HALON REPLACEMENT PROGRAM FOR COMBAT VEHICLES A STATUS REPORT

William Bolt, Craig Herud, Terry Tremor U.S. Army Aberdeen Test Center Steven McCormick U.S.Army Tank-Automotive and Armament Command

1

8 May 1997

Army Combat Vehicle Halon Replacement Programs

- Engine Compartment Fire Extinguishing Systems
- Crew Compartment Fire Extinguishing Systems
- Hand-held Fire Extinguishers

2

Engine Compartment Program Status

- Phase I Initial screen w/ generic test fixture
 Complete 14 candidate systems tested
- Phase II Proof of principle in M60A3 tank
 Complete 6 candidate systems tested
- Phase III Vehicle specific systems
 - 2 candidate systems tested
 - Abrams & Bradley programs 90% complete
 - FAASV underway; other vehicles pending,

3

8 May 1997

Phase 3 - Abrams

- Two shot engine compartment system
 - 1st shot automatic
 - 2nd shot manual w/ 18-sec delay
- Agents tested
 - FM-200
 - Amerex Regular Dry Powder

Abrams - Hardware Tested

- Stock 7-lb extinguisher w/ Marotta valve and perforated tube distribution system (rakes)
- Prototype
 - Modified rakes (FM-200 only)
 - Nozzle systems
 - 3/4-in diameter piping
 - 3/4-in bulkhead & manifold check valves

8 May 1997

Abrams - Test Conditions

- All tests 1st shot conditions scenario reflects M1 operating conditions
- Threats based on fire history
 - three spray fire locations
 - fuel &.hydraulicfluid fires
- Three engine speeds: low &tactical idle, full throttle

6

Abrams - Fire Scenario

- Bilge and fuel spray fire wlairflow
- Engine at operating temperature; hot fuel

T ₀	start bilge fire
T ₀ +10	adjust engine speed
T ₀ +15	start fuel spray
T ₀ +20	ignite fuel spray
T ₀ +22	discharge agent
T ₀ +35	stop fuel spray
$T_0 + 180$	test complete
4007	

7

8 May 1997

Abrams - Results: Dry Powder

- Fires extinguished w/ 10-lbs in stock extinguisher
 (a) 750-psi with Mod P-12 distribution system:
 - 9 powder nozzles
 - 3/4" piping between extinguisher & manifold
 - new manifold w/ 3/4" check valves
- Fire out times: 1-3 sec. w/ total bum of 20-22 sec.

Abrams - Results: Mod P-12				
Temperature	Engine Speed	Amerex	FM-200	
Ambient	Full	4/4*	5/5	
	Tac	313	3/3	
	LOW	313	313	
Cold	Full	111	313	
	Tac	NT	NT	
	LOW	NT	414	
* Includes Mod P-1 I data				
8 May 1997			9. 科学 (

Abrams - Results: FM-200

- Not effective w/ standard hardware
- Effective in powder distribution hardware (P-12)
- Mixed results w/ new piping system @ full throttle (Mod 8)
 - 3/4" piping between extinguisher & manifold
 - new 3/4" manifold & bulkhead check valves (ball type)
 - branch rakes; new hole pattern

10

Summary

- Phase **3** fires were extinguished w/o incurring a volume penalty.
 - Distribution hardware changes are required.
 - P-12 distribution system effective with either FM-200 or powder.
 - P-12 nozzle system provides effective performance w/o volume penalty.
 - Powder and liquid agents can work in the same hardware.
 - Equivalence to halon was not established.

8 May 1997

П

Phase 3 - Bradley

- Single shot manual engine compartment system
- Agents tested
 - Amerex Regular Dry Powder
 - **-**FM-200
 - **–** FE-36

12

Bradley - Hardware Tested

- Stock 7-lb extinguisher w/ Ansul valve
- Prototype
 - Stock w/ bent dip tube
 - Stock w/ 10-lbextinguisher
 - 10-lbw/ Marctta valve
 - 2 nozzle distribution system (FM-200/powder)
 - 4 nozzle distribution system (powder only)
- Limited powder testing

8 May 1997

Bradley - Test Conditions

- All tests vs Type 2 fires: scenario modified to reflect M2 operating conditions
- Engine shut down; agent released when fan speed decayed to 750 rpm
- Three spray fire locations: based on ignition source & potential for fuel leaks
- Class A components protected until hardware design frozen

14

Bradley - Fire Scenario

- Bilge & fuel spray, decaying airflow
- Engine at operating temperature; hot fuel
 - T_0 start bilge & fuel spray fire T_0+2 engage engine cooling fan T_0+45 shut off engine fuel T_0+47 shut off master power T_0+4x discharge agent @ 750 rpm T_0+49 stop fuel spray

8 May 1997

Bradley Results

- Effective w/ stock system w/ 8.5-lbs FM-200
- Fire out times: 20-25 seconds
- Engine must be stopped
- Unprotected pack significant component damage
- HFCs successful powder evaluation terminated

Conclusions

• Abrams :

- satisfactory performance with powder & FM-200
- no volume penalty over existing Halon system
- major hardware changes are required

• Bradley:

- satisfactory performance with liquid agents
- no volume penalty over existing Halon system
- minor hardware changes are required
- fire detection system desirable
- 8 May 1997

Conclusions

- Distribution system design is critical for high airflow conditions:
 - good design can reduce agent requirement
 - complexity of distribution system:

Powder > Liquid > Gas

 properly designed powder systems can also work for liquid or gaseous agents: Abrams P-12 system successful w/ both powder and FM-200.

18

Conclusions

- Shutting down engine airflow prior to discharge of agent can drastically reduce the amount of agent required and the complexity of the distribution system:
 - Bradley system is a near "drop-in": only necessary to change dip tube and pressure gage
 - System is unsuccessful if the engine is running.

8 May 1997

Issues

- Single replacement agent for all vehicle systems desirable from logistics standpoint, but may not result in optimum or lowest cost system for each vehicle.
- Choice of single/multiple agents will be driven by Abrams/Bradley requirements and life cycle costs.

19

Crew Compartment Systems

Crew system requirements greater than for engine

- Heat flux low enough to prevent second degree burns on exposed skin
- Fire out time (< 250 msec)
- Neat agent & decomposition product toxicity

Combat fire scenarios

- Simulated electrically initiated JP-8 spray
- Ballistic shaped charge thru fuel cell w/ JP-8

8 May 1997

Evaluation Parameters

- Performance
 - Burn potential: < 2400°F-sec (10-sec interval)
 - Operating range: -25 to +140°F
 - Peak pressure: < 11.6-psi
 - Volume ≤ 600 -in³
- Environmental
 - ODP = 0 GWP: as low as possible
- Toxicity
 - Neat agent: ≤NOAEL
 - Acid by-products: <1000-ppm

Program Status

Crew Compartment

- Test fixture constructed
 - Ballistic proof testing completed
 - Test instrumentation installed
 - Simulator development tests underway
- RFP issued by TACOM 11 Feb 97
- Proposals received 01 Apr 97
- Contracts awarded 3rd Qtr 97

8 May 1997

HFE Program Status

- 2.5-lb CO, will replace 2.75-lb Halon 1301 HFE for most applications; conversion underway
- Potential toxicity problems w/ C02 in some vehicles w/ small compartments; FM-200 or FE-36 HFE being considered for these applications

Acknowledgements

Army Tank-automotive & Armaments R&D Center PM - Abrams PM - Bradley Walter Kidde Aerospace, Inc. General Dynamics Land Systems Div United Defense Limited Partnership

25