Substrate Effects in EUV Photoresist Patterning
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EUV light sources with current resists require longer exposure time than existing ArF photon sources. Metal
containing photoresists have attracted considerable attention recently due to their high absorption cross section, as
well as their small cluster size which improves both sensitivity and resolution. Understanding how the underlayer
affects the triggering of chemical changes in the photoresist and the bonding at interfaces, will allow a design of an
optimal underlayer. Helium ion beam lithography can be used as an efficient proxy for photons or electrons in lab
studies to evaluate new resists and patterning properties.
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e Explore the effect of substrates with different electron emission cross section by in situ chemical analysis. show similar contrast.
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le Determine optimal resist-underlayer interactions. |
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le Detail a non-destructive analytical protocol to prescreen novel EUVL resists.

FT-IR analysis for bonds at interface.
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Line-Space pattern evaluation on different substrates.
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