Full-scale Wind-Driven Fire-Spread Experiments on Woodpiles

NIST WUI DAYS 2023 – Session 3.8 November 15, 2023

Rik Johnsson and Kathy Butler

with Marco Fernandez, Shonali Nazare, Wei Tang, Mariusz Zarzecki, Will Saar, Phil Deardorff, Mike Selepak, & Stephen Fink

National Institute of Standards and Technology

NIST Technical Note NIST TN 2251

Wind-Driven Fire Spread to a Structure from Firewood Piles

Erik L. Johnsson Kathryn M. Butler Marco Fernandez Mariusz Zarzecki Wei Tang Shonali Nazare Daniel Barrett Michael Pryor Alexander Maranghides

This publication is available free of charge from: https://doi.org/10.6028/NIST.TN.2251

Outline

- Introduction
- Experimental Design
- Results
- Key Findings
- Mitigation
- Recommendations & Future Work

Introduction

4

Introduction – How Does Fire Spread in the WUI?

- Direct Flame Contact
- Radiation
- Firebrands (Embers)
 - "Spot Fires"
 - Vegetation
 - Combustible objects
 - Structure-to-structure
 - ->50 % of ignitions

Introduction – WUI Fire Case Studies – NIST Collaborations

NIST Technical Note 1909

2011 Wildland Urban Interface Amarillo Fires Report #2 – Assessment of Fire Behavior and WUI **Measurement Science**

> Alexander Maranghides Derek McNamar http://dx.doi.org/10.6028/NIST.TN.1909

NIST Technical Note **NIST TN 2252**

A Case Study of the Camp Fire Notification, Evacuation, Traffic, and

Temporary Refuge Areas (NETTRA)

Alexander Maranghide Eric D. Link William "Ruddy" Mell Steven Hawks Christopher Brown William D. Walton

This publication is available free of charge fron https://doi.org/10.6028/NIST.TN.2252

NIST Technical Note 1708

Alexander Maranghides

William Mell

Karen Ridenour

Derek McNamara

Initial Reconnaissance of the 2011 Wildland-Urban Interface Fires in Amarillo, Texas

NGST National Institute of Standards and Technology • U.S. Department of Commerce

NIST Technical Note 2135

A Case Study of the Camp Fire -**Fire Progression Timeline**

> Alexander Maranghides Eric Link William "Ruddy" Mell (USFS) Steven Hawks (CAL FIRE) Mike Wilson (CAL FIRE) Will Brewer (CAL FIRE) Chris Brown Bob Vihnaneck (University of Washington)

William D. Walton (University of Maryland)

This publication is available free of charge from https://doi.org/10.6028/NIST.TN.2135

Camp Fire 2018, CA

Amarillo fires

2011, TX

Witch-Guejito fires

2007, CA

6

NIST Technical Note 1796

A Case Study of a Community Affected by the Witch and Guejito Fires: Report #2 - Evaluating the Effects of Hazard Mitigation Actions on Structure Ignitions

> Alexander Maranghides Derek McNamara William Mell Jason Trook Blaza Toman

> > National Institute of ndards and Technology

U.S. Department of Cor

NIST Technical Note 1635

A Case Study of a Community Affected by the Witch and Gueiito Fires

> Alexander Maranghides William Mell

National Institute of Standards and Technology • U.S. Department of Commerce

NIST Technical Note 1910

A Case Study of a Community Affected by the Waldo Fire - Event Timeline and Defensive Actions

> Alexander Maranghide Derek McNamara Robert Vihnanel Joseph Restaine

Carrie Lelano

National Institute of Standards and Technology • U.S. Department of Commerce

Waldo Canyon fire 2012, CO

Introduction - Structure Vulnerabilities NGT STANDARDS AND TECHNOLOGY

- From WUI Fire Case Studies
- Both Flame Spread + Firebrand Ignition/Generation
 - Structural Components
 - Roofs, attic vents, siding, eaves etc.
 - Attached Combustibles
 - Decks and projections
 - Detached Combustibles...

Introduction - Structure Vulnerabilities NG

- Detached Combustibles
 - Mulch beds / ground cover
 - Fences
 - Woodpiles
 - Landscape timbers, railroad ties, and retaining walls - Sheds, gazebos, playsets, furniture, etc.

NIST Technical Note NIST TN 2228

Wind-Driven Fire Spread to a **Structure from Fences and Mulch**

Primary Authors: Kathryn M. Butler and Erik L. Johnsson

Alexander Maranghides Shonali Nazare Marco Fernandez Mariusz Zarzecki Wei Tang Eric Auth Rachel McIntyre Michael Pryor William Saar Colin McLaughlin

This publication is available free of charge from: https://doi.org/10.6028/NIST.TN.2228-upd1

Introduction – Firewood Piles as Pathways for Fire Spread

- Provide a pathway for direct flame spread to adjacent combustibles
- Act as sources of firebrands
- Use firefighter resources
 - Deep-seated fires in piles and within logs
 - Require a lot of water
 - Require spreading the pile

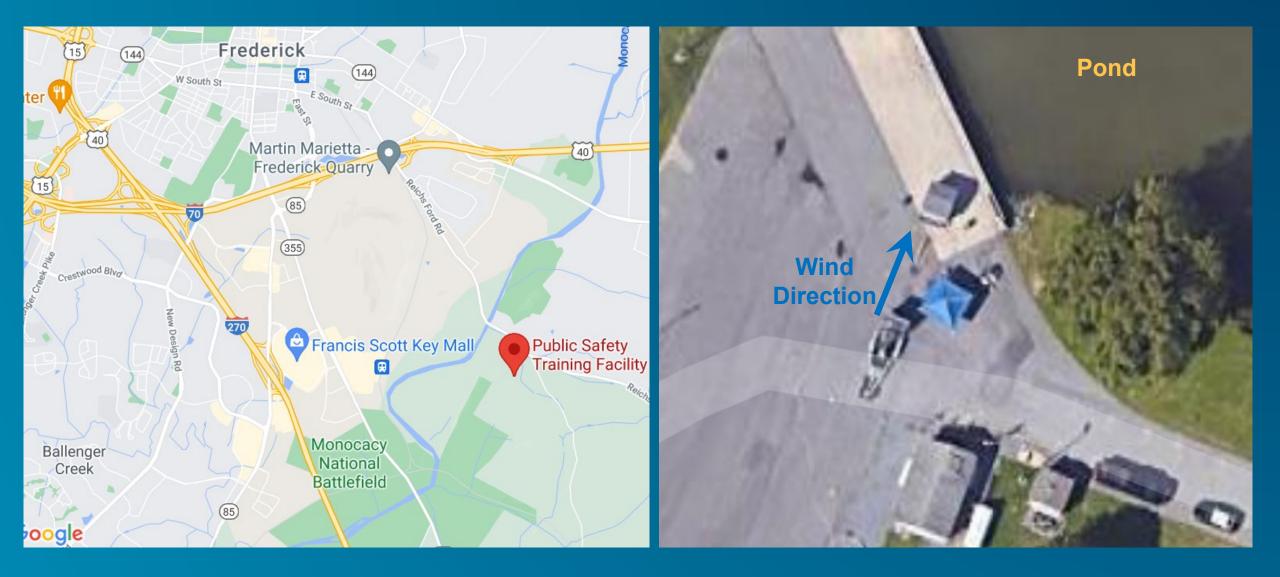
Introduction - Woodpile Examples

Introduction - Objectives of This Study NGT STANDARDS AND TECHNOLOGY

- Confirm the hazard
- Quantify the hazard under realistic conditions
 - Time for spot fires in target mulch bed
 - Time for spot fire to reach target shed wall
 - Flame extent toward target shed wall
- Identify and develop ways to mitigate the hazard

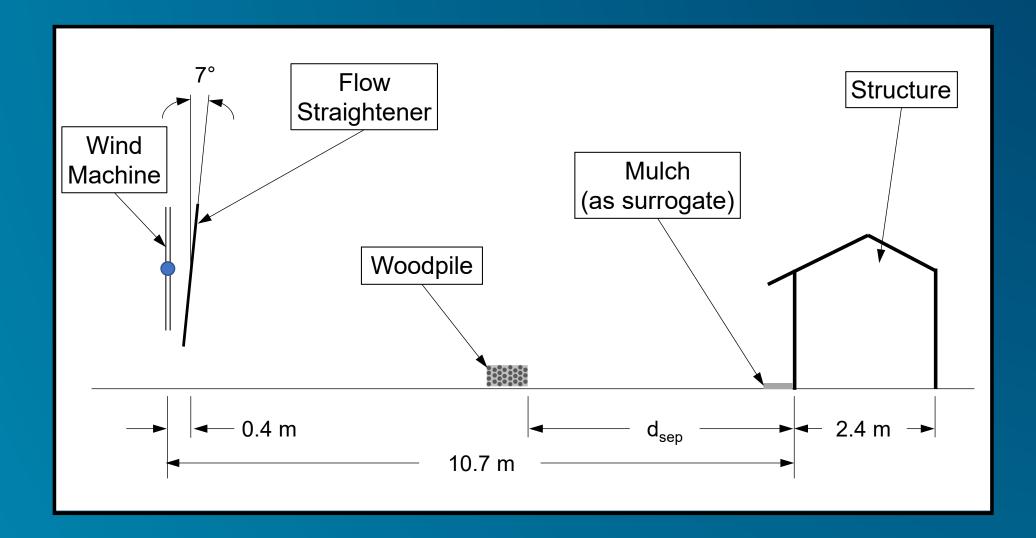
Experimental Design

Experimental Design



- Site/Setup
- Measurements
- Procedure
- Variables Tested

Experimental Design - Site NLST Standards and Technology Frederick County Fire & Rescue Training Facility



NATIONAL INSTITUTE OF
STANDARDS AND TECHNOLOGY
U.S. DEPARTMENT OF COMMERCE

NIS


- Similar Setup to Fence/Mulch Experiments:
 - Target shed and mulch bed
 - Surrogate ignition source (burner)
 - Almost same procedure
- Differences from Fence/Mulch Experiments:
 - Different variables
 - Used a propane ring burner adjacent to or under the firewood pile
 - Larger separation distances explored

NATIONAL INSTITUTE OF STANDARDS AND TECHNOLOGY U.S. DEPARTMENT OF COMMERCE

NĽ

NIST NATIONAL INSTITUTE OF STANDARDS AND TECHNOLOGY U.S. DEPARTMENT OF COMMERCE

Test Area

Aerial View

NATIONAL INSTITUTE OF STANDARDS AND TECHNOLOGY U.S. DEPARTMENT OF COMMERCE

NIS

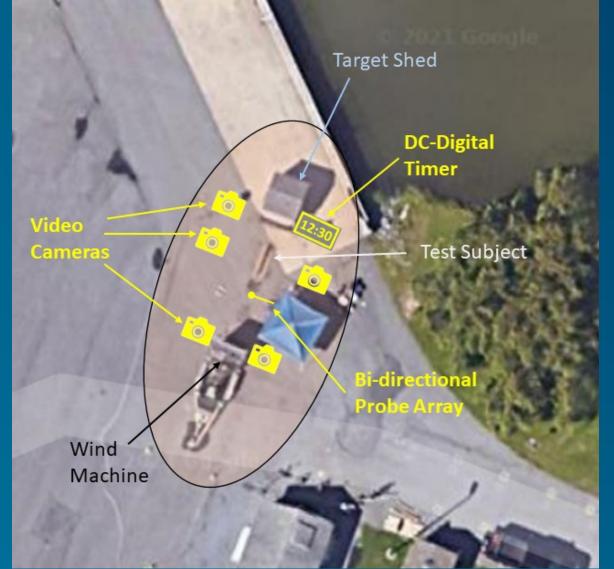
Wind Machine + Flow Straightener

> NATIONAL INSTITUTE OF STANDARDS AND TECHN

NIST

Structure (shed) + mulch at base

Experimental Design - Measurements NS

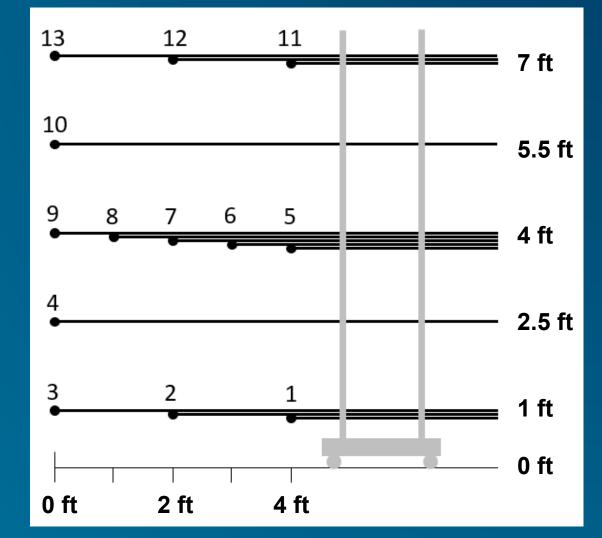

STANDARDS AND TECHNOLOGY U.S. DEPARTMENT OF COMMERCE

- Video Recordings for phenomena timing
- Imposed Wind Speed
- Ambient Wind Speed, Direction, Temperature
- Still Photographs

Experimental Design - Measurements NST Standards and Technold US. Department of COMMER

Visual Recordings:

- 4 or 5 HD digital video records
- Digital still photos



Video Camera Arrangement

Experimental Design - Measurements NST STANDARDS AND TECHNOL

Wind Measurements:

- 13 velocity points w/bi-directional probes
- Ambient wind speed and direction via sonic anemometer plus temperature

- Wood and Mulch Conditioning
- Burner Ignition
- Condition Requirements
- Testing Procedure

NL

NIST Wood Conditioning Kiln

- Relative humidity set to 30 %
- Moisture content for mulch and wood = 6.5 % ± 1 %

Burner Ignition

- Burner used for consistent ignition
- Burner ignition surrogate for flaming debris
- Propane 23-torch ring for large, intense contact area
- ≈35 kW total output (120000+ BTU/h)

Ring Burner

Under woodpile rack

Next to woodpile w/o rack

Condition Requirements

- Availability of site
- Weather:
 - No rain (forecast likelihood < 40 %)</p>
 - Not too cold (Temperature > 46 °F/8 °C), propane doesn't easily vaporize
 - Not too hot (Heat Index < 88 °F/31 °C) for reasonable work conditions
 - Ambient wind speed < 30 % of planned imposed wind</p>
 - Low crosswind or headwind
- Availability of staff
- Materials in hand and conditioned
- Equipment functioning

(Time in minutes:seconds)

0:00 – Wind data collection begins, cameras on

1:00 – Propane ring burner ignited

4:00 – Fan on (t = 0), Propane turned off

End of Test – A spot fire spreads to shed

28

Experimental Design - Variables Tested NGT STANDARDS AND TECHNOLOGY U.S. DEPARTMENT OF COMMERCE

Wood Type

- Pile Height/Aspect Ratio
- Orientation
- Rack
- Separation Distance
- Wind Speed

Experimental Design - Variables Tested NGT STANDARDS AND TECHNOLOGY U.S. DEPARTMENT OF COMMERCE

Wood Type

- Oak (mixed, dried and undried)
- Maple (mixed)
- Softwood (Eastern White Pine)

Experimental Design - Variables Tested NGT STANDARDS AND TECHNOLOGY

Pile Height/Aspect Ratio

- Tall (A): 4 ft High x 16 in Wide x 2 ft Deep (1.22 m H x 0.41 m W x 0.61 m D)
- Short (B): 2 ft High x 16 in Wide x 4 ft Deep (0.61 m H x 0.41 m W x 1.22 m D)

= 1/12 cord of wood

Experimental Design - Variables Tested NGT STANDARDS AND TECHNOLOGY US. DEPARTMENT OF COMMERCE

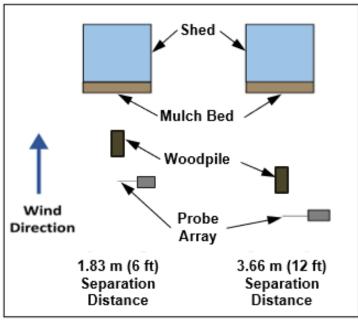
Orientation

- Logs aligned with wind direction (A)
- Logs transverse to wind direction (B)

Experimental Design - Variables Tested NGT STANDARDS AND TECHNOLOGY US. DEPARTMENT OF COMMERCE

Rack

- Wood on the ground (A, B)
- Wood on a rack (C, D)



Experimental Design - Variables Tested NST Standards and Technolog US. Department of COMMERCE

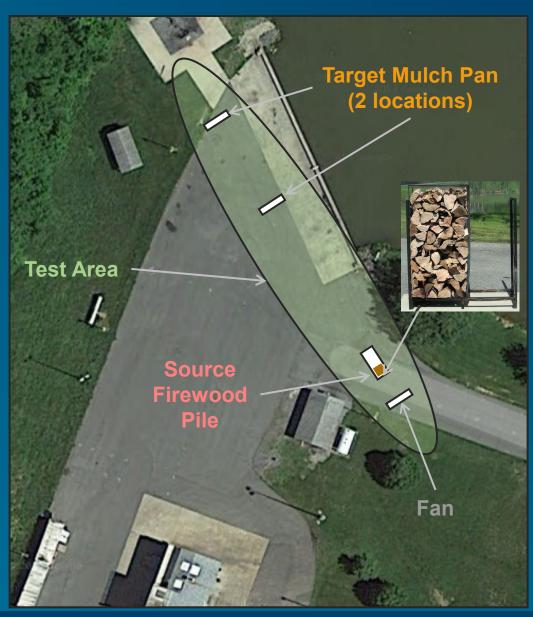
Separation Distance from Shed

- 3 ft (0.9)
- 6 ft (1.8 m)
- 12 ft (3.7 m)
- 18 ft (5.5 m)
- 22 ft (6.7 m)
- 24 ft (7.3 m)

Experimental Design - Variables Tested NGT STANDARDS AND TECHNOLOGY

Long Distance Spotting Potential

Firebrand Source


- Located 3.4 m from fan, 31 mi/h (14 m/s) wind
- Maple firewood (1/12 cord), tall, sides, on rack

Spotting Target

- Located 88 ft (26.8 m) downwind of woodpile
- 8 ft x 20 in (2.4 m x 0.5 m) pan at ground level
- 1 in (3 cm) deep shredded hardwood mulch

Additional Tests

- Other sources: pan of mulch and lattice fence
- Located 125 ft to 131 ft (38 m to 40 m) downwind of source

Experimental Design - Variables Tested NGT STANDARDS AND TECHNOLOGY U.S. DEPARTMENT OF COMMERCE

Nominal Wind Speed

- Low = 13 mi/h (6 m/s)
- Medium = 22 mi/h (10 m/s)
- High = 31 mi/h (14 m/s)

Experimental Design - Variables Tested NGT Standards and Technology U.S. Department of Commerce

Experiment Statistics – 62 Experiments Conducted

Series		Type of Wood		Pile Shape	
1: Combustible wall	0	Dry Oak	45	Tall	53
2: HWM as surrogate	61	Moist Oak	3	Low	9
3: No shed	1	Maple	10		
		White Pine	4	Pile Orientation to Wind	
Separation Distance			-	Ends of logs	30
3 ft	2	Wind Speed		Sides of logs	32
6 ft	24	6 m/s (13.5 mph)	19		
12 ft	12	10 m/s (22.5 mph)	21	Mitigation	
18 ft	11	14 m/s (31 mph)	22	Shield	1
22 ft	2			FR Tarp	1
24 ft	10	Mounted on Rack		Aluminum screen	1
>50 ft	1	Yes	53	None	59
		Νο	9		

Results

38

Results - Videos

Results - Videos

Results - Spot Fire Timing

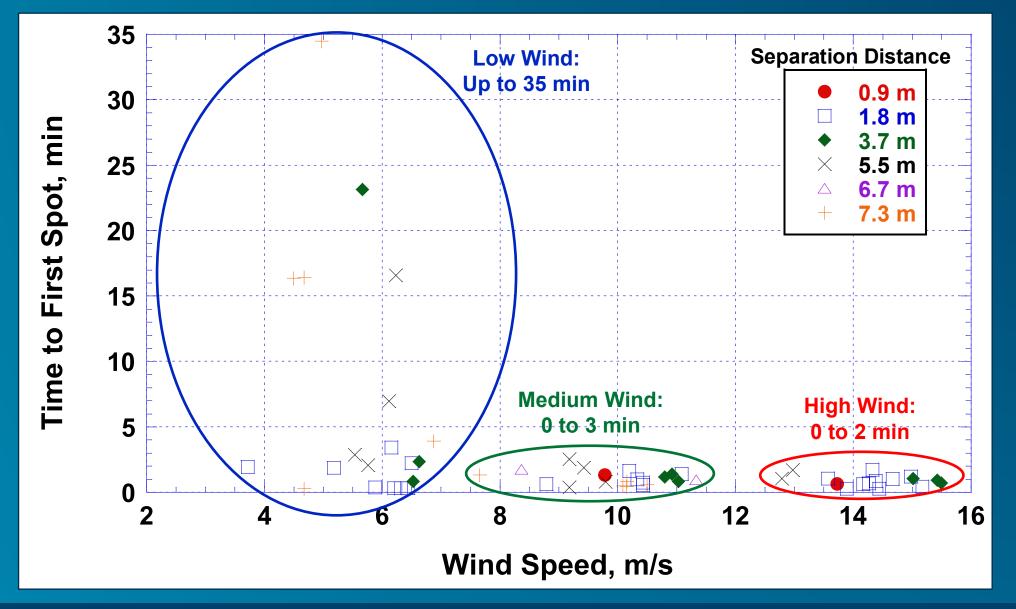
Spot Fire Timing vs Wind Speed

Nominal Wind Speed

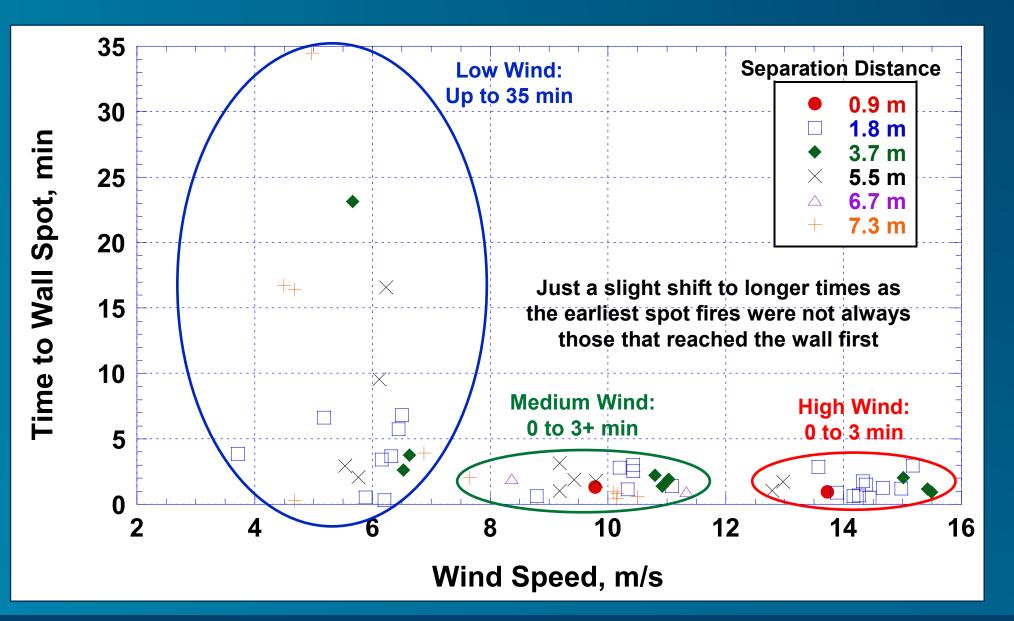
Low = 13 mi/h (6 m/s)

Medium = 22 mi/h (10 m/s)

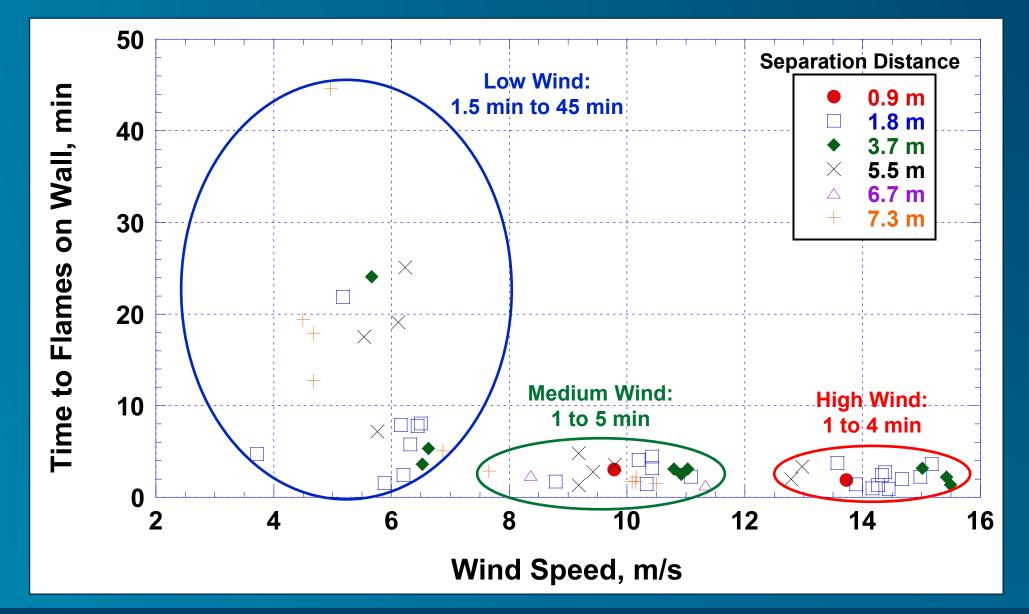
High = 31 mi/h (14 m/s)

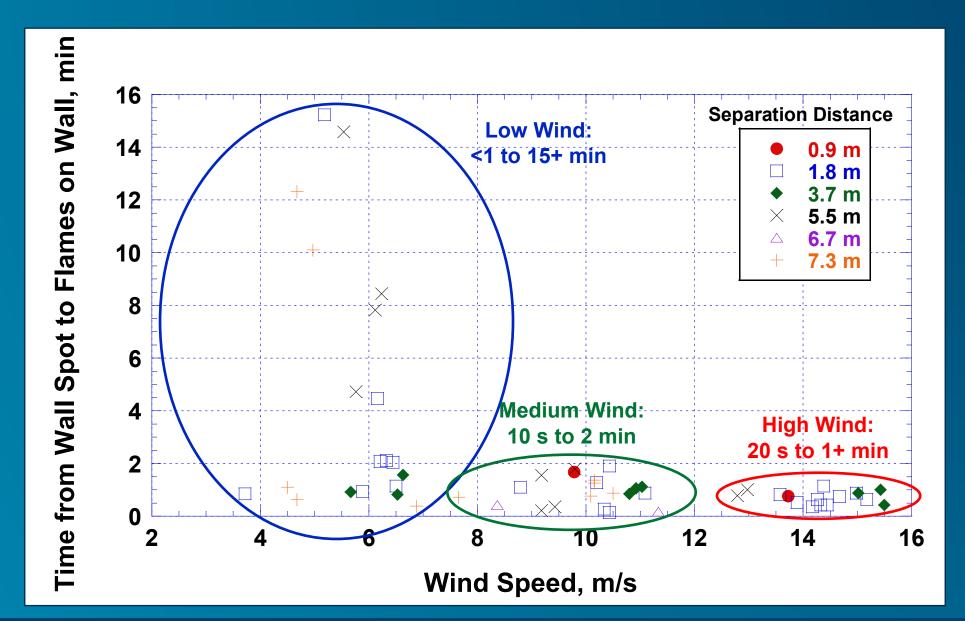

Separation Distance from Shed

3 ft (0.9) 6 ft (1.8 m) 12 ft (3.7 m) 18 ft (5.5 m) 22 ft (6.7 m) 24 ft (7.3 m)



First Spot vs Wind Speed


Wall Spot vs Wind Speed


NĽ

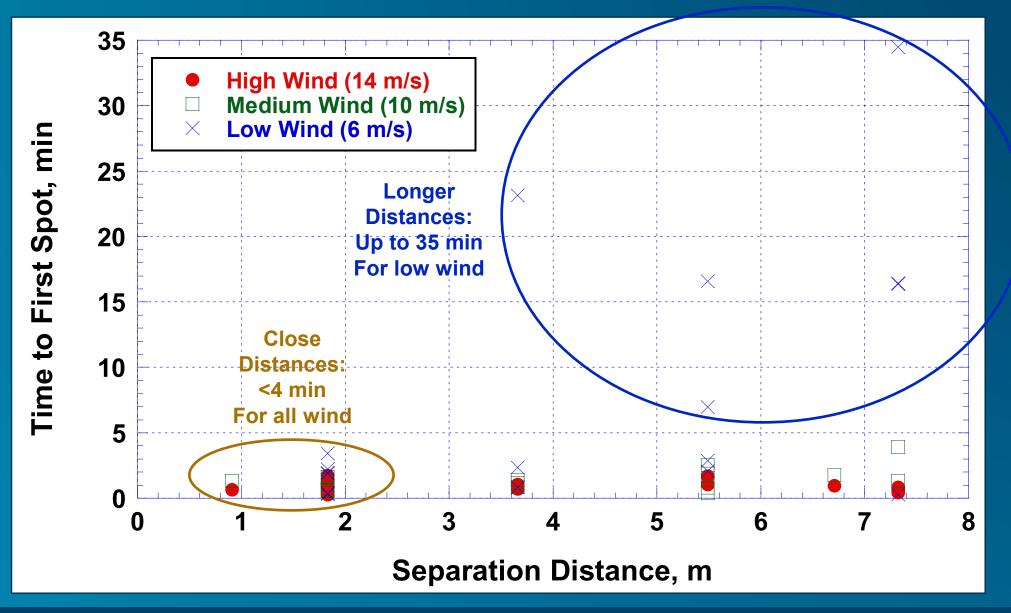
Wall Flames vs Wind Speed

Spot to Flames vs Wind Speed

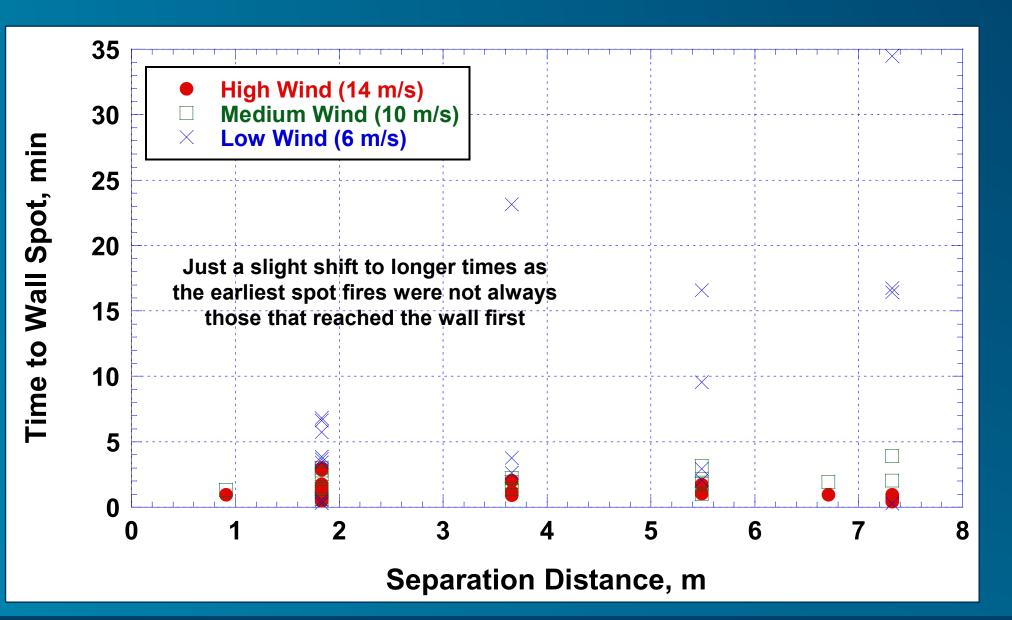
NĽ

Spot Fire Timing vs Separation Distance

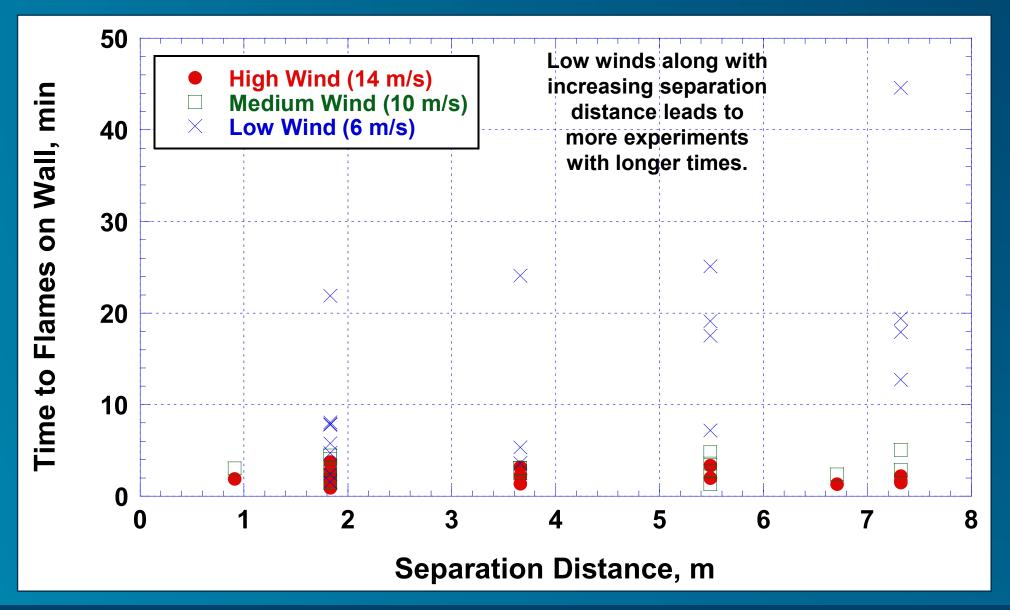
Separation Distance from Shed 3 ft (0.9) 6 ft (1.8 m) 12 ft (3.7 m) 18 ft (5.5 m) 22 ft (6.7 m) 24 ft (7.3 m)

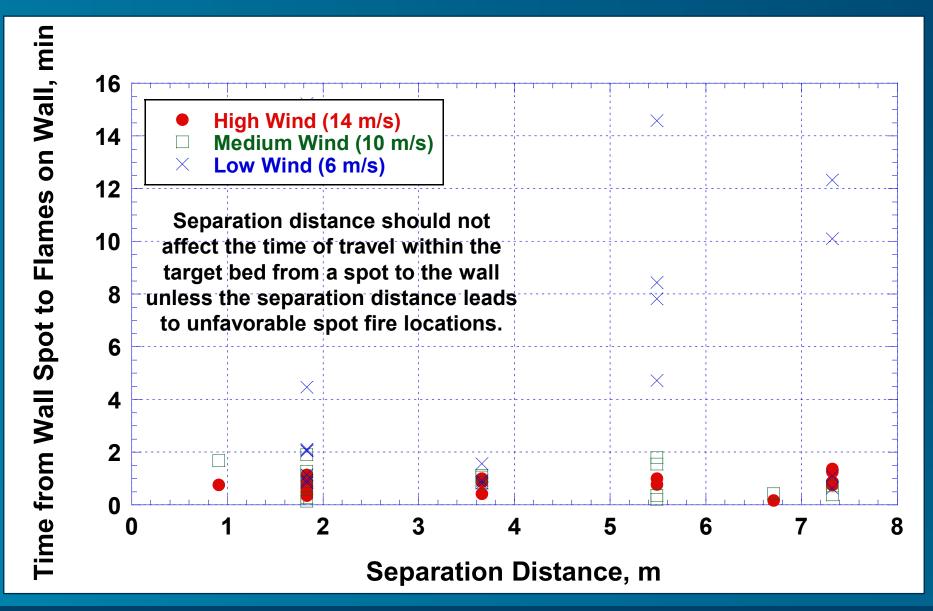

Nominal Wind Speed

Low = 13 mi/hMedium = 22 mi/hHigh = 31 mi/h


gh Wind (14 m/s) dium Wind (10 m/s) w Wind (6 m/s)

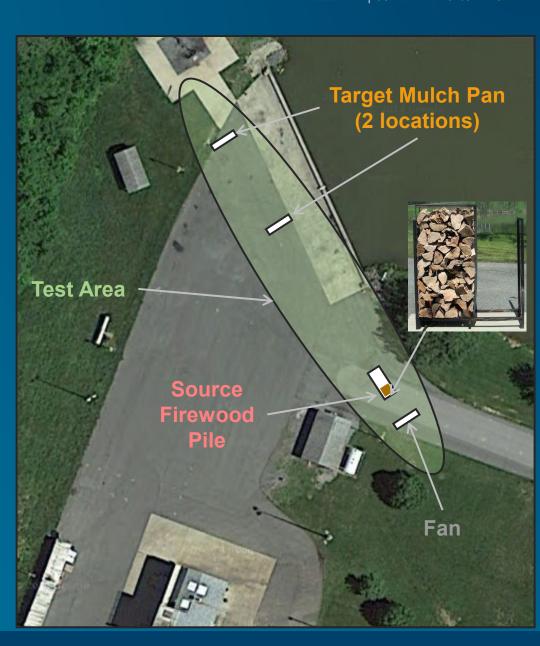
First Spot vs Separation Distance




Wall Spot vs Separation Distance

Wall Flames vs Separation Distance

Spot to Flames vs Sep. Distance


Summary of Results

- 62 experiments conducted
- No significant trends with rack usage, wood type, pile height, or log alignment (except at the low wind speed)
- Separation distance has very little affect on spotting. This is unfortunate since locating woodpiles far away would be an intuitive solution.
- Wind speed has some effect:
 - Spotting time decreases with increasing wind speed, but only from low to medium.
 - Medium and high winds cause similarly fast spotting with multiple spots within 1 min.
- All winds produce spotting within a few minutes.

Experimental Results -Long Distance Spotting Potential

- Woodpile time to spot fire at target mulch bed: 1 min 54 s at 13 m/s
- No spot fire ignitions at low or medium wind speeds

Limitations

- Few experiments are repeated
- Many fire processes are random
 - Firebrand generation
 - Firebrand ignition of spot fires
 - Wind turbulence
- Woodpiles are ignited in one location
- Only one wind direction was tested
- Only one volume of wood was tested

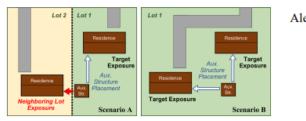
Therefore, this is a survey \rightarrow Trends, key hazards

Key Findings

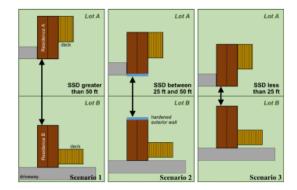
55

Key Findings

- Woodpiles generate copious amounts of firebrands that are capable of igniting spot fires in downwind combustibles.
- Wind-blown firebrands from woodpiles can ignite spot fires in 3 min or less in fine combustible materials over significant distances and bring flames to a structure adjacent to the combustibles in less than 5 min.
- Wind-blown burning woodpiles can generate fire plumes with steady flames that extend over 1 m (3.3 ft) which could ignite nearby combustibles through flame impingement or thermal radiation.
- Burning woodpiles may collapse, which changes the hazard.



Mitigation


57

NIST Technical Note 2205

WUI Structure/Parcel/Community Fire Hazard Mitigation Methodology

Alexander Maranghides Eric D. Link Steven Hawks Jim McDougald Stephen L. Quarles Daniel J. Gorham Shonali Nazare

This publication is available free of charge from: https://doi.org/10.6028/NIST.TN.2205

Fire Spread Mitigation Options

For Mitigating *Fire* Exposure Hazards:

- <u>Reduce</u> the woodpile,
- <u>Relocate</u> the woodpile,
- <u>Remove</u> the woodpile, or
- <u>Harden</u> structures for *fire* exposure

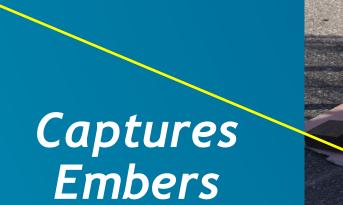
Study of Possible Firebrand Hazard Mitigation Approaches

Wind/Ember Blocking Wall

Fire-retarded Tarp

NIS

Study of Possible Firebrand Hazard Mitigation Approaches


NIST

NATIONAL INSTITUTE OF STANDARDS AND TECHNOLOGY US DEPARTMENT OF COMMERCE

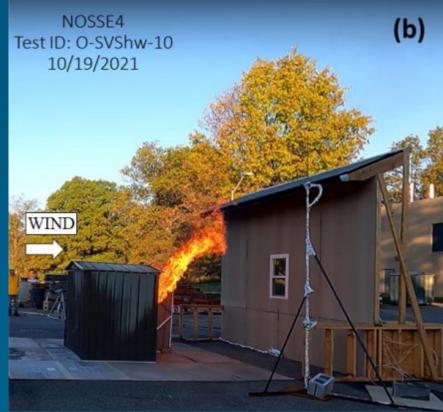
Mitigation Using a Screen Enclosure NST STANDARDS AND TECHNOLOGY US. DEPARTMENT OF COMMERCE

Study of Possible Firebrand Hazard Mitigation Approaches

Proposed FireSCREEN Solution

- <u>Simple Compact Reusable Ember Enclosure Net</u>
- A screen enclosure could prevent
 - Firebrand ignition of the firewood pile
 - Fire spread by embers if a woodpile should somehow ignite
- Would allow retaining the woodpile on the property

Potential Improvements


- Determine:
 - Best ember-proof screen hole size
 - Best screen material for fire and corrosion/weather resistance
- Design for reliability:
 - Anchor against wind
 - Seal openings against embers
- Design for utility:
 - Lightweight for easy installation
 - Protective cover for rain/snow
 - Access to firewood

Firewood Pile Enclosures

Requirements

- Access to load, unload firewood
- An open door or vent with a burning wood source creates a fire jet.
- Doors or vents must be closed!
- Fresh air circulation must be provided in a way that prevents firebrand entry and fire escape.

Fire Spread Mitigation Options

For Mitigating *Firebrand* Exposure Hazards:

- <u>Harden</u> structures for *firebrand* exposure
- <u>Remove</u> the woodpile, or
- <u>Enclose</u> the woodpile with a *fire and ember resistant design*

Recommendations and Future Work

Recommendations

- In WUI-fire prone areas, protect firewood piles from potential ignition by flames or firebrands to reduce fire spread.
- Avoid proximity of exposed woodpiles to the residence and other parcel structures, as well as neighboring structures, to prevent direct ignition by flames or flame radiation.
- Avoid proximity to other combustible fuels, to reduce fire intensity and limit fire spread.
- Harden structures against firebrands, to prevent structure ignition from firebrands produced by woodpiles and other combustible sources.
- Continue research to identify other effective methods to mitigate the firewood pile hazard in WUI-fire prone areas.

Future Work and Plans

- Report on landscape timber and retaining wall experiments
- Report on wood-plastic composite fence experiments
- Use a firebrand generator for ignition testing on landscape combustibles and structural features
- Improve mitigation design for firewood piles
- Test other combustible objects and configurations
- Generate data useful for further model development and validation
- Characterize realistic firebrands with the NIST Emberometer
- Utilize our dual-fan wind machine (used for the NOSSE experiments) for larger objects/structures

Questions?

