

Ereckjipe SkZZags

AdaC]ge gec]ZZe[dh jhaj aYY heckgijs h]fjqage�

Â� be depeY]ded dgefegabYs khi[g dgi[cidYeh]f heckgijs bs dehig[� qijh dagjickYag eZdhahih][jhe hshjeZajic

khe]f ZajheZajicaY dg]]fh]f c]ggecj[ehh�

Ã� be hkbjecjed j] hshjeZajic hjajic a[aYshih eagYs i[jhe depeY]dZe[j cscYe� qijh dagjickYag eZdhahih][jh]he

dagjh]f jhe h]fjqage f]g qhich ZajheZajicaY dg]]fh qege []j ehjabYihhed�

Ä� be hkbjecjed j] ds[aZic a[aYshih qijh ÂÁÁÚ hjajeZe[j c]pegage�

DejaiYed P]hiji][SjajeZe[j

This paper aims at providing AdaCore’s input on the following area, that NIST is considering as part of the

implementation of Executive Order 1Å02É of May, 12 2021:

Minimkm gefkigemenjh fog jehjing hofjqage hokgce code inclkding defining jspeh of mankal og akjomajed jehjing

¥hkch ah code gepieq joolh� hjajic and dsnamic analshih� hofjqage compohijion joolh� and penejgajion jehjing¦�

jheig gecommended kheh� behj pgacjiceh� and hejjing gealihjic erpecjajionh fog heckgijs benefijh�

More specifically, it will focus on three domains where AdaCore has specific expertise: security-by-design, static and

dynamic analysis.

Seckgijs�bs�Dehig[

For the security-critical sections of the software, dg]ggaZZi[g Ya[gkageh jhaj e[hkge heckgijs�bs�dehig[should be

favored over manual coding with languages such as C and CÛÛ, whose lack of strong typing, error-prone syntax and

memory unsafety are a major cause of security vulnerabilities. By “programming languages” we mean traditional

textual languages as well as modelling languages.

AdaCore recommends programming languages for which a ZajheZajicaY dg]]f can be computed that the software

will behave as it is intended to. Examples of such formal technologies include the SPARK, Frama-C and Polyspace

Prover technologies. SPARK, if used at the silver level or above, can prove the absence of runtime errors, a valuable

property as buffer overflows are one of the most common vulnerabilities in software. Security-by-design also includes

domain-specific languages that can be used to describe formally the expected behavior of the software and then

automatically generate a provable implementation. Examples of this approach can be found with the Microsoft

Research EverParse or AdaCore’s RecordFlux technologies, which can be used to formally specify a communication

protocol and generate secure implementation of the same.

These technologies are necessary for a complete long-term solution to some of the software-related security issues

that need addressing, yet the market still needs to mature in order to adopt them pervasively. The main challenges

associated with these approaches are (i) the difficulty to find engineering talent qualified with formal languages and

provers or able to use these domain-specific languages; and (ii) the necessity to use security-by-design concepts from

the beginning of the software development lifecycle: legacy code cannot be secured er pohj, only specific

security-critical components within legacy code can be rewritten from scratch using these technologies.

Sjajic A[aYshih

Static analysis includes all the other technologies that can be used to assess the security of software without having

to execute it. As opposed to security-by-design, it doesn’t require the use of a specific language to identify and

eliminate the programming constructs that are likely to cause specific weaknesses such as those listed in the CWE

database.

The use of static analysis is already widespread in the US aerospace and defense industry: static analysis is easy to use

and broadly applicable to both new and legacy software of any level of criticality. The static analysis market is mature

and includes a large number of static analysis tools, including CodePeer and Polyspace for Ada, Synopsys Coverity for

C, and many others.

The main challenge of static analyzers lies with the ability to practically analyze their messages, in particular when the

rate of false positives is high. Several behj dgacjiceh can help to address this challenge:

https://www.nist.gov/itl/executive-order-improving-nations-cybersecurity/workshop-and-call-position-papers
https://www.federalregister.gov/documents/2021/05/17/2021-10460/improving-the-nations-cybersecurity
http://www.adacore.com/knowledge/technical-papers/implementation-guidance-spark
https://frama-c.com/
https://fr.mathworks.com/products/polyspace-code-prover.html
https://fr.mathworks.com/products/polyspace-code-prover.html
https://owasp.org/www-community/vulnerabilities/Buffer_Overflow
https://www.microsoft.com/en-us/research/blog/everparse-hardening-critical-attack-surfaces-with-formally-proven-message-parsers/
https://blog.adacore.com/recordflux-from-message-specifications-to-spark-code
https://cwe.mitre.org/
https://cwe.mitre.org/
https://www.adacore.com/codepeer?gclid=Cj0KCQjwwLKFBhDPARIsAPzPi-IplO6iVMKuWGsnXPC1qy10x5Vt4m4qaKbr9az7IOgBlwJiBbqqkCYaAuwYEALw_wcB
https://fr.mathworks.com/products/polyspace-ada.html
https://www.synopsys.com/software-integrity/security-testing/static-analysis-sast.html

● defining a coding standard for the application;

● doing static analysis early in the development lifecycle, ideally as a development activity;

● doing static analysis on limited portions of the code at a time;

● having developers who know best the code analyze the results.

From an organizational standpoint, these best practices can be summed up as integrating static analysis in a peer

review process, or in a continuous integration pipeline. On the contrary, having static analysis performed at the end of

the software development lifecycle, typically by test and validation engineers on the whole system, is far less

effective.

No matter how static analysis is performed, it is important to point out that performing static analysis on the code

will not remove all weaknesses, but only ensure that well identified ones are systematically detected. To this extent,

hjajic a[aYshih dg]pideh qeakeg gkaga[jeeh jha[heckgijs�bs�dehig[.

Ds[aZic A[aYshih

Dynamic analysis includes any technology that requires the execution of the software to assess its security. Dynamic

analysis can be used either at the implementation stage (e.g. unit testing) or at the integration stage (e.g. system

testing) and even at runtime (e.g. using runtime checks). Fuzz testing and model-based testing are two of the most

commonly used dynamic analysis technologies. An important aspect, regardless of the method used, is to ensure that

a sufficient coverage of the code under test is achieved. Our position is that Yehh jha[ÂÁÁÚ hjajeZe[j c]pegage

hh]kYd be c][hideged i[adefkaje� Software that is particularly critical may be subject to more stringent

requirements: for instance, DO-1ÈÉC requires DAL A software to achieve 100Ú MC/DC coverage.

Fkvv jehji[g involves generating test vectors automatically from a known seed to identify vectors that can cause

unwanted behaviors, such as crashes. Fuzz testing can be performed at the system level or at the unit level.

Fuzz testing is complementary to static analysis in that the mutation mechanism can find complex vulnerabilities that

have not been formally identified before and involve interactions between different subsystems, as proven by the

many high profile vulnerabilities found thanks to fuzzing technologies: OSS-fuzz has for instance found 2Æ,000 bugs in

various projects, while syzkaller claims 2ÉÆÅ bugs found in the Linux kernel, with 20ÅÇ fixed. Examples of dynamic

analysis products include ForAllSecure’s Mayhem, Synopsys Defensics, or AdaCore’s GNATFuzz.

M]deY�bahed jehji[g involves generating test vectors from a formal model, to thoroughly cover the actual execution

space. A typical example can be found with the RecordFuzz technology that AdaCore is developing, where a formal

description of a binary communication protocol - which can also be used to generate a provable, secure

implementation with the RecordFlux tool - is used to generate test vectors for existing implementations of the same

protocol. This type of dynamic analysis can be used as the entry point for further de[ejgaji][jehji[g�

From our perspective, the market for system fuzzing is technologically mature, and adoption in the industry is bound

to increase. On the other hand, technologies to allow developers to use ds[aZic a[aYshih eagYieg i[jhe depeY]dZe[j

YifecscYe age hjiYY Yacki[g qidehdgead khe and may be considered as a best practice to improve security of software

where formal methods are not an option.

C][jacj I[f]gZaji][

1Æ0 W. Ä0th Street, 1Çth floor Romain Berrendonner

New York, NY 10001 Security Solution Architect

USA berrendo@adacore.com

Tel. Û1 212 Ç20 ÈÄ00

www.adacore.com

https://rt.cto.mil/wp-content/uploads/2019/06/SOAR-Report-2016.pdf
https://rt.cto.mil/wp-content/uploads/2019/06/SOAR-Report-2016.pdf
https://blog.adacore.com/advanced-fuzz-testing-with-aflplusplus-3-00
https://github.com/google/oss-fuzz
https://github.com/google/syzkaller
https://forallsecure.com/mayhem-for-code
https://www.synopsys.com/software-integrity/security-testing/fuzz-testing.html
https://blog.adacore.com/advanced-fuzz-testing-with-aflplusplus-3-00
http://www.adacore.com
mailto:berrendo@adacore.com

