OSAC 2025-S-0019 Standard Practice for Characterization of Solid Oxidizer and Fuel Explosive(s)

Ignitable Liquids, Explosives, and Gunshot Residue Subcommittee Trace Evidence Scientific Area Committee (SAC) Organization of Scientific Area Committees (OSAC) for Forensic Science

Draft OSAC Proposed Standard

OSAC 2025-S-0019 Standard Practice for Characterization of Solid Oxidizer and Fuel Explosive(s)

Prepared by Ignitable Liquids, Explosives, and Gunshot Residue Version: 1.0 April 2025

Disclaimer:

This OSAC Proposed Standard was written by the Organization of Scientific Area Committees (OSAC) for Forensic Science following a process that includes an <u>open comment period</u>. This Proposed Standard will be submitted to a standard developing organization and is subject to change.

There may be references in an OSAC Proposed Standard to other publications under development by OSAC. The information in the Proposed Standard, and underlying concepts and methodologies, may be used by the forensic-science community before the completion of such companion publications.

Any identification of commercial equipment, instruments, or materials in the Proposed Standard is not a recommendation or endorsement by the U.S. Government and does not imply that the equipment, instruments, or materials are necessarily the best available for the purpose.

To be placed on the OSAC Registry, certain types of standards receive a Scientific and Technical Review (STR). The STR process is vital to OSAC's mission of generating and recognizing scientifically sound standards for producing and interpreting forensic science results. The STR shall provide critical and knowledgeable reviews of draft standards to ensure that the published

methods that practitioners employ are scientifically valid, and the resulting claims are trustworthy.

The STR consists of an independent and diverse panel, which may include subject matter experts, human factors scientists, quality assurance personnel, and legal experts as applicable. The selected group is tasked with evaluating the proposed standard based on a defined list of scientific, administrative, and quality assurance based criteria.

For more information about this important process, please visit our website at: <u>https://www.nist.gov/organization-scientific-area-committees-forensic-science/scientific-technical-review-str-process</u>

1 2 3	Standard Practice for Characterization of Solid Oxidizer and Fuel Explosive(s) 1. Scope
4	1.1 This practice describes procedures for the analysis and identification of explosive
5	mixtures containing fuels and solid oxidizers in powder specimens or residues, when visible
6	material is present.
7	1.2 This practice describes the analysis of improvised fuel and oxidizer mixtures and
8	commercial products such as black powder, black powder substitutes, pyrotechnic
9	formulations, and ammonium nitrate mixtures.
10	1.3 This standard involves handling of energetic materials. Training in the storage and safe
11	handling of energetic materials and familiarity with the properties and hazards of explosives is
12	required.
13	1.4 This standard is intended for use by competent forensic science practitioners with the
14	requisite formal education, discipline-specific training (see Practice E2917) and demonstrated
15	proficiency to perform forensic casework (refer to the T/SWGFEX Suggested Guide for Explosives
16	Analysis Training).
17	1.5 This standard does not purport to address all of the possible safety concerns, if any,
18	associated with its use. It is the responsibility of the user of this standard to establish
19	appropriate safety, health, and environmental practices and determine the applicability of
20	regulatory requirements prior to use.
21	2 Deferenced Desuments
LL	2. Referenced Documents
23	2.1 ASTM Standards:

- 24 E620 Practice for Reporting Opinions of Scientific or Technical Experts
- 25 E1386 Practice for Separation of Ignitable Liquid Residues from Fire Debris Samples by Solvent
- 26 <u>Extraction</u>
- 27 E1388 Practice for Sampling of Headspace Vapors from Fire Debris Samples
- E1412 Practice for Separation of Ignitable Liquid Residues from Fire Debris Samples by Passive
 Headspace Concentration with Activated Charcoal
- 30 E1492 Practice for Receiving, Documenting, Storing, and Retrieving Evidence in a Forensic
 31 Science Laboratory
- E1618 Test Method for Ignitable Liquid Residues in Extracts from Fire Debris Samples by Gas
 Chromatography-Mass Spectrometry
- 34 E1732 Terminology Relating to Forensic Science
- 35 E2881 Test Method for Extraction and Derivatization of Vegetable Oils and Fats from Fire
- 36 Debris and Liquid Samples with Analysis by Gas Chromatography-Mass Spectrometry
- E2917 Practice for Forensic Science Practitioner Training, Continuing Education, and
 Professional Development Programs
- 39 E3196 Terminology Relating to Examination of Explosives
- 40 E3253 Practice for Establishing an Examination Scheme for Intact Explosives
- 41 E3255 Practice for Quality Assurance of Forensic Science Service Providers Performing
 42 Forensic Chemical Analysis
- 43 E3329 Practice for Establishing an Examination Scheme for Explosive Residue
- 44 WK73484 Practice for Reporting Results and Opinions of Explosives Analysis
- 45 WK86785 Standard Guide for the Forensic Analysis of Explosives by Polarized Light46 Microscopy
- 47
- 48 **3.** Terminology
- 49 **3.1** *Definitions:*
- 50 For definitions of terms that can assist in interpreting this Practice, refer to Terminologies
- 51 E3196 and E1732.
- 52
- 53 **4.** Summary of Practice
- 54 4.1 This practice establishes the analytical approach to characterize solid oxidizer and fuel
- 55 explosives, to include black powder, black powder substitutes, pyrotechnic compositions, and
- 56 improvised fuel and oxidizer mixtures.

57	4.2 Multiple techniques and methods are used to identify these mixtures including visual
58	examinations, ignition susceptibility testing, spectroscopic techniques, chromatographic
59	techniques, and spectrometric techniques.
60	5. Significance and Use
61	5.1 The minimum requirements for identifying intact materials are physical characteristics
62	and the identification of an oxidizer and fuel. Refer to Practice E3253 for an overarching
63	examination scheme for intact explosives.
64	NOTE – Some improvised mixtures can vary in visual and physical characteristics.
65	5.2 Morphology of some commercial products can be a distinct characteristic used for
66	classification and identification purposes.
67	5.3 Analysis and identification of ignitable liquids used as the fuel for these mixtures is
68	covered in Practices E1386, E1388, and E1412, and Test Methods E1618 and E2881. Use of
69	these standards could require additional training.
70	5.4 Identification of solid oxidizer or fuel residues in the absence of visible material is
71	beyond the scope of this practice.
72	5.5 Identification of commercial blasting agents (except ammonium nitrate and fuel oil)
73	and mixtures containing hydrogen peroxide (or other liquid oxidizers) are beyond the scope of
74	this practice.
75	5.6 Identification criteria for individual compounds by instrumental methods are beyond

the scope of this practice.

77	5.7 The requirements to associate an unknown material to a unique product by brand
78	name or to compare two or more questioned mixtures are beyond the scope of this practice,
79	except as noted.
80	
81	6. Apparatus and Supplies
82	6.1 Magnifying lamp.
83	6.2 Stereo light microscope.
84	6.3 Polarized light microscope (PLM) — Specifics for this apparatus can be found in
85	WK86785.
86	6.4 Fourier transform infrared spectrometer (FTIR)—An FTIR capable of acquiring
87	spectra in the mid-infrared region.
88	6.4.1 FTIR Supplies—Salt plates, mortar and pestle, pellet press.
89	6.5 Raman spectrometer.
90	6.6 X-ray powder diffractometer (XRD).
91	6.6.1 XRD Supplies—Mortar and pestle, XRD specimen holders.
92	6.7 Scanning electron microscope with energy dispersive X-ray spectroscopy (SEM-EDS)
93	6.7.1 SEM-EDS supplies—Specimen mounts, specimen holders, SEM stubs.
94	6.8 X-ray fluorescence analyzer (XRF).
95	6.8.1 XRF supplies—Specimen mounts, specimen holders, conductive adhesive tabs.
96 97	6.9 Gas chromatograph-mass spectrometer—A gas chromatograph (GC) coupled to either a mass spectrometer (MS) or tandem MS.
98	6.10 GC with flame ionization detector (FID), thermal energy analyzer (TEA), or electron
99	capture detector (ECD).
100	6.11 Liquid chromatograph (LC)-MS—An LC coupled to either an MS or tandem MS.
101	6.12 LC with an ultraviolet (UV) or photodiode array (PDA) detector.
102	6.13 Ion chromatograph (IC)—An IC coupled with a conductivity detector or an MS or a
103	combination thereof.
104	6.14 Capillary electrophoresis (CE) – A CE coupled with a UV-visible detector, a
105	Conductivity detector, or an MS.
100	6.15 Glassware and Other Supplies—Disposable test tubes, pipettes, beakers,
108	centrifuge.
109	
110	7. Reagents and Materials

111	7.1 Purity of Solvents and Reagents—Reagent grade or better chemicals should be used in
112	all tests. Unless otherwise indicated, it is intended that all reagents conform to the
113	specifications of the Committee on Analytical Reagents of the American Chemical Society
114	where such specifications are available. Other grades can be used, provided it is first
115	ascertained that the reagent is of sufficiently high purity to permit its use without lessening the
116	accuracy of the determination.
117	7.2 Reference Materials—Reference materials, including single compounds and explosives,
118	can be obtained from commercial and retail sources or directly from the distributor or
119	manufacturer.
120	7.3 Chromatography Carrier Gas— Helium or hydrogen of purity 99.995 % or higher.
121	7.4 Deionized Water—18.2 megohms or better (ultrapure).
122	
123	8. General Solid Oxidizer and Fuel Mixture Information ¹⁻⁵
124	8.1 Solid oxidizers include nitrate salts (e.g., potassium nitrate, ammonium nitrate),
125	chlorate and perchlorate salts (e.g., potassium chlorate, potassium perchlorate),
126	hypochlorite salts (e.g., calcium hypochlorite), and potassium permanganate.
127	NOTE – Halogenated oxidizers include polytetrafluoroethylene, perfluoropolyether,
128	and hexachloroethane.
129	8.2 Solid fuels include organic fuels (e.g., sugar, sawdust, terephthalic acid), metals (e.g.,
130	aluminum, magnesium, magnalium), and other inorganic fuels (e.g., sulfur, antimony
131	trisulfide).

5

- 132 8.2.1 Solid fuel and oxidizer mixtures include improvised mixtures and commercial
- 133 products such as black powder, black powder substitutes, and pyrotechnic mixtures.
- 134 8.3 Semi-solid fuels include petroleum jelly and waxes.
- 135 8.3.1 Semi-solid fuel and solid oxidizer mixtures include those based on potassium
- 136 chlorate or perchlorate (e.g., with petroleum jelly or a wax material).
- 137 8.4 Liquid fuels include petroleum-based fuels, nitromethane, and vegetable oil.
- 138 8.4.1 Liquid fuel and solid oxidizer mixtures include those based on ammonium nitrate
- 139 (e.g., ammonium nitrate and fuel oil, ammonium nitrate and nitromethane), and potassium
- 140 chlorate (e.g., potassium chlorate and vegetable oil).
- 141 **9.** Sampling Handling
- 142 9.1 The applicable procedures for handling and documentation of all submitted specimens
- are described in Practices E1492, E1618, E3253, E3255, and E3329.
- 144 WARNING Explosive materials can be initiated by external stimuli such as heat, friction, and
- 145 electrostatic discharge.¹⁻⁵
- 146 9.2 Remove a portion of the specimen for analysis. Follow safety regulations for storing the
- 147 remaining bulk powders.
- 148 **10.** Visual Examinations and Ignition Susceptibility Tests
- 149 10.1 Using a stereo light microscope, observe and record physical characteristics of the
- 150 specimen, including morphology and color. If available, photograph the material using a digital
- 151 camera microscope attachment.

152	10.1.1 Commercial black powder is commonly a graphite-glazed grain with a smooth
153	appearance. Some commercial sources of black powder do not appear granular (e.g., fuses,
154	model rocket engines).
155	10.1.2 Pyrodex [®] and Triple Seven [®] powders (trademarked by Hodgdon Powder Co., Inc., in
156	Shawnee, KS) are visually indistinguishable. Both are grey textured heterogeneous grains
157	containing white crystalline material. These products are also manufactured as pellets.
158	10.1.3 Ascorbic acid-based black powder substitutes are commonly brown textured
159	homogenous grains. Some products can be manufactured as pellets (e.g., White Hots®).
160	10.1.4 Comparison of size distributions to reference materials can be performed if
161	sufficient material is present.
162	10.1.5 Pyrotechnic mixtures can be found in a wide variety of colors and morphologies.
163	Metal-containing mixtures, such as flash powders, are commonly grey. Pyrotechnic mixtures
164	can also contain plant-based materials (e.g., wood meal, grain hulls).4-5
165	10.1.5.1 Pyrotechnic stars can contain complex layered mixtures in spherical and
166	cylindrical shapes. ⁴⁻⁵
167	10.1.6 Other commercial and improvised mixtures can have varied appearances and
168	different levels of homogeneity.
169	10.1.6.1 Commonly encountered oxidizers are white crystalline materials.
170	10.1.6.2 When mixed with fuels, the appearance of the mixture can change. For example,
171	a mixture of potassium perchlorate and sugar is white, while a mixture of potassium
172	perchlorate and aluminum is grey.

7

- 173 10.2 If sufficient material is present, an ignition susceptibility test (IST) can aid in
- 174 determining the sensitivity and energetic properties of the mixture.
- 175 10.2.1 Remove a small amount (e.g., matchhead-size) of the mixture for testing. Introduce
- 176 the specimen to a flame and record observations (e.g., smoke, color, sound, odor, residues).
- 177 10.2.2 If no reaction occurs, subject the specimen to prolonged contact with the flame and

178 record observations.

179 10.2.3 Some energetic mixtures will not burn unconfined in an open flame. Mixtures such

180 as these can be lightly confined inside a piece of tissue-like paper and then introduced to a

181 flame.

182 10.2.4 Some mixtures will not ignite when subjected to a flame, even if confined.

183 10.3 The results of the IST can be used to guide specimen preparation and analysis.

184 **11. General Specimen Preparation** ⁵⁻⁷

185 11.1 Separate visually distinct particles, grains, or stars in a specimen unless the mixture is

186 agglomerated, too finely combined, or otherwise inseparable.

187 11.2 If the item is suspected to contain an ignitable liquid, perform an ignitable liquid

188 extraction and analysis on a portion of the material prior to continuing with the analysis for

- 189 oxidizers and other fuels. Refer to Practices E1386, E1388, E1412, and Test Method E1618. If
- 190 the item is suspected of containing vegetable oil, refer to Test Method E2881.
- 191 WARNING Exceeding auto-ignition temperatures of suspected materials during headspace
- 192 extraction could result in a fire.

193	11.3 If other non-solid hydrocarbon-based fuels are suspected, perform a solvent
194	extraction using a suitable non-polar solvent (e.g., pentane or hexane).
195	11.4 Utilize negative controls when performing extractions or concentration of extractions
196	by using equivalent solvent volumes and concentration means.
197	11.5 Chemical and instrumental analyses are performed in any order after specimen
198	preparation.
199	11.5.1 Demonstrate instrument performance for analysis prior to the analysis of
200	specimens. The criteria for instrument performance will vary but can include expected
201	resolution, expected retention/elution times, and expected mass spectra.
202	NOTE – The size of the sample and the use of destructive techniques can affect the
203	order of analyses.
204	11.6 Not all listed analyses are required for identification. Refer to Practice E3253 for
205	minimum requirements.
206	12. Analysis by Chemical Spot Tests
207	12.1 Chemical spot tests are presumptive and used in conjunction with other techniques.
208	NOTE - There are a wide variety of chemical spot tests (or test strips) available for oxidizers
209	and fuels. Refer to spot test references ⁸⁻⁹ for further information.
210	12.2 Prepare and concurrently analyze positive and negative controls in the same manner
211	as the specimen for any spot test.
212	12.3 Record (to include photographs) resulting visual data from the spot test.
213	13. Analysis by PLM

- 13.1 Determine optical crystallographic properties to identify oxidizers and solid fuels.
- 215 Refer to WK86785.
- 216 **14. Analysis by SEM-EDS or XRF**¹⁰⁻¹¹
- 217 14.1 Conduct elemental analysis using either SEM-EDS or XRF.
- 218 14.1.1 Specimens can be ground prior to analysis or analyzed as received, depending on the
- 219 type and amount of material submitted.
- 220 **WARNING** Vigorous grinding can result in the initiation of some mixtures.
- 221 14.1.2 Extraction and separation techniques can be used to isolate components of a
- 222 mixture.
- 223 14.2 Prepare specimens for SEM-EDS or XRF analysis using supplies recommended by the
- instrument manufacturer that do not interfere with anticipated elements.
- 225 14.2.1 Acceptable mounting mediums for SEM-EDS include adhesive conductive tapes,
- 226 metal stubs, and carbon planchets.
- 227 14.2.2 Acceptable mounting mediums for XRF include adhesive conductive tapes, carbon
- 228 planchets, and Mylar[®] support mounts.
- 14.3 Evaluate the resulting spectra to determine that the peak resolution and signal-to-
- 230 noise ratios are sufficient for elemental identification.
- 231 14.4 Identify elements by their characteristic X-ray energies.
- 232 14.5 Record any relevant morphological features of specimen (e.g., cellular structures for
- 233 wood/charcoal, flake v. spherical metal fuels).
- **15.** Analysis by XRD ¹²⁻¹³

- 235 15.1 Prepare specimens for XRD analysis by carefully grinding a portion using a mortar
- and pestle. Some fine powders do not require grinding.
- 237 **WARNING** Vigorous grinding can result in the initiation of some mixtures.
- 238 15.2 Evaluate the resulting pattern to determine that the peak resolution and signal-to-
- 239 noise ratios are sufficient for identification.
- 240 15.2.1 Complex mixtures can result in peak overlap. Extraction and separation techniques
- 241 can simplify diffraction patterns and aid in identification.
- 242 15.2.2 Extract sulfur with toluene, or other solvents of similar polarity, and dry before
- 243 further analysis.
- 244 15.2.3 To isolate water insoluble materials, rinse the specimen with distilled or deionized
- 245 water and dry the remaining material before further analysis. Warm or hot water can facilitate
- 246 the separation of the water soluble material from the water insoluble material.
- 15.3 Compare specimen to patterns of known materials or reference library patterns forthe purpose of identification.
- 249 **16.** Analysis by FTIR or Raman Spectroscopy ^{10, 14-19}
- 250 16.1 Analyze specimens spectroscopically by FTIR or Raman.
- 251 WARNING When using Raman spectroscopy, heat is generated within a specimen, notably
- with dark-colored materials or particles, and can cause specimen initiation.
- 253 16.1.1 Mixtures can result in peak overlap. Extraction (e.g., using water to remove
- inorganic oxidizers) and separation techniques (e.g., sieves) can simplify spectra and aid in
- 255 identification.

256	16.2 Spectral information can be limited by instrumental conditions (e.g., scan range
257	based on IR window material and ATR crystal) or chemical composition (e.g., distinguishing
258	some nitrate salts).
259	16.3 Evaluate the resulting spectra to determine that the peak resolution and signal-to-
260	noise ratios are sufficient for identification.
261	16.4 Compare specimen to spectra of known materials or reference library spectra for
262	the purpose of identification.
263	17. Analysis by Chromatography Techniques
264	17.1 Prepare and concurrently analyze negative controls in the same manner as the
265	specimen for any analysis utilizing chromatography with an extraction.
266	17.2 Prepare and concurrently analyze reference materials for any analysis utilizing
267	chromatography.
268	17.3 Evaluate resulting chromatograms to determine if retention/elution times, peal
269	resolution, and signal-to-noise ratios are sufficient for identification.
270	17.4 Compare specimen to chromatograms/mass spectra of reference material or
271	reference library spectra.
272	17.5 Analysis by GC or GC-MS ¹⁶
273	17.5.1 If indicated visually or by other analyses, extract sulfur with toluene or other
274	solvents of similar polarity and filter or centrifuge before further analysis. ²⁰

- 275 17.5.2 Extract additives such as sodium benzoate, dicyandiamide, and ascorbic acid
- with methanol or ethanol and filter or centrifuge before further analysis.²¹ Some organic fuels
- 277 (e.g., sugars) require derivatization prior to analysis by GC.²²
- 278 17.5.3 Use a high temperature GC for extracts that could contain semi-solid fuels or
- liquids with a high boiling point.
- 280 17.6 Analysis by LC or LC-MS ^{16, 23-24}
- 281 17.6.1 Extract additives such as sodium benzoate, dicyandiamide, ascorbic acid, and
- some organic fuels (e.g., sugars) with deionized water and filter or centrifuge before further
- analysis.
- 284 **NOTE:** Some ions will degrade in water. For example, ascorbic acid will degrade into threonic
- acid, monohydrated diketogulonic acid, and oxalic acid.
- 286 17.6.2 Do not analyze semi-solid fuels and ignitable liquids by LC.
- 287 17.7 Analysis by IC or IC-MS or CE ²⁵⁻²⁸
- 288 17.7.1 Extract oxidizer salts, additives such as sodium benzoate, ascorbic acid, and
- some organic fuels (e.g., sugars) with deionized water and filter or centrifuge before further
- analysis. Analyze the resulting extract for cations and anions.
- 291 **NOTE:** Some ions will degrade in water. For example, ascorbic acid will degrade into threonic
- acid, monohydrated diketogulonic acid, and oxalic acid.
- 293 17.7.1.1 Benzoate ions are detected in products such as Pyrodex[®] and Triple Seven[®].
- 294 17.7.2 Do not analyze semi-solid fuels and ignitable liquids by IC or CE.
- 295 **18. Identification Criteria**

29618.1Refer to Practice E3253 for the identification requirements.

19. Documentation

- 298 19.1 Retain all notes and supporting analytical data used for an identification in
- accordance with Practices E620 and E3255. Examples of such data include
- 300 chromatograms/spectra, photographs/photocopies of results, and detailed descriptions.
- 301 19.2 Record case notes in sufficient detail such that an independent analyst could
- 302 understand and evaluate all the work performed, interpret the data, and form an opinion.
- 303 19.3 Report results in accordance with Practice E620 and WK73484.
- **20. Keywords**
- 305 Explosives; fuel and oxidizer mixtures

21. References

- Chemistry of Powder and Explosives, Volumes I and II, Davis, T. L., John Wiley and Sons
 Inc., New York.
- 309 2. Encyclopedia of Explosives and Related Items, Vol. 1. Fedoroff, B. T., Aaronson,
- 310 H.A., Reese, E.F., Sheffield, O.E., Clift, G.D., 1960. PATR 2700. Picatinny Arsenal, Dover, NJ
- 311 (vols. 2–10, different authors and years of publication).
- 3. 3. Military and Civilian Pyrotechnics. 1968 Ellern, H., Chemical Publishing Company Inc.,
 New York.
- 4. Chemistry of Pyrotechnics Basic Principles and Theory, Conkling, J. A., CRC Press, Taylor
- 315 and Francis Group LLC.

316	5.	Martin-Alberca, C., and Garcia-Ruiz, C., "Analytical techniques for the analysis of
317		consumer fireworks." TrAC 2014; 56:27-36.
318	6.	Forensic Investigation of Explosions. Second Edition 2012. Beveridge, A. CRC Press, Boca
319		Raton, FL.
320	7.	Forensic Analysis of Fire Debris and Explosives. Editors, Evans-Nguyen, K., and Hutches,
321		K., Springer Nature Switzerland AG, 2019.
322	8.	Spot Tests for Explosives and Explosive Residues. Lange, N. A. Handbook of Chemistry.
323		10th edition 1971. McGraw Hill.
324	9.	Spot Tests in Inorganic Analysis. 6th Edition, Feigl, F., and Anger, V., 1972, Elsevier
325		Science.
326	10	Castro, K., Fdez-Ortiz de Vallejuelo, S., Astondoa, I., Goñi, F. M., and Madariaga, J. M.,
327		"Analysis of confiscated fireworks using Raman spectroscopy assisted with SEM-EDS and
328		FTIR." Journal of Raman Spectroscopy, 2011; Vol 42: Issue 11, pages 2000-2005.
329	11.	Dean, W. L., "Examination of fire debris for flare (fusee) residues by energy dispersive X-
330		ray spectrometry." In: Proceedings of the international association of forensic sciences,
331		Oxford, 1984.
332	12.	Sullenger, D. B., Cantrell, J.S., and Beiter, T. A., "X-ray Powder Diffraction Patterns of
333		Energetic Materials; Powder Diffraction 1994, 9(1) 2-14.
334	13.	Eckardt, R., DiplMin., Krupicka, E., Hofmeister, W., "Validation of Powder X-Ray
335		Diffraction Following EN ISO/IEC 17025." Journal of Forensic Sciences, 2012, Vol.57 No.
336		3: 722-737.

337	14. Pristera, F., Halik, M., Castelli, A., and Fredericks, W., "Analysis of explosives using
338	infrared spectroscopy." Analytical Chemistry 1960 32(4), 495–508.
339	15. Hodges, C. M., and Akhavan, J. The Use of Fourier Transform Raman Spectroscopy in the
340	Forensic Identification of Illicit Drugs and Explosives; Spectrochim. Acta 1990, 46A(2)
341	303-307.
342	16. Zitrin, S. Analysis of Explosives by Infrared Spectrometry and Mass Spectrometry; in:
343	Forensic Invest. Explos. Beveridge, A.D Ed. London, Taylor & amp; Francis 1998 pp.
344	231- 265.
345	17. Lopez-Lopez, M., and Garcia-Ruiz, C., "Infrared and Raman spectroscopy techniques
346	applied to identification of explosives." TrAC 2014; 54:36-44.
347	18. He, N., Ni, Y., Teng, J., Li, H., Yao, L., and Zhao, P. "Identification of inorganic oxidizing
348	salts in homemade explosives using Fourier transform infrared spectroscopy."
349	Spectrochimica Acta Part A: Molecular and Biomolecular Spectroscopy 2019;
350	221:117164 https://www.sciencedirect.com/science/article/pii/S1386142519305542
351	19. Diaz, D. & amp; Hahn, D. (2020). Raman spectroscopy for detection of ammonium nitrate
352	as an explosive precursor used in improvised explosive devices. Spectrochimica Acta
353	Part A: Molecular and Biomolecular Spectroscopy, 233, 118204.
354	https://doi.org/10.1016/j.saa.2020.118204.
355	20. Bradley, K. S., "Determination of elemental sulfur in explosives and explosive residues
356	by gas chromatography-mass spectrometry." J Forensic Sci. 2005 Jan; 50(1):96-103.
357	21. Goodpaster, J. V., and Keto, R. O., "Identification of Ascorbic Acid and Its Degradation
358	Products in Black Powder Substitutes." J Forensic Sci, shal 2004, Vol. 49, No. 3.

359	22. Nowicki, J., and Pauling, S., "Identification of Sugars in Explosive Residues by Gas
360	Chromatography-Mass Spectrometry." J Forensic Sciences 1988 Sep; 33(5):1254-1261,
361	September 1988.
362	23. Bender, E.C. The Analysis of Dicyandiamide and Sodium Benzoate in Pyrodex by HPLC;
363	Crime Lab. Dig. 1989, 16(3) 76-77.
364	24. Bottegal, M., Lang, L., Miller, M., and McCord, B. "Analysis of ascorbic acid based black
365	powder substitutes by high-performance liquid chromatography\electrospray ionization
366	quadrupole time-of-flight mass spectrometry." Rapid Commun. Mass Spectrom. 2010;
367	24: 1377-1386.
368	25. McCord, B.R.; Hargadon, K.A.; Hall, K.E. and Burmeister, S.G. Forensic Analysis of
369	Explosives Using Ion Chromatographic Methods; Anal. Chim. Acta 1994, 288(1-2) 43-56
370	March 30.
371	26. Lang, G.H., and Boyle, K.M., "The analysis of black powder substitutes containing
372	ascorbic acid by ion chromatography/mass spectrometry." J Forensic Sci. 2009 Nov;
373	54(6):1315-22.
374	27. McCord, B. R., Hargadon, K. A., Hall, K. E., and Burmeister, S. G., 1994. "Forensic analysis
375	of explosives using ion chromatographic methods." Analytica Chimica Acta 288, 43–56.
376	28. Bezemer, K., van Duin, L., Martin-Alberca, C., Somsen, G., Schoenmakers, P., Haselberg,
377	R., van Asten, A. (2019). Rapid forensic chemical classification of confiscated flash
378	banger fireworks using capillary electrophoresis. Forensic Chemistry, 16, 100187.
379	https://doi.org/10.1016/j.forc.2019.100187