scatter plot showed that the largest CWND was achieved when the number of sources 
was at its higher setting. In fact, a domain expert will understand that fewer sources 
sharing the same network means that each source may transmit faster, which is reflected 
in a larger CWND. Thus, here the main effects plot clearly reveals the true nature of the 
influence of the factors and settings on the response. 
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In thinking about the main effects, an experimenter with domain knowledge might 
be quite pleased with the meaning of these results regarding the validity of the model. 
Fewer, simultaneously active, flows (x5 = +, x8 = - and x9 = -), higher network speeds 
(x2 = -) together with more buffers (x3 = +) should permit higher CWND. Under these 
circumstances, the ability to increase the CWND to a higher threshold via initial slow-
start (x11 = +) should also lead to higher CWND, because CWND increases fastest 
during initial slow start. 
 
 

 
 

Figure D-3. Sample Main Effects Plot 
 
D.4 Interaction Effects Matrix. Figure D-4 shows a sample interaction effects 
matrix. The purpose of this plot is to determine if interactions among factors have a 
significant influence on the response. If this plot reveals no such interaction effects, then 
an experimenter can conclude that the system response is driven primarily by main 
effects. The plot might also reveal interactions that an experimenter expected based on 
domain knowledge. On the other hand, the plot could reveal significant, unexpected 
effects due to interactions, which requires further investigation by the experimenter. 
 



Study of Proposed Internet Congestion Control Mechanisms NIST 

Mills, et al. Special Publication 500-282 528 

 
 

Figure D-4. Sample Interaction Effects Matrix 
   

The interaction effects matrix takes the form of a half matrix containing rows and 
columns of sub-plots, where each sub-plot shows how the average response changes 
when moving from a minus to a plus setting for some combination of factors. The left-
most sub-plot in each row (also the bottom-most sub-plot in each column) gives the main 
effects plot (from Fig. D-3) for a specific factor (x1 in the top row and x11 in the bottom 
row). Each of the remaining sub-plots in a given row (or column) show how the average 
response changes when moving from a minus to a plus setting for two factors (the factor 
beginning the row or column and each of the other factors). 

An experimenter may scan the matrix starting from each main effects plot. Scan 
up (the related column) and also right across (the related row) to compare the influence of 
each main factor to the influence of possible two-factor interactions. Scanning the matrix 
in Fig. D-4 shows that, for the most significant main effects (x2, x3, x5, x8, x9 and x11), 
the influence of the main effect is greater than the influence of any interactions. So, for 
example, consider the three sub-plots highlighted in Fig. D-4. The upper left-hand sub-
plot reports that changing network speed (x2) changes CWND size by 4.3 packets and the 
lower right-hand sub-plot reports that changing initial slow-start threshold (x11) changes 
CWND size by 3.3 packets, while the third highlighted sub-plot reports that changing x2 
and x11 together changes CWND size by only 2.7 packets. Similar results can be found 
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when comparing the influence of other factors with their two-factor interactions. This 
suggests that system response is driven by main effects and not two-factor interactions. 
 
D.5 Block Plots. Block plots provide an elementary test of statistical significance 
for the influence of main effects. Given a full factorial experiment design, one can 
compare the average response for a minus setting of a factor to a plus setting under all 
possible combinations of other factors. This can provide a large amount of visual 
information, so typically only a subset of these plots is generated. Further, given an 
orthogonal fractional factorial (OFF) experiment design a reduced amount of information 
is available for generating block plots, so such plots are not as useful for OFF experiment 
designs. Still, block plots can prove useful in confirming findings about main effects. 
 

 
 

Figure D-5. Sample Block Plots 
 
Fig. D-5 shows sample block plots for each of the 11 factors used in the 

sensitivity analysis of MesoNet. Each plot shows the average response for four 
combinations of secondary factors when the main factor of the plot is set to a minus and a 
plus. The block plots reinforce the findings of the main effects plot: the most significant 
factors are network speed (x2), buffer sizes (x3), think time (x5), number (x8) and 
distribution (x9) of sources and initial slow-start threshold (x11). This is revealed by the 
fact that one particular setting for each of these factors always leads to a higher value for 
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CWND. This is true no matter what combination of other factors is used. Results are 
mixed for the other five factors. 
 
D.6 Youden Plot. A Youden plot, see Fig. D-6, graphs the average response for 
each factor (and two-factor interaction) when the factor (or factors) are set to a minus 
against the average response when set to a plus. In Fig. D-6 the average CWND for 
minus settings are plotted on the x axis and for plus settings on the y axis. For 
unimportant factors, the values should be nearly the same (and appear in the center of the 
graph). For important factors, values should lie toward the upper-left and lower-right 
corners of the graph.  
 
 

 
 

Figure D-6. Sample Youden Plot 
 
Examining Fig. D-6 reveals that the most important factors are network speed 

(x2), buffer size (x3), think time (x5), source distribution (x9) and initial slow-start 
threshold (x11). The number of sources (x8) is not as important. Recall that the main 
effects plot identified x8 as of less importance than the other effects. The Youden plot 
supports the earlier finding. The plot also reveals some information about the influence of 
interactions. The distribution of receivers (x10) has a combined effect with the 
distribution of sources (x9) and the think time (x5) has a combined effect with initial 
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slow-start threshold (x11). These interaction effects (also revealed in the interaction 
effects matrix, Fig. D-4) are less important than the main effects. 
 
D.7 |Effects| Plot. The |Effects| plot, Fig. D-7, displays the absolute magnitude of a 
change in response due to specific factors and interactions. The x axis identifies the 
factors or interactions for which the corresponding magnitude of the change in response 
is plotted on the y axis. The factors are ordered by decreasing magnitude from left-to-
right on the x axis. This plot should confirm the information given in previous plots 
regarding the influence of factors and interactions. The average value for the response is 
given in the upper left-hand corner of the plot. The plot may be augmented (as here) with 
a rank-ordered list of factors (and interactions) and the associated (signed) magnitude of 
the effects. 
 
 

 
 

Figure D-7. Sample |Effects| Plot 
 

Fig. D-7 confirms earlier findings: the main factors influencing CWND include 
(in order) network speed (x2), buffer size (x3), initial slow-start threshold (x11), think 
time (x5) and source distribution (x9). The associated list identifies x9 twice, but this is a 
mistake in labeling. Consulting the interaction effects matrix (Fig. D-4) reveals that the 
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second x9 should be an x2-x11 interaction. This demonstrates the cross-checking value of 
the redundancy included in the 10-step graphical analysis technique. 
 
D.8 Half-Normal Probability Plot of |Effects|. A half-normal probability 
plot of |Effects|, Fig. D-8, classifies effects as important or unimportant. The x axis of a 
half-normal probability plot represents the ordering of a theoretical half-normal 
distribution of values. The y axis represents the |Effects|, which are plotted in order from 
least to greatest. Unimportant effects would tend to have mean difference centered on 
zero, sp when plotting the |Effects| for such data, one would expect plotted values to 
begin around zero and ascend linearly. Linear data emanating from the origin implies that 
the effects have a non-significant (zero) value. Data departing from linearity indicate a 
statistically significant effect. 
 
 

 
 

Figure D-8. Sample Half-Normal Probability Plot of |Effects| 
 

As illustrated in Fig. D-8 the values to the right of the plot identify which factor 
(or interaction) is responsible for the plotted value on the y axis. Interpreting Fig. D-8 
indicates the value of CWND is driven mainly by five factors: network speed (x2), buffer 
size (x3), think time (x5), initial slow-start threshold (x11) and source distribution (x9). 
The plot shows relative importance: x2, followed by the grouping of x3, x5, x11 and then 
finally x9. This finding is consistent with information obtained from previous plots. 
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D.9 Cumulative Residual Standard Deviation Plot. The cumulative 
residual standard deviation (SD) plot (Fig. D-9) provides information sufficient to 
construct a linear model to represent experiment data. The y axis of the plot gives the 
residual error between the data and a fitting function when adding terms representing the 
set of factors and interactions represented on the x axis. The first term on the x axis is the 
residual SD when describing the data using only the grand average over all factors. Then, 
the residual standard deviations are plotted as the influence of each factor is added in 
order of decreasing reduction in SD. The factors are identified on the x axis. 
 

 
 

Figure D-9. Sample Cumulative Residual Standard Deviation Plot 
 

Typically, one hopes for a model where the most important factors can explain 
most of the standard deviation in the data. If this holds, then a fairly simple linear model 
can describe the data. A plot demonstrating such a case would exhibit a large reduction in 
SD after the main factors are included in the model. In our example, when we include the 
five most important factors (x2, x3, x5, x9 and x11), Fig. D-9 shows a remaining error of 
about 3.5. The encouraging news from Fig. D-9 is that the five most important factors 
reduce the SD the most (and in the expected order). On the other hand, the residual SD is 
still rather high after including these factors, so the resulting linear model could likely not 
be used for interpolation or prediction. 

 
D.10 Contour Plot of Two Dominant Factors. The contour plot aims to 
suggest other factor settings that could alter system response in predictable directions. 
While one could plot each pair of factors together, a typical approach is to construct a 
contour plot from the two most important factors. Fig. D-10 shows a sample contour plot 
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from the two main factors, x2 (network speed) and x3 (buffer size), influencing CWND. 
The most important factor is plotted on the x axis and the second most important factor is 
plotted on the y axis. The axes are labeled with an origin (0) and then the two settings (-1 
and +1) for each factor. A point is placed at each combination of factors (x2, x3) = {(-1, -
1), (+1, -1), (+1, +1), (-1, +1)}. These four points are connected with a dashed line to 
form a rectangle. Each point is labeled with the value of one of the specific response 
variables for the associated combination of the two factors. Based on the fitted model 
developed when generating the cumulative residual SD plot, contour lines are added to 
form a contour plot. 
 

 
 

Figure D-10. Sample Contour Plot of Two Dominant Factors 
 

As Fig. D-10 shows, the combination of (-1, +1) – higher network speed and 
larger buffer size – produces the largest CWND (10.69…). The contour lines indicate that 
increasing network speed and buffer size would lead to larger CWND values, while 
decreasing network speed and buffer size would lead to smaller CWND values. Under 
some experiments and conditions, the contour plot could reveal directions in which to 
alter factor settings to create more optimal responses or suggest how responses might 
change as factor settings are altered. 
 



 



 




