# Scale-Model Smokestack Simulator (SMSS)

A Facility to Study CEMS and RATA Flow Measurements



Measurement Challenges and Metrology for Monitoring CO<sub>2</sub> Emissions from Smokestacks Workshop

**April 21, 2015** 

Aaron N. Johnson

Fluid Metrology Group, NIST

#### Acknowledgements

#### **NIST**

Joey Boyd

Rodney Bryant

Jim Filla

Keith Gillis

Lee Gorny

Mark Khalil

James Whetstone

Jacob Ricker

Dan Sawyer

**Iosif Shinder** 

John Wright

Michael Moldover

**Georgia Tech** 

**Chris Crowley** 

**NIM China** 

Liang Zhang

**CEESI** 

Eric Harman

## What is the Problem? Why is it Important?



U.S. CO<sub>2</sub> Emissions, by Source (EPA, 2012)

#### World-Wide, Coal is Most Important, IEA (2013)

Figure 10. CO<sub>2</sub> emissions from electricity and heat generation\*



IEA – Internal Energy Agency

# Coal-Fired Plants: Two methods to determine CO<sub>2</sub>

Fuel Input:
Amount & quality of coal (EIA data)

**Emissions Output:**CEMS - Flow and CO<sub>2</sub>
concentration (EPA data)



# Coal-Fired Plants: CEMS vs. Fuel Input Do they agree?



# Coal-Fired Plants: CEMS vs. Fuel Input Do they agree? No!



# Coal-Fired Plants: CEMS vs. Fuel Input Do they agree? No!

- Disagreement of  $\pm$  20 %
- Neither method traceable to the SI
- Uncertainty is unknown for either method



- CEMS method has more potential for improvement
  - o Fuel input method relies on accurate coal emission factors
  - Coal is heterogeneous and quality can vary significantly even within the same lot
- Based on large dispersion there is an effort to determine uncertainty of CEMS

#### Why are Emissions Measurements Difficult?

- High Reynolds number  $\sim 10^7$ ; too large to be reproduced in lab.
- **Flow is fast:** 6 m/s to 26 m/s
- Nasty conditions:
  - Access via outside cat-walk 90 m (300 ft) above ground on older stacks
  - Noisy
  - Gas is either "hot" (no scrubber 90+ °C) or "ambient & raining" (scrubber)
  - Gas is asphyxiating: composition (by volume)

```
13.7 % CO<sub>2</sub>
3.4 % O<sub>2</sub>
74.8 % N<sub>2</sub>
8.0 % H<sub>2</sub>O
```

- Stacks are big: no lab can calibrate a 10 m diameter flow meter
- Flow is complicated

#### Flow is Complicated

(Flow Dynamics in a Typical Smokestacks)



#### How are Emissions Measurements Made Today?

- 1) Using EPA-approved protocols
  - the bulk gas flow is continuously monitored, and
  - the composition is continuously analyzed for  $O_2$ , CO, Hg,  $SO_2$ ,  $NO_x$  to comply with emission controls
- 2) The instruments used for 1) comprise the CEMS = Continuous Emissions Monitoring System
  - Typical CEMS use <u>ultrasonic meters</u> (USM) with one or two paths to monitor flow
  - CEMS require calibration
- 3) Annual "*Relative Accuracy Test Audit*" (RATA) "calibrates" ultrasonic CEMS flow monitors.
  - the flow is surveyed with a <u>S-Probe</u>, that is temporarily installed on the stack.
  - As the name suggests, the RATA provides only <u>relative accuracy</u>, <u>not</u> necessarily uncertainty relative to primary standards.

## **Measurement Need**

Improve CO<sub>2</sub> measurements from coal-fired power plants

- o to assess progress of carbon mitigation efforts and
- o to **fairly implement future carbon controls** (*e.g.*, carbon tax, cap and trade)
- o to **provide accurate input data** for climate CO<sub>2</sub> mass balance models

NIST Objective: SI-traceable, CO<sub>2</sub> flux measurements with 1 % expanded uncertainty at a reasonable cost to provide the technical basis for carbon control in the US and internationally

# Flow is Complicated





## Flow is Complicated

#### **Ideal Profile**



#### **Real stacks have Skew**





#### **Technologies Used for CEMS Flow Measurements**

(Flow Monitoring Equipment Installed in Smokestacks)



#### **Ultrasonic Meter (USM) Principle of Operation**

- USM transducer emits *sound beam* of known frequency
- USM measures the transit time of the sound beam to travel a known distance (L) with and against the flow

$$t_{\text{with}} = \frac{L}{a + V_{\text{L}}}$$
  $t_{\text{against}} = \frac{L}{a - V_{\text{L}}}$ 

• Averaged path velocity along path L

$$V_{\rm L} = \frac{L}{2} \left( \frac{1}{t_{\rm with}} - \frac{1}{t_{\rm against}} \right)$$

• The USM determines the flow velocity by projecting the path velocity  $(V_L)$  onto the flow axis

$$V_{\text{USM}} = \frac{V_{\text{L}}}{\cos \theta} = \frac{L}{2 \cos \theta} \left( \frac{1}{t_{\text{with}}} - \frac{1}{t_{\text{against}}} \right)$$



Sender & Receiver

- Measurement Problems
  - 1) Profile Errors USM measures path velocity, and not the area weighted velocity
  - 2) Swirl Errors measured path velocity ( $V_L$ ) includes contributions both from the <u>axial</u> and <u>non-axial</u> (*i.e.*, swirl) velocity components
  - **3) Installation Errors** depending on installation angle the acoustic path interrogates a different portion of flow field
- USM Calibrated by RATA

#### **S-Probe:** Workhorse for stack flow measurements

(Device used to "calibrate" the USM via the EPA RATA)



#### S-Probe: Workhorse for stack flow measurements



#### S-Probe: Geometric Calibration Parameters



# S-Probe: cannot detect pitch





#### **S-Probe Calibration**



#### Calibration Factor is a Function of 4 variables

- 1. Reynolds Number (Air speed)
- 2. Pitch angle (S-probe does not measure pitch)
- 3. Yaw angle
- 4. Turbulence intensity

#### **EPA** protocol assumes calibration factor = 0.84

- The calibration factor **exhibits Reynolds number dependence** (*i.e.*, 4 % change with Reynolds number)
- Using the EPA calibration factor = 0.84 introduces errors as large as 10% depending for large pitch angles (pitch > 30° or pitch < -30°)

# EPA Protocol to "Calibrate" CEMS using S-Probe

(Relative Accuracy Test Audit or RATA)

- S-Probe measures the fluid velocity at a point
- The S-Probe is traversed along two diameters in stack cross section
- Measured point velocities are integrated to determine the *average flow velocity*
- RATA Protocol Based on EPA Documents
  - 40 CFR Part 60
  - 40 CFR Part 75 (2F, 2G, 2H)
- Measurement Problems
  - S-Probe often not calibrated (an assumed calibration factor = 0.84 is used)
  - S-Probes do not detect pitch
  - Velocity measured only along two diameters
  - Integration errors



#### What is NIST Doing?

- 1) Tie EPA-CEMS instruments and protocols to primary standards (Essential for International Recognition)
  - A. Calibrate Pitot probes under realistic conditions (NIST Wind Tunnel)
  - B. Determine accuracy of ultrasonic flow meters (USM) and S-Probes in complex *smokestack-like* flows (Newly Built Scale-Model Smokestack Simulator)
  - C. Understand/model results to generalize and scale up (CFD)
- 2) Invent alternative flow standards for flue gas stacks (to check entire measurement chain)
  - A. Advanced Multipath Ultrasonic Flow Meters
  - B. Long Wavelength Acoustic Flow Meter (LWAF)
  - C. Tracer Dilution
- 3) Test accuracy of 1) and 2) in a near-scale industrial smokestack (Newly Built National Fire Research Laboratory)

#### NIST's Scale-Model Smokestack Simulator (SMSS)



- Horizontal orientation for cost and safety
- SMSS is 1/10<sup>th</sup> the diameter of an industrial smokestack
- Air used as a surrogate for flue exhaust

#### Scale-Model Smokestack Simulator (SMSS)



• Ambient air is drawn into the Intake Module by the 2 fans at the exit

#### • Reference Section:

- o Designed to produce an ideal velocity profile with no swirl
- o SI Traceable flow measurement via NIST calibrated flow meter

#### • Test Section:

- o Flow velocities range from 6 m/s to 26 m/s (same as industrial smokestacks)
- o Sharp corner generates turbulent, skewed, swirling flows
- o CEMS and S-Probes evaluated in smokestack-like flow conditions

#### **Computational Domain for Modeling SMSS**



#### **SMSS CFD Model**

- Used Commercial Code ANSYS FLUENT
- 3D Steady, incompressible Reynolds Averaged Navier-Stokes Equations
- Turbulence Model
  - Realizable k-ε turbulence model with enhanced wall functions
- Fluid Properties
  - Air at constant temperature
  - Density;  $\rho$ =1.225 kg/m<sup>3</sup>,
  - Molecular Viscosity; μ=1.7894x10<sup>-5</sup> kg/m·s

#### Boundary Conditions

- No slip at walls
- Inlet Pressure at Spherical Volume: P = 101,325 Pa (absolute)
- Outlet Pressure: P = -2000 Pa (gauge)

#### Numerical Scheme

- Solved using double precision,
- 1<sup>st</sup> order spatial discretization
- Converged residuals on order of 10<sup>-3</sup> or less

#### Mesh

Unstructured with 9,800,000 cells

#### **CFD Model**



## **CFD Model**



#### **CFD Model**

(Flow just after corner in Test Section)

#### **Test Section**

- Streamlines show swirl after corner section
- Faster moving flow toward outer wall in Region A
- Reverse flow near inner wall in Region B
- Recirculation Zone in Region C



#### Scale-Model Smokestack Simulator (SMSS)



# **Air Intake Unit and Cone**



# **Air Intake Unit**



#### **Reference Section**

(SI Traceable Flow Measurement)



#### **SMSS Reference Flow Meter**



8 Path ultrasonic meter (USM)
Installed after 17 D of straight pipe (good flow)
Calibrated against NIST flow standards
Determines bulk flow to 0.5%

# Calibration of USM at CEESI in Colorado against NIST working standards



$$\varphi = \frac{V_{\text{NIST}}}{V_{\text{USM}}}$$
 Calibration Factor



- Excellent Reproducibility < 0.075 %
- Expanded Uncertainty: 0.45 % to 0.58 %
- Best-ever calibration in air in this size

#### **Test Section**

(Skewed, Swirling, Turbulent Flow)



# **Three Axis Automated Pitot Traversing Unit**



| Traversing Axis    | Maximum Range of Motion | Expanded Uncertainty |
|--------------------|-------------------------|----------------------|
| r                  | 1.2 m                   | < 0.5 mm             |
| $oldsymbol{	heta}$ | 200°                    | < 1°                 |
| $oldsymbol{arphi}$ | 360°                    | < 0.5°               |

#### **Research Plans**

- Determine the in-situ performance and uncertainty of smokestack flow measurement technologies in swirling flows with skewed velocities
  - EPA RATA using S-Probe (and other types of pitot probes)
  - CEMS flow meters (Ultrasonic Flow Meters)
- Research and develop alternative approaches for smokestack flow measurements
  - Long Wavelength Acoustic Flow Meter
  - Multi-chord pitot traverse methods with advanced integration techniques
  - Advanced Multi-path ultrasonic flow meters
  - Differential absorption LIDAR
  - Tracer Dilution Methods
- Develop benchmark data to validate CFD (Computational Fluid Dynamic) models used for scale-up to full sized smokestacks
- Proficiency Testing (Facility for RATA testers to prove their capabilities)

# Questions?