## Approaches to Component Reliability in IEC Standards Development

NIST/UL Workshop on Photovoltaic Materials Durability

December 13, 2019

**Nancy Phillips** 



#### **Problem statement:**

- Significant issues with degradation of polymeric materials observed with fielded modules
  - 61215/61730 testing does not address this issue well

Recognized:

- Stress test methods not well established for very long durability analysis, relevant to target service life
- Multi-stress exposures (sequential or combi) are missing
- Some analyses better done at component level
- Already too many test requirements...
- Not enough known to select one "right" test set



Inner/Outer Layer Yellowing



Outer Layer Cracking/Delam



#### **Core Qualification Standards:**

- IEC 61730 PV module safety qualification
- IEC 61215 PV modules Design qualification and type approval



## **IEC 61730 Stress Testing**



< DUPONT >

• Minimum BDVdc

## **Backsheet Defects in High Desert, SW USA**

#### Total installation – single model number

- 100% BS cracking type A
- 100% BS cracking type B
- BS inner layer cracking type C
  - ~5% exhibited severe busbar corrosion
  - instances of electrical fires
- No obvious BS defects type D
- Encapsulant browning all modules







#### **Core Qualification Standards:**

- IEC 61730 PV module safety qualification
- IEC 61215 PV modules Design qualification and type approval

#### Adding Component Testing:

#### IEC 62788 Series: Measurement procedures for materials used in photovoltaic modules

- 62788-1: Encapsulants
- 62788-2: Frontsheets and Backsheets
- 62788-5: Edge Seals
- 62788-7: Stress exposures

#### Components:

- IEC 62790 Junction Boxes for PV modules
- IEC 62852 Connectors for DC-application in PV systems
- IEC 62930 Electric cables for PV systems.

## Post-stress evaluations in 62788-2 (Frontsheets/Backsheets)

| UCF<br>No. | Test Methods                                                                                                   | Component<br>evaluation                  | Package evaluation                   | Fresh          | 1 000 h DH<br>test | 2 000 h UV (Xenon)<br>exposure (4.10.3) |                                 |
|------------|----------------------------------------------------------------------------------------------------------------|------------------------------------------|--------------------------------------|----------------|--------------------|-----------------------------------------|---------------------------------|
|            |                                                                                                                | <u>C</u> oupon<br><u>F</u> iltered Sheet | Minimodule                           |                | (4.10.2)           | air side <sup>a</sup>                   | sun-facing<br>side <sup>b</sup> |
| 3          | Tensile strength [MPa] (MD)                                                                                    | _                                        |                                      | ✓              | ✓                  | ✓                                       | ✓                               |
| 5          | Tensile strength [MPa] (TD)                                                                                    | - S E                                    | ΝΔ                                   | ✓              | ✓                  | 0                                       | 0                               |
| А          | Elongation at break [%] (MD)                                                                                   |                                          | NA                                   | ✓              | ✓                  | ✓                                       | ✓                               |
| -          | Elongation at break [%] (TD)                                                                                   |                                          |                                      | ✓              | ✓                  | 0                                       | 0                               |
| 5          | Bond strength between layers of composition – or weakest link [N/mm] (for peelable layers)                     | S,F                                      | NA                                   | $\checkmark$   | ✓                  | 0                                       | 0                               |
| 6          | Bond strength between coatings or thin layers and film [rating scale] (for layers too thin or brittle to peel) | S,F                                      | NA                                   | $\checkmark$   | ✓                  | 0                                       | -                               |
| 7          | Bond strength between a specific encapsulant and sheet [N/mm]                                                  | С                                        | Coupon (BS/E)<br>Minimodule (E/Cell) | 0              | 0                  | 0                                       | 0                               |
| 8          | Bond strength between a specific JBox adhesive and BS (N/mm)                                                   |                                          | Refer to IEC 62790                   | 0              | IEC 62790          | _                                       | -                               |
| 12         | dc breakdown voltage [kV]                                                                                      |                                          |                                      | $\checkmark$   | 0                  | 0                                       | 0                               |
| 15         | Visual inspection                                                                                              |                                          |                                      | $\checkmark$   | ✓                  | $\checkmark$                            | ✓                               |
| 16         | Solar transmittance (for transmittive sheet only)                                                              |                                          |                                      | ✓              | 0                  | 0                                       | 0                               |
| 17         | Solar reflectance c(for reflective sheets only)                                                                |                                          |                                      | ✓ (sun-facing) | O (sun-<br>facing) | -                                       | 0                               |
| 18         | Yellowness index DYI c                                                                                         |                                          |                                      | 0              | 0                  | 0                                       | 0                               |
| 19         | CIE L*a*b* (D65/10°) c                                                                                         |                                          |                                      | 0              | 0                  | 0                                       | 0                               |
| 20         | Specular gloss c                                                                                               |                                          |                                      | 0              | 0                  | 0                                       | 0                               |



#### **Core Qualification Standards:**

- IEC 61215 PV modules Design qualification and type approval
- IEC 61730 PV module safety qualification

#### IEC 61730 AMD1

- Will include requirements for component pre-qualifications:
  - IEC 62788-2-1 Safety Requirements for Frontsheets and backsheets
  - IEC 62790 Junction Boxes for PV modules
  - IEC 62852 Connectors for DC-application in PV systems
  - IEC 62930 Electric cables for PV systems).







No significant change in tensile strength after oven aging



TD Strain at Break (%) as a function of hrs at 120C



## Alignment pre-CD 62788-2-1 with 61730-1 & -2

Update figure with layer stack schematics from 61730-1 AM1

Backsheet constructions and Relied-Upon Insulation (RUI)



Jürgen Jung / TC82 WG2 @ Mississauga / Ontario

2019-10-29

6



## IEC 62788-2-1 Safety Requirements, Frontsheets and Backsheets Test Matrix

| No.     | Test name                                                               | Clause | final<br>product<br>(unexposed) | 1000 h DH<br>test<br>clause 5.9.2<br>FBST 08 | 2000 h UV<br>test<br>clause 5.9.3<br>FBST 09 |
|---------|-------------------------------------------------------------------------|--------|---------------------------------|----------------------------------------------|----------------------------------------------|
| FBST 01 | Visual inspection                                                       | 5.2    | YES (r, s)                      | YES                                          | YES                                          |
| FBST 02 | Dimensions and tolerances [µm]                                          | 5.3    | YES (r, s)                      | -                                            | -                                            |
| FBST 03 | Distance through insulation [µm]                                        | 5.4    | YES                             | -                                            | _                                            |
| FBST 04 | TI or RTE (RTI) [°C] and thermal<br>failsafe test (Elongation at break) | 5.5    | YES*                            | -                                            | -                                            |
| FBST 05 | CTI test                                                                | 5.6    | YES                             | -                                            | -                                            |
| FBST 06 | DC breakdown voltage                                                    | 5.7    | YES (s)                         | YES                                          | YES                                          |
| FBST 07 | Tensile strength [MPa]                                                  | 5.8    | YES (s)                         | YES                                          | YES                                          |
| FBST 07 | Elongation at break [%]                                                 | 5.8    | YES (s)                         | YES                                          | YES                                          |

Note:

)\* For FBST 04, tests are conducted on single layers, not on final product.



#### **Core Qualification Standards:**

- IEC 61215 PV modules Design qualification and type approval
- IEC 61730 PV module safety qualification

#### IEC 61730 AMD1

- Will include requirements for component pre-qualifications:
  - IEC 62788-2-1 Safety Requirements for Frontsheets and backsheets
  - IEC 62790 Junction Boxes for PV modules
  - IEC 62852 Connectors for DC-application in PV systems
  - IEC 62930 Electric cables for PV systems).

#### **Beyond qualification**

- **IEC 63126**: Testing for High T applications
- **IEC 63209**: Extended testing of PV module for risk analysis
  - Part 1: Modules



## **IEC 63126: Testing for High T Applications**

|                                                      |        | Original Requirement            | Proposal - Level 1                         | Proposal - Level 2                                  |                                    |
|------------------------------------------------------|--------|---------------------------------|--------------------------------------------|-----------------------------------------------------|------------------------------------|
| Standard Test Ref Test Name                          |        | T 98% = 70 °C or less           | <i>T</i> <sub>98%</sub> > 70 °C to ≤ 80 °C | $T_{98\%} > 80 \ ^{\circ}C \ to \le 90 \ ^{\circ}C$ |                                    |
|                                                      |        |                                 |                                            |                                                     |                                    |
| IEC 61215                                            |        | Hot-spot endurance test         | (50 ± 10) °C                               | +10 °C, (60 ± 10) °C                                | +20 °C, (70 ± 10) °C               |
|                                                      | MQT 10 | UV preconditioning              | (60 ± 5) °C                                | +10 °C, (70 ± 5) °C                                 | +20 °C, (80 ± 5) °C                |
|                                                      | MQT 11 | Thermal cycling test            | (85 ± 2) °C                                | +10 °C, (95 ± 2) °C                                 | +20 °C, (105 ± 2) °C               |
|                                                      | MQT 18 | Bypass diode testing chamber    | (75 ± 2) °C                                | +15 °C, (90 ± 2) °C                                 | +25 °C, (100 ± 2) °C               |
|                                                      |        | Part 1                          | Isc                                        | 1.15 * I <sub>SC</sub> for diode T                  | 1.15 * I <sub>sc</sub> for diode T |
|                                                      |        | Part 2                          | 1.25 * <i>I</i> <sub>SC</sub>              | 1.4 * I <sub>SC</sub> for stress                    | 1.4 * I <sub>SC</sub> for stress   |
| IEC 61730                                            |        | RTI/RTE/TI                      | min RTI 90 °C                              | min RTI 100°C                                       | min RTI 110 °C                     |
|                                                      | MST 22 | Hot spot endurance              | (50 ± 10) °C                               | +10 °C, (60 ± 10) °C                                | +20 °C, (70 ± 10) °C               |
| MST 37 Material creep<br>MST 51 Thermal cycle        |        | Material creep test             | 105 °C                                     | no change                                           | 110 °C                             |
|                                                      |        | Thermal cycle                   | (85 ± 2) °C                                | +10 °C, (95 ± 2) °C                                 | +20 °C, (105 ± 2) °C               |
| MST 54 UV test                                       |        | UV test                         | (60 ± 5) °C +10 °C, (70 ± 5) °C            |                                                     | +20 °C, (80 ± 5) °C                |
|                                                      | MST 56 | Dry heat conditioning           | 105 °C                                     | no change                                           | 110 °C                             |
|                                                      |        |                                 |                                            |                                                     |                                    |
| IEC 62788-1-7<br>(encapsulant, performance)          | 8      | Optical durability encapsulants | IEC TS 62788-7-2 (A3 cond.)                | IEC TS 62788-7-2 (A4 c ond.)                        | IEC TS 62788-7-2 (A5 c ond.)       |
| IEC TS 62788-2*<br>(backsheet and frontsheet safety) | 4.10.3 | Weathering (UV) ageing test     | IEC TS 62788-7-2 (A3 cond.)                | IEC TS 62788-7-2 (A4 c ond.)                        | IEC TS 62788-7-2 (A5 c ond.)       |
| IEC 62852                                            |        | Marking, Upper Limit            |                                            |                                                     |                                    |
| 120 02002                                            |        | Temperature (ULT)               | no requirement                             | 95 °C                                               | 105 °C                             |
| IEC 62790                                            |        | Range of temperature (upper     |                                            |                                                     |                                    |
| IEC 02/90                                            |        | ambient temperature)            | no requirement                             | 95 °C                                               | 105 °C                             |

## 63209 Extended testing of PV module for risk analysis Part 1 – Modules

|                                                                                                    | [                                                                       | 5.2 Physical m                                                                   | neasurement                                                                                  |                                                                                                                                                   |  |  |  |  |  |
|----------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------|----------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------|--|--|--|--|--|
|                                                                                                    |                                                                         | 5.3 Visual inspection                                                            | – IEC 61215 MQT 01                                                                           |                                                                                                                                                   |  |  |  |  |  |
| 5.4 Initial stabilization – IEC 61215 MQT 19.1<br>5.5 Performance at STC – IEC 61215 MQT 06.1 & 07 |                                                                         |                                                                                  |                                                                                              | There is a general consensus that for extended UV exposure                                                                                        |  |  |  |  |  |
|                                                                                                    |                                                                         |                                                                                  |                                                                                              | It is more practical to test at the component or mini-module<br>level than with full size modules. Users of extended test data                    |  |  |  |  |  |
|                                                                                                    |                                                                         | 5.6 Insulation test –                                                            | IEC 61215 MQT 03                                                                             | are encouraged to use extended coupon or mini-module tests                                                                                        |  |  |  |  |  |
|                                                                                                    |                                                                         | 5.7 Wet leakage test -                                                           | - IEC 61215 MQT 15                                                                           | to evaluate individual polymer components, and specific                                                                                           |  |  |  |  |  |
|                                                                                                    | [                                                                       | 5.8 EL imaging – IEC 60                                                          | 0904-13 ( <u>lsc</u> , 0.1X <u>lsc</u> )                                                     | combinations of polymeric components                                                                                                              |  |  |  |  |  |
|                                                                                                    |                                                                         | 5.9 Insulation thickness te                                                      | est – IEC 61730 MST 04*                                                                      |                                                                                                                                                   |  |  |  |  |  |
| 6.3 Sequence 1                                                                                     | 6.4 Sequence 2                                                          | 6.5 Sequence 3a<br>(UV on front)                                                 | 6.6 Sequence 3b<br>(UV on back)                                                              | 6.7 Sequence 4 6.8 Sequence 5                                                                                                                     |  |  |  |  |  |
| Thermal cycling<br>(200 cycles)<br>MQT 11<br>0119.206.1/70315 EL                                   | Static load<br>MQT 16<br>0119.206.1/70315EL                             | Damp heat (200 h)<br>MQT 13<br>01<br>UV (60 kWh/m <sup>2</sup> )                 | Damp heat (200 h)<br>MQT 13<br>01<br>UV (60 kWh/m²)                                          | Damp heat<br>(1000 h)<br>MQT 13         PID (+ and/or -)<br>(96 h)<br>IEC 62804           01 19.2 06.1/7 03 15 EL         01 19.2 06.1/7 03 15 EL |  |  |  |  |  |
| Thermal cycling<br>(200 cycles)                                                                    | Cyclic load<br>1000 X @ 1000 Pa<br>IEC 62782<br>01 19.2 06.1/7 03 15 EL | MQT 10MQT 100101Humidity Freeze<br>(10 X) MQT 12Humidity Freeze<br>(10 X) MQT 12 | Damp heat<br>(1000 h)         PID (+ and/or -)<br>(96 h)           MOT 12         USE C 2004 |                                                                                                                                                   |  |  |  |  |  |
| MQT 11<br>0119.206.1/70315EL                                                                       |                                                                         |                                                                                  | (10 X) MQT 12                                                                                | 0119.206.1/70315EL 0119.206.1/70315EL                                                                                                             |  |  |  |  |  |
| Thermal cycling                                                                                    | Thermal cycling                                                         | 0119.206.1/7 0315EL                                                              | 0119.206.1/7 0315EL                                                                          |                                                                                                                                                   |  |  |  |  |  |
| (200 cycles)                                                                                       | MQT 11                                                                  | 00 (60 kWh/m2)<br>MQT 10                                                         | UV (60 kWh/m2)<br>MQT 10                                                                     |                                                                                                                                                   |  |  |  |  |  |
|                                                                                                    | 0119.206.1/70315EL                                                      | 01                                                                               | 01                                                                                           | Optionally, the items in                                                                                                                          |  |  |  |  |  |
| 0113200.177031311                                                                                  | Humidity Freeze<br>(10 X) MQT 12                                        | Thermal cycle<br>(200 X) MQT 11                                                  | Thermal cycle<br>(200 X) MQT 11                                                              | red may be repeated                                                                                                                               |  |  |  |  |  |
|                                                                                                    | 0119.206.1/70315EL                                                      | 0119.206.1/70315ELIT                                                             | 0119.206.1/70315ELIT                                                                         |                                                                                                                                                   |  |  |  |  |  |



#### IEC 63209 Part 2: Durability characterization of polymeric component materials and packaging sets

Data for risk analysis some combination of test data from:

A.Component specific testing

B.BOM specific coupon testing

C.Minimodule AND/OR "structured coupon" testing

#### All possible tests for all different specimens is too much!

> Need to determine a set which allows for good analysis

#### < DUPONT >

## Considerations



## I. Component level testing

- Utilizes test methods established in 62788 series (and Jbox,Connectors and Cables standards)
- Evaluation tests and specimen designs described in standards
- UV Stress exposures from 62788-7-2
  - Longer exposures to be included

|                              |                                                                                                                                                   | polymeric frontsheet     | /backsheet     | encapsulant                  |                                                                          |  |  |  |  |
|------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------|----------------|------------------------------|--------------------------------------------------------------------------|--|--|--|--|
| stress:                      | DH UV front (A3)                                                                                                                                  |                          | UV back (A3)   | DH                           | UV                                                                       |  |  |  |  |
| duration                     | 1000 h 2000 h, 4000 h<br>Optional: additional<br>increments of 4000 h, up to<br>16000 h                                                           |                          | 2000 h, 4000 h | 1000 h                       | 4000 h<br>Optional: additional<br>increments of 4000 h, up to<br>16000 h |  |  |  |  |
| targeted<br>failure<br>modes | <ul> <li>changes to key materials properties (potential early indicators);</li> <li>maintenance of key properties above minimum values</li> </ul> |                          |                |                              |                                                                          |  |  |  |  |
| tests:                       | - color<br>- tensile<br>- Vdc BDV (d<br>- adhesion y                                                                                              | opt)<br>within the BS/FS |                | - transmissi<br>- adhesion t | on<br>o glass                                                            |  |  |  |  |



Test duration - Place holder for discussions



## II – Polymeric packaging materials (specific BOM)

| stress:                      | DH                                                        | UV front (A3)                                                                                                            | UV back (A3) | Frontside Sequential                             | Backside Sequential                                                               | Adding combination stress |  |
|------------------------------|-----------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------|--------------|--------------------------------------------------|-----------------------------------------------------------------------------------|---------------------------|--|
| duration                     | 1000 h                                                    | 2000 h, 4000 h2000 hSequential TesOptional: additional4000 hw/ long UV exincrements of 4000 h, upto 16000 hw/ long UV ex |              | Sequential Testing (TBD)<br>w/ long UV exposure) | Sequential Testing, including<br>UV, DH, TC - suggest MAST =<br>DH/UV/TC/UV/TC/UV |                           |  |
| targeted<br>failure<br>modes | - loss of ad<br>- changes                                 | hesion<br>in key material properties                                                                                     |              |                                                  |                                                                                   |                           |  |
| tests:                       | - visual ( c<br>- adhesior<br>- glass<br>- enca<br>- othe | olor, delam)<br>1<br>to encapsulant<br>psulant to backsheet<br>er?                                                       |              |                                                  |                                                                                   |                           |  |

Place holder for discussions:

- Exposure duration
- Sequential testing -





# III – Minimodules (specific BOM)

|          | Materials stack w/ cells/wiring              |                                 |                                                                     |  |  |  |  |  |
|----------|----------------------------------------------|---------------------------------|---------------------------------------------------------------------|--|--|--|--|--|
| stress:  | DH                                           | Frontside Sequential<br>Testing | Backside Sequential Testing, including<br>UV. DH. TC - suggest MAST |  |  |  |  |  |
|          |                                              |                                 |                                                                     |  |  |  |  |  |
| duration | 1000h                                        | TBD, include long UV            | DH 1000                                                             |  |  |  |  |  |
|          |                                              | exposure                        | UV1000                                                              |  |  |  |  |  |
|          |                                              |                                 | 3 x (TC200 + UV1000)                                                |  |  |  |  |  |
| targeted | delamination                                 |                                 |                                                                     |  |  |  |  |  |
| failure  | backsheet cracks                             |                                 |                                                                     |  |  |  |  |  |
| modes    |                                              |                                 |                                                                     |  |  |  |  |  |
| tests:   | visual (color, cracks, delamination bubbles) |                                 |                                                                     |  |  |  |  |  |
|          | power output                                 |                                 |                                                                     |  |  |  |  |  |
|          | ?                                            |                                 |                                                                     |  |  |  |  |  |
|          |                                              |                                 |                                                                     |  |  |  |  |  |

Adding stresses:

- 3D structure
- Voltage





## Anticipated: multi-step approach

- Multiple components, multiple module designs can be considered not all at once
  - > Expect this may take multiple Parts
- ✤Path forward:
  - 1. Review of 62788 Series, Jbox, Connector and Cable standards
  - Consolidate exposures and testing into one document for "Risk Analysis" with 63209-1 data
  - Consider extended sequences
  - Consider new sequences (if easily agreed)
  - 2. Project Team to identify biggest gaps, and focus efforts; options:
    - Combined stress sequences
    - Adhesion testing
    - BOM-specific testing
    - Consider extended sequences
  - 3. Parallel test plans to help identify useful combinations of testing

## **Test Plan Sets**

|           |                        | Solder Bump Coupon |             | Flat Coupon |                   |                   | 63209 front-                | 63209 back |
|-----------|------------------------|--------------------|-------------|-------------|-------------------|-------------------|-----------------------------|------------|
|           |                        | A3 expo            | osures + TC | A           | 3 exposure        | s                 | side seq                    | side seq   |
|           |                        | FS                 |             |             |                   |                   |                             | full size  |
|           | specimen               | coupon+            | BS coupon+  | FS laminate | FS trm            | BS film           | 1-cell m-mod                | modules    |
|           | mat'l orientation      | MD                 | MD and TD   |             | TD only           |                   | MD (aligned to ribbon dir.) |            |
|           | Post-stress test       | visual visual      |             | visual      | visual<br>tensile | visual<br>tensile | visual                      | visual     |
| <u>BS</u> | prior observations     |                    |             |             |                   |                   |                             |            |
|           | front side cracking    |                    |             |             |                   |                   |                             |            |
| PET1      | reduction of %E        | X                  | x           | x           | X                 | X                 | X                           | Z          |
| PET2      | yellowing, fs cracking | X                  | x           | x           | X                 | X                 | x                           |            |
| PVDF1     | back side cracking     | X                  | x           |             | X                 | X                 |                             |            |
| PVDF2     | back side cracking     | X                  | х           |             | X                 | х                 |                             | x          |
| PVDF3     | unknown                | x                  | х           |             | Х                 | х                 |                             |            |
| ТРТ       | known good             | X                  | х           | x           | Х                 | х                 | x                           |            |
| TPE       | known good             |                    |             |             |                   |                   |                             | х          |
| AAA       | fs and bs cracking     | X                  | X           | X           | X                 | Х                 | X                           | x          |
| FEVE      | front side cracking    | x                  |             |             |                   |                   | x                           |            |





Copyright © 2019 DuPont. All rights reserved. DuPont<sup>™</sup> and the DuPont Oval Logo are trademarks or registered trademarks of DuPont or its affiliates.

Nothing contained herein shall be construed as a representation that any recommendations, use or resale of the product or process described herein is permitted and complies with the rules or regulations of any countries, regions, localities, etc., or does not infringe upon patents or other intellectual property rights of third parties.

The information provided herein is based on data DuPont believes to be reliable, to the best of its knowledge and is provided at the request of and without charge to our customers. Accordingly, DuPont does not guarantee or warrant such information and assumes no liability for its use. If this product literature is translated, the original English version will control and DuPont hereby disclaims responsibility for any errors caused by translation. This document is subject to change without further notice.