









#### The cutting edge at the grid edge

Estimating flexibility of grid edge resources (beyond dispatchability)
 Do we have data quality, secure communication capacity and robust algorithms?



# <section-header> Descente group program State of the grid edge of the grid edge of the sources (beyond dispatchability) De we have data quality, secure communication capacity and robust algorithms? Denoposing this flexibility Paluate control implications Denote the loop Simulation Delibration of interfaces

## The cutting edge at the grid edge

- Estimating flexibility of grid edge resources (beyond dispatchability)
  - Do we have data quality, secure communication capacity and robust algorithms?
- Composing this flexibility
  - Evaluate control implications
  - Hardware-in-the-loop Simulation
  - Validated Emulations
  - Calibration of interfaces
- Characterizing these compositions as metrology problems
  - How good do micro-scale measurements need to be to provide good macroscale state estimates for control?
  - Can we decompose macro scale measurements to observe micro scale dynamics?

















#### The cutting edge at the grid edge

• Estimating flexibility of grid edge resources (beyond dispatchability)

- Do we have data quality, secure communication capacity and robust algorithms?

- Composing this flexibility
  - Evaluate control implications
  - Hardware-in-the-loop Simulation
  - Validated Emulations
  - Calibration of interfaces
- Characterizing these compositions as metrology problems
  - How good do micro-scale measurements need to be to provide good macroscale state estimates for control?
  - Can we decompose macro scale measurements to observe micro scale dynamics?

NIST smart grid program













# **Progress since October 2018**







| WLAN                          | SCADA              | LPWAN           |
|-------------------------------|--------------------|-----------------|
| 100m                          | 500m               | 10E3m           |
| 450 Mb/s                      | 120 Kb/s           | 4 Kb/s          |
| 20 dBm                        | 16 dBm             | 20 dBm          |
| 256-bit<br>WPA2-<br>PSK (AES) | 128-bit<br>AES     | 128-bit<br>AES  |
| 2.4 GHz                       | 900<br>MHz<br>(NB) | 900 MHz<br>(WB) |

Synchronized composition of data at varying time scales requires planning at every step of the data pipeline. Low Power WAN is particularly challenging but has a large payoff.

# Smart Grid test pilot in Argentina

The Smart Grid Sub Group of the Argentina-U.S. Binational Energy Working Group (BewG) is deploying a Smart Grid Test Pilot in Armstrong, Argentina. A small town with 12000 inhabitants.

~1000 smart meters have been deployed by INTI (Argentina's NMI)

Their interests include:

AMI for AVR

Lightweight security for LPWANs

Data pipelines for high data rate links vs aggregated information over low data rate link

Comparison between Wi-SUN and LoRaWAN

NIST smart grid program



#### The cutting edge at the grid edge

- Estimating flexibility of grid edge resources (beyond dispatchability)
  - Do we have data quality, secure communication capacity and robust algorithms?
- Composing this flexibility
  - Evaluate control implications
  - Hardware-in-the-loop Simulation
  - Validated Emulations
  - Calibration of interfaces
- Characterizing these compositions as metrology problems
  - How good do micro-scale measurements need to be to provide good macroscale state estimates for control?
  - Can we decompose macro scale measurements to observe micro scale dynamics?













#### **Motivation**

#### Interoperability

 "The capability of two or more networks, systems, devices, applications, or components to work together, and to exchange and readily use information—securely, effectively, and with little or no inconvenience to the user".

**SOURCE: NIST Special Publication 1108r3** 

• Interoperability is foundational to many resilience enhancing smart grid applications, yet it remains a challenge for stakeholders across the electric power sector.

#### **Motivation**

smart

- Public Utility Commissions (PUCs) want to see tangible evidence supporting the prudence of investments.
- Interoperability value propositions are challenging to estimate and examples for PUCs are limited.
- Florida's recent experience with Hurricane Irma (September 2017) presents an opportunity to evaluate the benefits to operational resilience that the state's grid experienced due to improved interoperability.

#### • Focal Point: Service interruptions are critical outcomes for customers.





#### **Empirical Strategy**

- Obtain data on time-invariant factors impacting resilience including AMI Share and proxies of distribution grid topology.
- Build an hourly longitudinal dataset of customer account interruptions and wind stress levels at the county and county-utility level.
- Employ **Conditional Fixed Effects Poisson Regression** of hourly change in customer interruptions on wind stress, AMI Share, and control variables.







 $y_t - c$ 

0.0

## Core Regression Specification

- $E[y_{it}|\theta_i, x_{it}] = \theta_i \exp(\beta_1 x_{1it} + \beta_2 x_{1it} x_{2i} + \epsilon_{it})$
- Where:
- *i* and *t* are indices for region and hour
- y<sub>it</sub> number of new sustained interruptions to customers
- x<sub>1it</sub> square of our synthetic wind speed metric
- x<sub>2i</sub> time invariant measure of AMI Share
- $\theta_i$  region-level fixed effect

|                               | county-Othiny     | County       |
|-------------------------------|-------------------|--------------|
| Wind Speed $(W^2)$            | 1.589***          | 1.595***     |
|                               | (0.000)           | (0.000)      |
| $W^2 \times \text{AMI Share}$ | $0.905^{**}$      | $0.904^{**}$ |
|                               | (0.012)           | (0.021)      |
| Observations                  | 144 877           | 48 172       |
| $\chi^2$                      | 1047.6            | 857.0        |
| Coefficients reported as I    | ncident Rate Rati | os (IRR)     |
| p-values reported in pare     | entheses          |              |

# **Topological Concerns**

- Some segments of the grid are built stronger than others.
- Densely populated areas may contain more resilient buildings.
- Wealthier areas may enjoy a stronger distribution grid.

#### Population Density, Median Household Income, New Building Share, and AMI Share (County)

| Dependent Variable: $\Delta$ Interruptions                     | (1)          | (2)         | (3)           | (4)         | (5)       | (6)          | (7)          | (8)      | (9)         | (10)     |
|----------------------------------------------------------------|--------------|-------------|---------------|-------------|-----------|--------------|--------------|----------|-------------|----------|
| Wind Speed Squared $(W^2)$                                     | 1.595***     | 1.482***    | 1.547***      | 1.534***    | 1.604***  | 1.619***     | 1.625***     | 1.639*** | 1.651***    | 1.502*** |
|                                                                | (0.000)      | (0.000)     | (0.000)       | (0.000)     | (0.000)   | (0.000)      | (0.000)      | (0.000)  | (0.000)     | (0.000)  |
| $W^2 \times AMI$ Share                                         | $0.904^{**}$ |             |               |             | 0.900*    | $0.919^{*}$  | $0.904^{**}$ | 0.858*** | 0.889**     | 1.082    |
|                                                                | (0.021)      |             |               |             | (0.088)   | (0.064)      | (0.030)      | (0.008)  | (0.046)     | (0.499)  |
| $W^2 \times Population Density$                                |              | 1.010       |               |             | 0.998     |              |              | 0.989    |             |          |
|                                                                |              | (0.145)     |               |             | (0.849)   |              |              | (0.224)  |             |          |
| $W^2 \times$ Median Household Income                           |              |             | $0.957^{***}$ |             |           | $0.964^{**}$ |              |          | $0.924^{*}$ |          |
|                                                                |              |             | (0.010)       |             |           | (0.014)      |              |          | (0.082)     |          |
| $W^2 \times$ New Building Share                                |              |             |               | 0.909       |           |              | 0.919        |          |             | 1.425    |
|                                                                |              |             |               | (0.617)     |           |              | (0.659)      |          |             | (0.123)  |
| $W^2$ $\times$ AMI Share $\times$ Population Density           |              |             |               |             |           |              |              | 1.038    |             |          |
|                                                                |              |             |               |             |           |              |              | (0.395)  |             |          |
| $W^2$ $\times$ AMI Share $\times$ Median Household Income      |              |             |               |             |           |              |              |          | 1.065       |          |
|                                                                |              |             |               |             |           |              |              |          | (0.301)     |          |
| $W^2 \times \text{AMI Share} \times \text{New Building Share}$ |              |             |               |             |           |              |              |          |             | 0.390*   |
|                                                                |              |             |               |             |           |              |              |          |             | (0.076)  |
| $N = 48 \ 172$                                                 |              |             |               |             |           |              |              |          |             |          |
| $\chi^2$                                                       | 857.2        | 470.7       | 493.7         | 433.9       | 901.3     | 1019.8       | 867.8        | 2386.1   | 950.9       | 1339.2   |
| Wind speed squared, population density, and me                 | dian house   | hold incom  | e are norma   | lized withi | n sample. |              |              |          | again       |          |
| New building share records the percent of buildi               | ngs that ha  | ve been bui | ilt after 200 | 0.          |           |              |              |          |             |          |
| Coefficients reported as Incident Rate Ratios (IF              | R)           |             |               |             |           |              |              |          |             |          |
| p-values reported in parentheses                               |              |             |               |             |           |              |              |          |             |          |
| Similanna Danatad, * 0.1 ** 0.05 *** 0.01                      |              |             |               |             |           |              |              |          |             |          |

#### Population Density, Median Household Income, New Building Share, and AMI Share (County-Utility)

| $ \begin{array}{cccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | *** 1.647**:<br>0) (0.000)<br>*** 0.888**<br>2) (0.023)<br>1<br>5)<br>0.921**<br>(0.021)<br>7 | 1.647*** :<br>(0.000)<br>0.888**<br>(0.023)<br>0.921**<br>(0.021) | 1.500***<br>(0.000)<br>1.082<br>(0.480) |
|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------|-------------------------------------------------------------------|-----------------------------------------|
| $ \begin{array}{c c c c c c c c c c c c c c c c c c c $                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 0) (0.000)<br>(0.000)<br>0.888**<br>2) (0.023)<br>1<br>5)<br>0.921**<br>(0.021)<br>7          | (0.000)<br>0.888**<br>(0.023)<br>0.921**<br>(0.021)               | (0.000)<br>1.082<br>(0.480)<br>1.406*** |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | <ul> <li>*** 0.888**</li> <li>(0.023)</li> <li>0.921**</li> <li>(0.021)</li> </ul>            | 0.888**<br>(0.023)<br>0.921**<br>(0.021)                          | 1.082<br>(0.480)<br>1.406**             |
| $ \begin{array}{c c c c c c c c c c c c c c c c c c c $                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 2) (0.023)<br>1<br>5)<br>0.921**<br>(0.021)<br>7                                              | (0.023)<br>0.921**<br>(0.021)                                     | (0.480)<br>1.406**                      |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 1<br>5)<br>0.921**<br>(0.021)<br>7                                                            | $0.921^{**}$<br>(0.021)                                           | 1.406**                                 |
| (0.059)     (0.949)     (0.175)       2* New Building Share     0.956***     0.964***     0.921**       10.002     (0.004)     (0.021)       2* New Building Share     0.900     0.911     1.406**       (0.575)     (0.622)     (0.047)       2* AMI Share × Population Density     1.037     (0.390)       72 × AMI Share × Median Household Income     1.069     (0.183)       72 × AMI Share × New Building Share     0.395**     (0.049)       1047.8     515.4     557.9     496.2     1078.1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 5)<br>0.921**<br>(0.021)<br>7                                                                 | $0.921^{**}$<br>(0.021)                                           | 1.406**                                 |
| $ \begin{array}{cccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 0.921**<br>(0.021)<br>7                                                                       | $0.921^{**}$<br>(0.021)                                           | 1.406**                                 |
| (0.002)     (0.004)     (0.021)       (2 × New Building Share     0.900     0.911     1.406**       (0.575)     (0.622)     (0.047)       (2 × AMI Share × Population Density     1.037     (0.390)       (2 × AMI Share × Median Household Income     1.069     (0.183)       (2 × AMI Share × New Building Share     0.395**     (0.049)       = 144 877     1047.8     515.4     557.9     496.2     1078.1     1190.9     952.2     2686.0     1094.3     1577.6                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | (0.021)<br>7                                                                                  | (0.021)                                                           | 1.406**                                 |
| $\begin{tabular}{ c c c c c c c c c c c c c c c c c c c$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 7                                                                                             |                                                                   | 1.406**                                 |
| (0.575) (0.622) (0.047) $(0.307)$ $(0.300)$ $(0.300)$ $(0.300)$ $(0.300)$ $(0.300)$ $(0.300)$ $(0.300)$ $(0.183)$ $(0.47)$ $(0.300)$ $(0.30)$ $(0.47)$ $(0.300)$ $(0.30)$ $(0.183)$ $(0.49)$ $(0.49)$ $(0.49)$ $(0.49)$ $(0.49)$ $(0.49)$ $(0.49)$ $(0.49)$ $(0.49)$ $(0.49)$ $(0.49)$ $(0.49)$ $(0.49)$ $(0.49)$ $(0.49)$ $(0.49)$ $(0.49)$ $(0.49)$ $(0.49)$ $(0.49)$ $(0.49)$ $(0.49)$ $(0.49)$ $(0.49)$ $(0.49)$ $(0.49)$ $(0.49)$ $(0.49)$ $(0.49)$ $(0.49)$ $(0.49)$ $(0.49)$ $(0.49)$ $(0.49)$ $(0.49)$ $(0.49)$ $(0.49)$ $(0.49)$ $(0.49)$ $(0.49)$ $(0.49)$ $(0.49)$ $(0.49)$ $(0.49)$ $(0.49)$ $(0.49)$ $(0.49)$ $(0.49)$ $(0.49)$ $(0.49)$ $(0.49)$ $(0.49)$ $(0.49)$ $(0.49)$ $(0.49)$ $(0.49)$ $(0.49)$ $(0.49)$ $(0.49)$ $(0.49)$ $(0.49)$ $(0.49)$ $(0.49)$ $(0.49)$ $(0.49)$ $(0.49)$ $(0.49)$ $(0.49)$ $(0.49)$ $(0.49)$ $(0.49)$ $(0.49)$ $(0.49)$ $(0.49)$ $(0.49)$ $(0.49)$ $(0.49)$ $(0.49)$ $(0.49)$ $(0.49)$ $(0.49)$ $(0.49)$ $(0.49)$ $(0.49)$ $(0.49)$ $(0.49)$ $(0.49)$ $(0.49)$ $(0.49)$ $(0.49)$ $(0.49)$ $(0.49)$ $(0.49)$ $(0.49)$ $(0.49)$ $(0.49)$ $(0.49)$ $(0.49)$ $(0.49)$ $(0.49)$ $(0.49)$ $(0.49)$ $(0.49)$ $(0.49)$ $(0.49)$ $(0.49)$ $(0.49)$ $(0.49)$ $(0.49)$ $(0.49)$ $(0.49)$ $(0.49)$ $(0.49)$ $(0.49)$ $(0.49)$ $(0.49)$ $(0.49)$ $(0.49)$ $(0.49)$ $(0.49)$ $(0.49)$ $(0.49)$ $(0.49)$ $(0.49)$ $(0.49)$ $(0.49)$ $(0.49)$ $(0.49)$ $(0.49)$ $(0.49)$ $(0.49)$ $(0.49)$ $(0.49)$ $(0.49)$ $(0.49)$ $(0.49)$ $(0.49)$ $(0.49)$ $(0.49)$ $(0.49)$ $(0.49)$ $(0.49)$ $(0.49)$ $(0.49)$ $(0.49)$ $(0.49)$ $(0.49)$ $(0.49)$ $(0.49)$ $(0.49)$ $(0.49)$ $(0.49)$ $(0.49)$ $(0.49)$ $(0.49)$ $(0.49)$ $(0.49)$ $(0.49)$ $(0.49)$ $(0.49)$ $(0.49)$ $(0.49)$ $(0.49)$ $(0.49)$ $(0.49)$ $(0.49)$ $(0.49)$ $(0.49)$ $(0.49)$ $(0.49)$ $(0.49)$ $(0.49)$ $(0.49)$ $(0.49)$ $(0.49)$ $(0.49)$ $(0.49)$ $(0.49)$ $(0.49)$ $(0.49)$ $(0.49)$ $(0.49)$ $(0.49)$ $(0.49)$ $(0.49)$ $(0.49)$ $(0.49)$ $(0.49)$ $(0.49)$ $(0.49)$ $(0.49)$ $(0.49)$ $(0.49)$ $(0.49)$ $(0.49)$ $(0.49)$ $(0.49)$ $(0.49)$ $(0.49)$ $(0.49)$ $(0.49)$ $(0.49)$ $(0.49)$ $(0.49)$ $(0.49)$ $(0.49)$ $(0.49)$                                                                                                                                                                                                                                                   | 7                                                                                             |                                                                   | (0, 0, 1 = )                            |
| 1.037       1.037         (0.390)       (0.390)         ( <sup>2</sup> × AMI Share × Median Household Income       1.069         ( <sup>2</sup> × AMI Share × New Building Share       0.395**         ( <sup>2</sup> × AMI Share × New Building Share       0.395**         ( <sup>2</sup> × AMI Share × New Building Share       0.395**         ( <sup>2</sup> × AMI Share × New Building Share       0.395**         ( <sup>2</sup> × AMI Share × New Building Share       0.395**         ( <sup>2</sup> × AMI Share × New Building Share       0.395**         ( <sup>2</sup> × AMI Share × New Building Share       0.395**         ( <sup>2</sup> × AMI Share × New Building Share       0.395**         ( <sup>3</sup> × AMI Share × New Building Share       0.395**         ( <sup>3</sup> × AMI Share × New Building Share       0.395**         ( <sup>3</sup> × AMI Share × New Building Share       0.395**         ( <sup>3</sup> × AMI Share × New Building Share       0.395**         ( <sup>3</sup> × AMI Share × New Building Share       0.395**         ( <sup>3</sup> × AMI Share × New Building Share       0.395**         ( <sup>3</sup> × AMI Share × New Building Share       0.395**         ( <sup>3</sup> × AMI Share × New Building Share       0.395**         ( <sup>3</sup> × AMI Share × New Building Share       0.395**         ( <sup>3</sup> × AMI Share × New Building Share       0.395**         ( <sup>3</sup> × AMI Share × New Building Share       0.395***                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 7                                                                                             |                                                                   | (0.047)                                 |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                                                                               |                                                                   |                                         |
| ** × AMI Share × Median Household Income     1.069       ** × AMI Share × New Building Share     (0.183)       ** = 144 877     0.049       *     1047.8       **     1047.8       **     1078.1       **     1109       **     109                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 0)                                                                                            | 1.000                                                             |                                         |
| $ \begin{array}{c} (0.183) \\ (0.183) \\ (0.49) \\ (0.049) \\ (0.49) \\ (0.49) \\ (0.49) \\ (0.49) \\ (0.49) \\ (0.49) \\ (0.49) \\ (0.49) \\ (0.49) \\ (0.49) \\ (0.49) \\ (0.49) \\ (0.49) \\ (0.49) \\ (0.49) \\ (0.49) \\ (0.49) \\ (0.49) \\ (0.49) \\ (0.49) \\ (0.49) \\ (0.49) \\ (0.49) \\ (0.49) \\ (0.49) \\ (0.49) \\ (0.49) \\ (0.49) \\ (0.49) \\ (0.49) \\ (0.49) \\ (0.49) \\ (0.49) \\ (0.49) \\ (0.49) \\ (0.49) \\ (0.49) \\ (0.49) \\ (0.49) \\ (0.49) \\ (0.49) \\ (0.49) \\ (0.49) \\ (0.49) \\ (0.49) \\ (0.49) \\ (0.49) \\ (0.49) \\ (0.49) \\ (0.49) \\ (0.49) \\ (0.49) \\ (0.49) \\ (0.49) \\ (0.49) \\ (0.49) \\ (0.49) \\ (0.49) \\ (0.49) \\ (0.49) \\ (0.49) \\ (0.49) \\ (0.49) \\ (0.49) \\ (0.49) \\ (0.49) \\ (0.49) \\ (0.49) \\ (0.49) \\ (0.49) \\ (0.49) \\ (0.49) \\ (0.49) \\ (0.49) \\ (0.49) \\ (0.49) \\ (0.49) \\ (0.49) \\ (0.49) \\ (0.49) \\ (0.49) \\ (0.49) \\ (0.49) \\ (0.49) \\ (0.49) \\ (0.49) \\ (0.49) \\ (0.49) \\ (0.49) \\ (0.49) \\ (0.49) \\ (0.49) \\ (0.49) \\ (0.49) \\ (0.49) \\ (0.49) \\ (0.49) \\ (0.49) \\ (0.49) \\ (0.49) \\ (0.49) \\ (0.49) \\ (0.49) \\ (0.49) \\ (0.49) \\ (0.49) \\ (0.49) \\ (0.49) \\ (0.49) \\ (0.49) \\ (0.49) \\ (0.49) \\ (0.49) \\ (0.49) \\ (0.49) \\ (0.49) \\ (0.49) \\ (0.49) \\ (0.49) \\ (0.49) \\ (0.49) \\ (0.49) \\ (0.49) \\ (0.49) \\ (0.49) \\ (0.49) \\ (0.49) \\ (0.49) \\ (0.49) \\ (0.49) \\ (0.49) \\ (0.49) \\ (0.49) \\ (0.49) \\ (0.49) \\ (0.49) \\ (0.49) \\ (0.49) \\ (0.49) \\ (0.49) \\ (0.49) \\ (0.49) \\ (0.49) \\ (0.49) \\ (0.49) \\ (0.49) \\ (0.49) \\ (0.49) \\ (0.49) \\ (0.49) \\ (0.49) \\ (0.49) \\ (0.49) \\ (0.49) \\ (0.49) \\ (0.49) \\ (0.49) \\ (0.49) \\ (0.49) \\ (0.49) \\ (0.49) \\ (0.49) \\ (0.49) \\ (0.49) \\ (0.49) \\ (0.49) \\ (0.49) \\ (0.49) \\ (0.49) \\ (0.49) \\ (0.49) \\ (0.49) \\ (0.49) \\ (0.49) \\ (0.49) \\ (0.49) \\ (0.49) \\ (0.49) \\ (0.49) \\ (0.49) \\ (0.49) \\ (0.49) \\ (0.49) \\ (0.49) \\ (0.49) \\ (0.49) \\ (0.49) \\ (0.49) \\ (0.49) \\ (0.49) \\ (0.49) \\ (0.49) \\ (0.49) \\ (0.49) \\ (0.49) \\ (0.49) \\ (0.49) \\ (0.49) \\ (0.49) \\ (0.49) \\ (0.49) \\ (0.49) \\ (0.49) \\ (0.49) \\ (0.49) \\ (0.49) \\ (0.49) \\ (0.49) \\ (0.49) \\ (0.49) \\ (0.49) \\ (0.49) \\ (0.49) \\ (0.49) \\ (0.49) \\ (0.49) \\ (0.49) \\ (0.49) \\ (0.49) \\ (0.49) \\ (0.49) \\ (0.49) \\ ($ | 1.069                                                                                         | 1.069                                                             |                                         |
| ** A kill share × New Building share         0.359.*           (0.049)         (0.049)           *         1047.8         515.4         557.9         496.2         1078.1         1190.9         952.2         2686.0         1094.3         1577.6                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | (0.183)                                                                                       | (0.183)                                                           | 0.205**                                 |
| $(0.049)^{2}$<br>$(2.047.8)^{2}$<br>$(2.047.8)^{2}$<br>$(2.047.8)^{2}$<br>$(2.047.8)^{2}$<br>$(2.047.8)^{2}$<br>$(2.047.8)^{2}$<br>$(2.047.8)^{2}$<br>$(2.047.8)^{2}$<br>$(2.047.8)^{2}$<br>$(2.047.8)^{2}$<br>$(2.047.8)^{2}$<br>$(2.047.8)^{2}$<br>$(2.047.8)^{2}$<br>$(2.047.8)^{2}$<br>$(2.047.8)^{2}$<br>$(2.047.8)^{2}$<br>$(2.047.8)^{2}$<br>$(2.047.8)^{2}$<br>$(2.047.8)^{2}$<br>$(2.047.8)^{2}$<br>$(2.047.8)^{2}$<br>$(2.047.8)^{2}$<br>$(2.047.8)^{2}$<br>$(2.047.8)^{2}$<br>$(2.047.8)^{2}$<br>$(2.047.8)^{2}$<br>$(2.047.8)^{2}$<br>$(2.047.8)^{2}$<br>$(2.047.8)^{2}$<br>$(2.047.8)^{2}$<br>$(2.047.8)^{2}$<br>$(2.047.8)^{2}$<br>$(2.047.8)^{2}$<br>$(2.047.8)^{2}$<br>$(2.047.8)^{2}$<br>$(2.047.8)^{2}$<br>$(2.047.8)^{2}$<br>$(2.047.8)^{2}$<br>$(2.047.8)^{2}$<br>$(2.047.8)^{2}$<br>$(2.047.8)^{2}$<br>$(2.047.8)^{2}$<br>$(2.047.8)^{2}$<br>$(2.047.8)^{2}$<br>$(2.047.8)^{2}$<br>$(2.047.8)^{2}$<br>$(2.047.8)^{2}$<br>$(2.047.8)^{2}$<br>$(2.047.8)^{2}$<br>$(2.047.8)^{2}$<br>$(2.047.8)^{2}$<br>$(2.047.8)^{2}$<br>$(2.047.8)^{2}$<br>$(2.047.8)^{2}$<br>$(2.047.8)^{2}$<br>$(2.047.8)^{2}$<br>$(2.047.8)^{2}$<br>$(2.047.8)^{2}$<br>$(2.047.8)^{2}$<br>$(2.047.8)^{2}$<br>$(2.047.8)^{2}$<br>$(2.047.8)^{2}$<br>$(2.047.8)^{2}$<br>$(2.047.8)^{2}$<br>$(2.047.8)^{2}$<br>$(2.047.8)^{2}$<br>$(2.047.8)^{2}$<br>$(2.047.8)^{2}$<br>$(2.047.8)^{2}$<br>$(2.047.8)^{2}$<br>$(2.047.8)^{2}$<br>$(2.047.8)^{2}$<br>$(2.047.8)^{2}$<br>$(2.047.8)^{2}$<br>$(2.047.8)^{2}$<br>$(2.047.8)^{2}$<br>$(2.047.8)^{2}$<br>$(2.047.8)^{2}$<br>$(2.047.8)^{2}$<br>$(2.047.8)^{2}$<br>$(2.047.8)^{2}$<br>$(2.047.8)^{2}$<br>$(2.047.8)^{2}$<br>$(2.047.8)^{2}$<br>$(2.047.8)^{2}$<br>$(2.047.8)^{2}$<br>$(2.047.8)^{2}$<br>$(2.047.8)^{2}$<br>$(2.047.8)^{2}$<br>$(2.047.8)^{2}$<br>$(2.047.8)^{2}$<br>$(2.047.8)^{2}$<br>$(2.047.8)^{2}$<br>$(2.047.8)^{2}$<br>$(2.047.8)^{2}$<br>$(2.047.8)^{2}$<br>$(2.047.8)^{2}$<br>$(2.047.8)^{2}$<br>$(2.047.8)^{2}$<br>$(2.047.8)^{2}$<br>$(2.047.8)^{2}$<br>$(2.047.8)^{2}$<br>$(2.047.8)^{2}$<br>$(2.047.8)^{2}$<br>$(2.047.8)^{2}$<br>$(2.047.8)^{2}$<br>$(2.047.8)^{2}$<br>$(2.047.8)^{2}$<br>$(2.047.8)^{2}$<br>$(2.047.8)^{2}$<br>$(2.047.8)^{2}$<br>$(2.047.8)^{2}$<br>$(2.047.8)^{2}$<br>$(2.047.8)^{2}$<br>$(2.047.8)^{2}$<br>$(2.047.8)^{2}$<br>$(2.047.8)^{2}$<br>$(2.047.8)^{2}$<br>$(2.047.8)^{2}$<br>(2.047 |                                                                                               |                                                                   | (0.040)                                 |
| $^{7}$ = 144 877<br>2 1047.8 515.4 557.9 496.2 1078.1 1190.9 952.2 2686.0 1094.3 1577.6                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                                                                                               |                                                                   | (0.049)                                 |
| $^{2}$ 1047.8 515.4 557.9 496.2 1078.1 1190.9 952.2 2686.0 1094.3 1577.6                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                                                                                               |                                                                   |                                         |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | .0 1094.3                                                                                     | 1094.3                                                            | 1577.6                                  |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                                                                               |                                                                   |                                         |
| ew building share records the percent of buildings that have been built after 2000.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                                                                                               |                                                                   |                                         |
| ew building share records the percent of buildings that have been built after 2000.<br>oefficients reported as Incident Rate Ratios (IRR)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                                                                                               |                                                                   |                                         |
| /ind speed squared, population density, and median household income are normalized within sample.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                                                                                               | .0                                                                | (0.183)                                 |



#### **Counterfactual Scenarios**

- We investigate three counterfactual scenarios to characterize some of the resilience benefits already coming from interoperability improvements and the additional opportunities still available to stakeholders.
- Estimate Counterfactuals interruptions,  $I_{it}^{CF}$ , for scenarios in which the entire grid performs commensurate with a uniform distribution of AMI penetration:
- CF<sub>M</sub>: at the state-level average, 57.4 %.
- $CF_0$ : at an AMI share of 0 %.
- CF<sub>1</sub>: at an AMI share of 100 %.

#### **Counterfactual Scenarios**

- We observe that:
- The partial derivative of expected sustained interruptions with respect to wind speed is positive.
- The cross partial derivative of sustained interruptions with respect to wind speed and AMI penetration is negative.
- The core regression model is fit separately to two subsamples.

program

• The first subsample contains counties with greater than 50 % AMI penetration and the second subsample contains all other counties in Florida.



#### **Counterfactual Method**

- Let R<sub>it</sub> be the ratio of expected interruptions between the low AMI and high AMI cases for a given level of wind speed.
- $I_{it}^{CF} = (I_{it}^A)(R_{it}^{G_i})$
- $G_i = (M_i \widehat{M})/H$
- M<sub>i</sub> is the actual AMI share
- $\widehat{M}$  is the counterfactual AMI share
- H is the gap between average AMI share in the two samples
- $G_i \in [-0.90, 0.67]$







## Actual and Counterfactual Outcomes

|                                 | Interruption Costs (\$/hour) | Actual              | CF0                   | $\operatorname{CFM}$   | CF1                   |
|---------------------------------|------------------------------|---------------------|-----------------------|------------------------|-----------------------|
| Total Interruption Hours        |                              | $556\ 636\ 224$     | $668 \ 625 \ 344$     | 569 795 392            | 464 152 384           |
| Florida SAIDI (Hours in 9.2017) |                              | 52.9                | 63.6                  | 54.2                   | 44.1                  |
| Total Interruption Costs        | 0.50                         | 278 318 112         | 334 312 672           | 284 897 696            | 232 076 192           |
| (\$ millions)                   | 5.00                         | $2\ 783\ 181\ 056$  | $3 \ 343 \ 126 \ 784$ | $2\ 848\ 976\ 896$     | $2 \ 320 \ 761 \ 856$ |
|                                 | 15.00                        | $8\ 349\ 543\ 424$  | $10\ 029\ 380\ 608$   | 8 546 930 688          | 6 962 285 568         |
|                                 | 45.00                        | $25\ 048\ 629\ 248$ | $30\ 088\ 140\ 800$   | $25 \ 640 \ 792 \ 064$ | 20 886 857 728        |
|                                 | 75.00                        | 41 747 718 144      | $50\ 146\ 902\ 016$   | $42\ 734\ 653\ 440$    | 34 811 428 864        |
| Customer Average                | 0.50                         | 26                  | 32                    | 27                     | 22                    |
| (\$/customer)                   | 5.00                         | 265                 | 318                   | 271                    | 221                   |
|                                 | 15.00                        | 794                 | 953                   | 812                    | 662                   |
|                                 | 45.00                        | 2381                | 2860                  | 2437                   | 1985                  |
|                                 | 75.00                        | 3968                | 4767                  | 4062                   | 3309                  |

NIST smart grid program

22

# **Comparison of Actual and Counterfactual Outcomes**

|                                 | Interruption Costs (\$/hour) | Actual                | Actual-CF0     | ${\it Actual-CFM}$ | Actual-CF1        |
|---------------------------------|------------------------------|-----------------------|----------------|--------------------|-------------------|
| Total Interruption Hours        |                              | $556\ 636\ 224$       | -111 989 120   | -13 159 168        | $92\ 483\ 840$    |
| Florida SAIDI (Hours in 9.2017) |                              | 52.9                  | -10.6          | -1.3               | 8.8               |
| Total Interruption Costs        | 0.50                         | 278 318 112           | -55 994 560    | -6 579 584         | 46 241 920        |
| (\$ millions)                   | 5.00                         | $2\ 783\ 181\ 056$    | -559 945 728   | -65 795 840        | $462 \ 419 \ 200$ |
|                                 | 15.00                        | $8 \ 349 \ 543 \ 424$ | -1 679 837 184 | -197 387 264       | 1 387 257 856     |
|                                 | 45.00                        | $25\ 048\ 629\ 248$   | -5 039 511 552 | -592 162 816       | 4 161 771 520     |
|                                 | 75.00                        | 41 747 718 144        | -8 399 183 872 | -986 935 296       | 6 936 289 280     |
| Customer Average                | 0.50                         | 26                    | -5             | -1                 | 4                 |
| (\$/customer)                   | 5.00                         | 265                   | -53            | -6                 | 44                |
|                                 | 15.00                        | 794                   | -160           | -19                | 132               |
|                                 | 45.00                        | 2381                  | -479           | -56                | 396               |
|                                 | 75.00                        | 3968                  | -798           | -94                | 659               |

# ICE Calculator Results (Actual - CF<sub>0</sub>)

| Sector                                                      | # of Customers                                | Cost Per Event                                | Cost Per Avg kW                                     | Cost Per Unserved kWh              | Total Cost                |
|-------------------------------------------------------------|-----------------------------------------------|-----------------------------------------------|-----------------------------------------------------|------------------------------------|---------------------------|
| Residential                                                 | 9 398 000                                     | 23.94                                         | 15.20                                               | 1.43                               | $224 \ 965 \ 812.38$      |
| Small C&I                                                   | 1  053  391                                   | 6592.87                                       | 3824.74                                             | 359.13                             | $6 \ 944 \ 875 \ 179.91$  |
| Medium and Large C&I                                        | 267 609                                       | $29\ 095.94$                                  | 598.87                                              | 56.23                              | $7\ 786\ 334\ 838.82$     |
| Total                                                       | $10\ 719\ 000$                                | 1395.30                                       | 504.89                                              | 47.41                              | $14 \ 956 \ 175 \ 831.11$ |
| Customer counts are for Dece<br>http://www.floridapsc.com/F | mber 31, 2017 and are<br>iles/PDF/Publication | e drawn from "Statist<br>s/Reports/Electricga | tics of the Florida Electr<br>s/Statistics/2017.pdf | ric Utility Industry" (Florida Pul | blic Service Commissior   |
|                                                             |                                               |                                               |                                                     |                                    |                           |
|                                                             |                                               |                                               |                                                     |                                    |                           |

## Conclusions

- The expected value of customer account interruptions is moderated by AMI share.
- A standard deviation shock to the square of wind speed is associated with approximately of 10 % fewer interruptions per hour when AMI is fully deployed.
- The operational resilience benefits from improved system interoperability for Florida during Hurricane Irma are on the order of \$1.6 billion.

































| Three Fau                                                          | It Cases with                                 | <b>DMC</b>                                                          |     |
|--------------------------------------------------------------------|-----------------------------------------------|---------------------------------------------------------------------|-----|
|                                                                    | Amount of Load Interruptions v                | ad interrupted                                                      |     |
| Case                                                               | Business-as-usual                             | DMC                                                                 |     |
| 1: Substation outage                                               | 15.694 kW                                     | 7944 kW (allowing DERs to                                           |     |
| i buobaaton baage                                                  | 10,00 1 10                                    | energize the microgrids)                                            |     |
| 2: Fault on line 509-645                                           | 15,694 kW (momentary*)                        | 0 (MG3 is supply adequate)                                          |     |
| 3: Fault on line 32-35<br>(within MG5)                             | 15,694 kW (sustained)<br>26.43 kW (sustained) | 26.43 kW (MG5 islanded.<br>Interruption until fault is<br>isolated) |     |
| * Momentary interruption unti-<br>switches present in the entire n | l switching is done to isolate<br>etwork      | faults. Assuming there are no ti                                    | ie- |
|                                                                    |                                               |                                                                     |     |
|                                                                    | engi                                          | 16<br>neering laboratory                                            |     |





















#### The cutting edge at the grid edge

- Estimating flexibility of grid edge resources (beyond dispatchability)
  - Do we have data quality, secure communication capacity and robust algorithms?

Characterization of power hardware-in-the-loop systems

- Composing this flexibility
  - Evaluate control implications
  - Hardware-in-the-loop Simulation
  - Validated Emulations
  - Calibration of interfaces
- · Characterizing these compositions as metrology problems
  - How good do micro-scale measurements need to be to provide good macroscale state estimates for control? Instrumentation design for High-Z Fault Localization
  - Can we decompose macro scale measurements to observe micro scale dynamics?



















## Time domain analysis

Time domain expression for error:  $\epsilon(t) := \alpha \sin(\omega t) - \beta \sin(\omega t + \phi) = \gamma \sin(\omega t + \delta)$ 

$$\gamma = \sqrt[2]{\alpha^2 + \beta^2 - \alpha\beta\cos(\phi)}$$

Gain bias:

$$\gamma^* = 2\sin(\frac{\phi}{2})$$

Phase bias:

$$\delta = atan2(-\beta \sin(\phi), \alpha - \beta \cos(\phi))$$

Broad spectrum sensitivity to latency variation:

$$\frac{\partial}{\partial \phi} (\alpha \sin(\omega t) - \beta \sin(\omega t + \phi)) = -\beta \cos(\omega t + \phi)$$





















#### NIST/NREL HIL Phase II – recover dynamic coefficients

- Systems of the form:  $\dot{X} = AX + Bu(t)$ , Y = CX + Du(t)
- Single band oscillator:  $A = \begin{bmatrix} 0 & 1 \\ -\omega^2 & D \end{bmatrix}$  ( $\omega$  = angular frequency, D = damping factor)







## The cutting edge at the grid edge

NIST

- Estimating flexibility of grid edge resources (beyond dispatchability)

   Do we have data quality, secure communication capacity and robust algorithms?

   Composing this flexibility

   Evaluate control implications
   Hardware-in-the-loop Simulation
   Validated Emulations
   Calibration of interfaces

   Characterizing these compositions as metrology problems
  - How good do micro-scale measurements need to be to provide good macroscale state estimates for control?
  - Can we decompose macro scale measurements to observe micro scale dynamics?













Wave velocity  $\begin{aligned}
\gamma &= \sqrt{ZY} = \sqrt{(R+j\omega L)(G+j\omega C)} = \alpha + j\beta \\
\xrightarrow{2\pi f} \\
R, L, G, C = Modal Parameters \\
\alpha &= Attenuation Constant \qquad \beta = Wavelength Constant \\
\text{Velocity} &= f\lambda = \frac{2\pi f}{\beta} \qquad \text{wave frequency}
\end{aligned}$ 















## Leveraging ESIF capabilities

- Leveraging MVOTA capabilities to show travelling wave characteristics in distribution lines.
- Challenges in MVOTA testing
  - Short line length
  - (travel time =16 ns)
  - Data acquisition resolution



#### Challenges with injecting impulses

- · Parasitic impedances, coupling artifacts and transients at the output buffer.
- Even if matched carefully, impedance at injection point is time varying.
- Energy is limited for commercial impulse generators, at low circuit impedances induced voltage magnitudes are low – introducing sensing challenges.









#### Identifying model parameters for the line simulator



- Simulates a line as series RL circuit; enabling us to validate data acquisition instrumentation at realistic power and voltage levels.
- Will help us characterize a key unknown; the interaction between PV inverters and electromagnetic transients.





<200KHz, parasitic capacitances introduce self resonance at ~400KHz



