

The NIST Research Reactor (NBSR) and the Cold Neutron Sources and a few other things we do at ROE

Abdullah G. Weiss, PhD Nuclear Engineer

NIST Center for Neutron Research 100 Bureau Dr., 20899 Gaithersburg, MD, USA

- Nuclear fission basics (What is a nuclear reactor?)
- NBSR Description & History
- Cold Sources
- Current Developments
- Q/A

Nuclear Fission & Fuel

- Breaking an atom apart
 - Releases a lot of thermal energy
 - Also releases fission products (other isotopes)
 - Usually done with a fuel
 - Fissile material (²³⁵U)
 - Fissionable material (²³⁸U)
 ¹⁴¹Ba
 ⁹²Kr
 ¹⁴¹Ba
 ⁹²Kr
 ¹⁴¹Ba
 ⁹²Kr
 ¹⁴¹Ba
 ⁹²Kr
 ⁹²Kr

water with this!

Plates

Pebbles

Molten Salt

Nuclear Reactors

- Contain fuel, coolant, and (if thermal spectrum) moderator
- Also must contain a form of control on the neutron population
 - Control/shim rods/arms
 - Made of strong neutron absorbers (Cd, B, Hf)
- Radiation shielding, detectors, and a neutron source (to initialize the chain rxn) are also needed

Types of Nuclear Reactors Water systems

Types of Nuclear Reactors Pebble bed systems

Pebble bed reactor scheme

NIST

https://upload.wikimedia.org/wikipedia/commons/thumb/0/0f/Pebble_bed_reactor_scheme_%28Engli sh%29.svg/1200px-Pebble_bed_reactor_scheme_%28English%29.svg.png CENTER FOR

Types of Nuclear Reactors Molten salt systems

PRECISION DIP TUBES

This precision dip tube allows you to withdraw a precise amount of liquid, isolating the pellet after the centrifuging process. This same technology can be used to accurately place a dip tube in any of our Cap2v8[®] bottle assemblies.

The NBSR Overview

The NBSR Core Characteristics

- HEU fuel (93% ²³⁵U) U₃O₈+Al
 - \circ 350 g ²³⁵U/fuel element
 - 34 plates: 11"×2.5"×0.02"
 - Heavy water coolant (D_2O)
- 30 Fuel Elements
 - ~38-day fuel cycle at 20 MW
 - 4 fresh elements per cycle (usually) with a management scheme to shuffle other elements in the core
 - ~960 g of ²³⁵U consumed per cycle
 - 7 or 8 cycles per element depending on where it is loaded initially
- Axially split-core
 - BTs and CNS(s) are at the thermal neutron flux trap elevation
 - \circ BT fluxes ~ 1.5×10¹⁴ n/cm²-s

The NBSR History

- Designed in 1960s (included a beam port for a single cold source)
- It first reached criticality on December 7th, 1967
- Originally it was a 10 MW reactor
- Converted to 20 MW in 1985
- Cold Neutron Facility
 - \circ D₂O cold neutron source (CNS) installed in 1987
 - LH₂ CNS installed in 1995
 - An advanced LH₂ CNS installed in 2002
 - Peewee (smaller CNS) installed in 2012 in BT-9
 - An upcoming cold source upgrade is planned for 2023

The NBSR Instruments Layout

11

Neutron Thermalization

- Fission neutrons are ~2 MeV (fast)
- Thermalized (20 400 meV) via scattering off of the D₂O moderator in the core
 - D₂O is ~320 K (115 °F), which is what dictates the thermal energy of the neutrons
 - Can be calculated with particle kinematics (classical mechanics formulae)
- To reach lower energies, you introduce a cryogenic facility, the cold neutron source (CNS)
 - Currently liquid hydrogen (LH₂) at 20 K.

Neutron Flux in the NBSR Flux Trap (10 MW) NUST CENTER FOR NEUTRON RESEARCH

Obtained from NBSR-9 SAR

Figure 4.14 Vertical distribution of fast neutron flux along core centerline for two shim arm positions ($\theta = 10^\circ$ and $\theta = 16^\circ$).

shim arm positions ($\theta = 10^{\circ}$ and $\theta = 16^{\circ}$).

13

How do we produce cold neutrons?

- Fission neutrons are ~2 MeV (fast)
- Thermalized (20 400 meV) via scattering off of the D₂O moderator in the core
 - D₂O is ~320 K (115 °F), which is what dictates the thermal energy of the neutrons
- To reach lower energies, you introduce a cryogenic facility, the cold neutron source (CNS)
 - Currently liquid hydrogen (LH₂) at 20 K.

NIS

Installation of LH₂ CNS (Nov. 2001)

CENTER FOR

NEUTRON RESEA

The Cold Source Through the years

- 1. D₂O tank (1967)
- 2. D₂O lce (1987)
 - Gain of 3-5x in brightness
- 3. Unit 1 LH₂ (1995)
 - Gain of ~6x
- 4. Unit 2 LH₂ (2002)
 - Gain of ~2x
- 5. LD_2 (Planned for 2023)

55 cm Diameter

The Current Cold Source Unit 2

- Passively safe and simple to operate (and reliable)
- Utilizes a thermosiphon system to supply the CNS with LH₂
- Closed system
- He containments

The OTHER Cold Source Peewee

- 11 cm ID, ½ L volume
- Gain of ~1.7 over being directly installed on Unit 2
- 14.6 cm D_2O jacket and its own H_2 tank
- Condenser is cooled in parallel with Unit 2
- Operating successfully since April 2012

NS

NEUTRON RESEARCH

The OTHER Cold Source Peewee

Installation of peewee (Sep. 2011)

We Also Have Rabbit Tubes

Pneumatically-driven sample insertion and removal systems

(:

RT-1

RT-2

• Used for in-core irradiation

Developments NBSR Recovery

- February 3rd refueling accident
- Cleaning of primary system was conducted
- Fuel loading analysis completed
 - Currently updated to meet operations developments
- New training program developed
- New Reactor aging management program developed
- Obtained restart authorization from NRC!
- Restarted safely
- Currently doing low-power testing

Developments NBSR Recovery

Can operate with alternative fuel management schemes

	NATIONAL INSTITUTE OF STANDARDS AND TECHNOLOGY U.S. DEPARTMENT OF COMMERCE
February 1, 2023	i -
ATTN: Documer U.S. Nuclear Reg Washington, DC	nt Control Desk gulatory Commission 20555-0001
Subject: Docket	Number 50-184 license amendment request
Dear Sirs/Madar	15:
The NIST Center : amendment under We have made the failure event of Fe (AFMS) for the up license amendment timely restart of th centers. The prop recently concludee a timely reactor re Management Sche Attached please f Engineering Chan Procedure for this	for Neutron Research (NCNR) hereby submits a request for an exigent license 10CFR50.91(a)(6) to make specified changes to the NBSR Safety Analysis Report. decision not to reuse any fuel assemblies that were present in the core during the fuel bruary 3, 2021, and, as a result, must use an Alternate Fuel Management Scheme cooming restart of the reactor. As restart preparations enter their final stages, an exigent t is justified in that it is necessary to allow completion of refueling and a subsequent e NBSR to continue NCNR's mission as one of the nation's premier neutron science losed analysis for AFMS has been discussed at length with NRC staff and we only 1 that this LAR is the best path forward to clarify analysis requirements that will lead to start. The proposed amendment will add SAR section 4.5.1.1.3, "Alternate Fuel mes (AFMS)". in (1) Proposed SAR changes, 2) Finding of No Significant Hazards analysis, 3) ge Notice for the AFMS procedure, including 50.59 analysis, and 4) The Engineering analysis, NBSR-0018-DOC-00.
Sincerely, ROBERT DIMEO	Digitally signed by ROBERT DIMEO Date: 2023.02.01 07:40:55 - 05'00'
Robert Dimeo Director NIST Center for	Neutron Research
I declare under p	enalty of perjury that the following is true and correct.
Executed on Feb	ruary 1, 2023

Can operate with loose fuel in the water

Developments NBSR Engineering Procedures

	Document: NBSR Engineering Pro	cedure NBSR-0018-DOC-00				
	Title: NBSR Alternative F	uel Management Schemes Analysis				
	Procedure					
	Revision: Initial Release	Date: 1/30/2023				
NBSR Engineering Procedure NBSR-0018-DOC-00						
NBSR	Alternative Fuel Management Schemes	Analysis Procedure				
	Revision 1					
Dağistan S	ahin, Osman Sahin Celikten, Anil Gurg	gen. Abdullah G. Weiss				
Lan-J	Van Cheng Peter Kohut Cihang Lu At	thi Varuttamaseni				
Lap	Themas Newton					
	Thomas Newton					
Distribution:						
Electronic Copies:	Hard	Copies:				
R\NBSR Engineering	y Manual/30 NBSR-0018- NCNI mative Fuel Management	R A150				
Schemes Analysis Pr	cocedure\Current Revision					
Record of Revisions						
		ECN No.				
Revision Description	of Revision	(if applicable) Date				
Initial 0		1269 1/30/23				
1 Incorporate OFIR correla	expanded range tables for CHFR ations	and 1294 6/1/2023				

Developments NBSR Engineering Procedures

		Document:	NBSR Engineering Pro	ocedure NBSR-19-DO	DC-00	
NIST	NTER FOR UTRON RESEARCH	Title:	Reliability, Availability in engineering projects	y, Maintainability and	d Safet	y (RAMS)
		Revision:	Initial Release	D	ate:	3/01/2023
	NF	SR Enginee	ring Procedure NBSR	-19-DOC-00		
		NBSR	Engineering procedur	efor		
			Engineering procedure			
Reliabi	lity Availal	vility Mainta	inshility and Safety (R)	AMS) in engineering r	rojects	
itellati	ity, Availat	Juity, Ivianita	inability and Safety (12	awio) in engineering p	Jojeets	
			Initial Release			
		Name		Signature		Date
Drafted by:	Yehonatan 2	lino				1 1
Reviewed by:	James Whip	ple				1 1
Reviewed by:	Dağıstan Şal	nin				1 1
CRE:	Paul Brand					1 1
CRO:	Randy Strad	er				1 1
Approved by:	Thomas Nev	vton				1 1
Distribution:						
Electronic	Copies:		Hard	Copies:		
		1	Record of Revisions			
				ECN NO.		
Revision Des	cription of	Revision		(if applic	able)	Date
Initial 0				1293	3 5	/5/2023

	Document:	NBSR Engineering Proce	dure NBSR-0020-DOC-(00		Ι	Document:	NBSR Engin	neering Procedure N	BSR-0021-DOC-0	0
	NBSR Spent Fuel Shipme	nt Analysis Procedure				Title: Vibrations Monitoring Guide					
	Revision:	Initial Release	Date:	6/6/2023			Revision:	Initial Relea	ise	Date:	6/7/2023
N	BSR Enginee	ring Procedure NBSR-00	20-DOC-00			NBS	R Engineer	ing Procedu	ure NBSR-0021-DO	C-00	
	NBSR Spent	Fuel Shipment Analysis P	rocedure				Vib	rations Monit	toring Guide		
		Initial Release						Initial Re	lease		
	Abdul	lah G. Weiss, Dağistan Şal	nin			Abdullah G. Y	Weiss, Sam	uel J. MacDa	avid, Anil Gurgen, D	ağistan Şahin	
Distribution:						Distribution:					
<u>Electronic Copies:</u> R\NBSR Engineering DOC-00 NBSR Spen Procedure\Current R	Manual\32 N tt Fuel Shipme evision	Hard C BSR-0020- NCNR nt Analysis	<i>'opies:</i> A135			<u>Electronic Copies:</u> R\NBSR Engineering 0021-DOC-00 Vibra Guide\Current Revision	Manual\33 ttions N	NBSR- Ionitoring	<u>Hard Copies:</u> NCNR A135		
		Record of Revisions					:	Record of R	evisions		
<u>Revision</u> <u>Description</u>	of Revision		<u>ECN No.</u> (<u>if applicable</u> 1298) <u>Date</u> 6/6/23		Revision Description of I	<u>Revision</u>			ECN No. (if applicable)	<u>Date</u>
			1250	0,0/20	1	initian v				1233	0/1/23

Developments LEU Conversion

NCNR-NBSR-SPC-1001

- US High Performance Research Reactors Conversion Program
 - Collaboration with several DOE laboratories (ANL, INL, BNL, ORNL)
 - To meet US and international non-proliferation goals
- Converting to U-10Mo HALEU (19.75% enrichment)
- Finished the first revision of the drawings and fuel specification document for the NBSR U-10Mo.

- Planned NBSR LEU conversion results in 10% reduction in thermal and cold neutron beams, which can be mitigated by replacing LH₂ to LD₂.
- Support for some of these modifications comes from US NNSA
- Increase in cryogenic heat load to ~4 kW
- Already purchased and installed a new 7 kW fridge to accommodate the heat load increase.

- Planned NBSR LEU conversion results in 10% reduction in thermal and cold neutron beams, which can be mitigated by replacing LH₂ to LD₂.
- Support for some of these modifications comes from US NNSA
- Increase in cryogenic heat load to ~4 kW
- Already purchased and installed a new 7 kW fridge to accommodate the heat load increase (will still use the thermosiphon system).

Developments Cold Source Upgrade

Developments Cold Source Upgrade

Developments Cold Source Upgrade

Radiation source		Un	it 2		PeeV	Vee		LC) ₂
	H ₂	2	Al		H ₂ Al		D ₂	Al	
Neutrons	104	4	3	ŝ	33	1		440	6
Beta Particles			308			29			567
Gamma rays	18	5	815		25	74		1053	1538
Subtotal	28	1	1080	ļ	58	104		1493	2111
Total cryogenic heat load [w]		13	861		16	2	3604		04
		L	H ₂ (PeeWe	e)	LH ₂ (Unit 2)		LD ₂ (Proposed)		
Operating Pressure (k	Pa)	200		100			100 - 200		
B.P. (K)			23.0			20.4		23.2	- 25.9
M.P (K)		14		13.8			18.8	8 - 19.0	
Density (kg/m3)		67.5		70			164 - 157		
Geometry		Disk		Elliptical Annulus		us	Cylindrical		
Dimensions (cm)		11			32 x 24			40 x 40	
Wall Thickness (mm)		4.5			2.3			3.2	
Liquid Volume (L)		0.45		5			35		
Mass (kg)		0.03		0.32			5.2		
Al Mass (kg)		0.14		0.28			7.2		

0.16

Heat Load (kW)

3.6

1.2

The Future The New Reactor: NIST Neutron Source (NNS)

Design of NNS

- Influenced by several reactors designed for neutron science
- Nominal power of 20 MW
- U-10Mo LEU (or U3Si2)
- Light-water-cooled compact reactor core
- Surrounded by heavy-water in the reflector tank
- 2 Cold Neutron Sources
- 8 Thermal Neutron Beams
- 40 days operating cycle

Developments New Reactor (NNS)

Reflector Tank with the core, cold sources, and beam tubes

Design of NNS

- Nine fuel assemblies (FA) in a 3x3 array
- Each FA contains 21 U-10Mo fuel plates
- 19.75% enriched Y-12 fuel wrapped with ~8 μm thick zirconium foil
- Four control blades and two safety blades placed in the center within two guide boxes
- Core horizontally divided into three rows
- 64 coolant channels at each row
- Optimize fuel cycle length & maintain a negative reactivity feedback

Design of NNS

Fuel Assembly

Core Neutronics Analyses

- The first letter (A,B,C) refers to the original row the fresh fuel element was located
- The numbers (11,12,13 etc.) refer to the row and column with regards to the 9x9 matrix
- Apostrophes and colors refer to the cycle number

NNS Current Fuel Management Scheme

Core Neutronics Analyses

BOC

NNS Current Fuel Management Scheme

1.06

1.12

1.06

-5

0.90

1.03

0.90

Normalized Power Heatmap of Assemblies in Each Cycle State

cold and thermal (<0.025 eV), thermal and epi-thermal (0.025 - 0.4 eV)

intermediate neutrons (0.4 eV - 100 keV) and fast neutrons (100 keV - 20 MeV).

The neutron distribution radial (top-view, left image) and (b) axial (side-view) profiles at the SU state

Elevated power densities for 2^{nd} cycle FAs are observed with values greater than 18 kW/cm³ and are accompanied with fission densities in the range of $1.5 - 2 \times 10^{21}$ cm⁻³. The 3rd cycle fuel assemblies have suppressed power densities with elevated fission densities in excess of 3×10^{21} cm⁻³. The maximum fission density is found to be 4.47×10^{21} cm⁻³.

Core Thermal Hydraulics

- Current CFD models the NNS inlet using RANS models (e.g., k – ε, realizable k – ε, k – ω, k – ω SST, and Spallart–Allmaras)
- Coolant channel is approximated with a rectangular channel with a flow area
- Previous analyses have measured a CHFR of 2.18 for BOC and MOFIR of 12.9 at SU.
- Maximum bulk temperature was nearly uniform in all channels and remained below 333 K, however maximum cladding temperature was approximately 370 K during SU.
- Results are sensitive to selected RANS model

CFD Model of Normalized Streamwise Velocity Profile of NNS Inlet 39

Core Thermal Hydraulics

- In-house developed thermal-hydraulics solver for the ٠ reactor core
- Probability of observing a mCHFR of less than 2.0 is ۲ 4.2% for the steady-state operation

NIS

40

CENTERFOR

NEUTRON RESEARCH

Core Thermal Hydraulics

 $\pm 2\%$ uncertainty on each δ_f comes from the Gaussian fit disagreement

Proposed Cold Neutron Instruments

Plan view through the fuel center of the reactor core

Instrument type	Total Number	End
	Iotal Nulliber	position
Small-Angle Neutron Scattering (SANS)	2-3	YES
Reflectometer (CANDOR type)	2	YES
Cold Neutron Imaging (CNI)	2	YES
Cold 3-Axis (CN3X)	2	YES
Backscattering (BS)	2	YES/NO?
Neutron Spin-Echo (NSE) (Mezei-type)	1	YES
Neutron Spin-Echo (NSE) (WASP type)	1	YES
High current physics experimental position (Physics)	1	YES
Prompt Gamma Activation Analysis (PGAA)	1	YES
Neutron Depth Profiling (NDP)	1	YES
Materials Diffractometer ($\lambda > 0.3$ nm)?	1?	YES
Interferometer	1?	NO
Monochromatic Physical Measurements Laboratory (PML)	2-32	NO
positions	Z-J:	NO
Miscellaneous monochromatic/ test positions	2-3?	NO
Very Small-Angle Neutron Scattering (vSANS)	1	YES
TOTAL	22-25	16-18

NIS

Proposed Cold Neutron Instruments

CENTER FOR **NEUTRON RESEARCH**

Proposed Thermal Neutron Instruments NIST

View of Potential Thermal Instruments

Instrument Type	Abbreviation
Prompt Gamma Neutron Activation Analysis	PGNAA
Neutron Microscope	Imaging
High-Resolution powder diffractometer	D
Triple Axis Spectrometer	3X
Ultra-Small Angle Neutron Scattering	USANS
High Throughput Fast Powder Diffractometer	D
White Beam Engineering Diffractometer (with CANDOR-type detector)	ENG
High Current Physics Experimental Position	PHYS

Proposed Thermal Neutron Instruments

CENTER FOR NEUTRON RESEARCH

Performance Comparison

Cold Source/ config	J_{tot} (all λ) (s ⁻¹)	$J_{tot} (\lambda \ge 4 \text{\AA}) (s^{-1})$
NBSR LH ₂ Unit 2 (all cold guides)	3.0×10 ¹³ (Ref. [ⁱ])	6.3×10 ¹² (Ref. [i])
NNS (6 cm × 15 cm) (16 equivalent guide entrances)	2.3×10 ¹⁴	5.8×10 ¹³
Gain NNS/NBSR Unit2	7.5	9.2

Table 13. Estimated "useful" (μ > 0.99875) neutron currents entering guide networks for NBSR (LH₂ Unit 2 cold source, guides NG-A to NG-7) versus NNS with 16 equivalent 6 cm × 15 cm guide entrances at 1.5 m from the cold source center.

Cold Source/ config	J_{tot} (all λ) (s ⁻¹)	$J_{tot} (\lambda \ge 4 \text{\AA}) (s^{-1})$
NBSR LH ₂ Unit 2 (all cold guides)	3.0×10 ¹³ (Ref. [i])	6.3×10 ¹² (Ref. [i])
NNS (6 cm × 20 cm) (16 equivalent guide entrances)	2.8×10 ¹⁴	7.0×10 ¹³
Gain NNS/NBSR Unit2	9.1	11.1

Table 14. Estimated "useful" (μ > 0.99875) neutron currents entering guide networks for NBSR (LH₂ Unit 2 cold source, guides NG-A to NG-7) versus NNS with 16 equivalent 6 cm × 20 cm guide entrances at 1.5 m from the cold source center.

Ratio of tally 121 mid bins NNS/NBSR LD₂ UNIT3

NNS Publications (since Oct. 2022)

- 1. D. Şahin, et al., "NIST Neutron Source Preconceptual Design", Proceedings of RERTR, Oct. 2022.
- 2. O. Çelikten, et al., "Highlights of Neutronics Analyses for the Pre-conceptual NIST Neutron Source Design", Proceedings of American Nuclear Society, Nov. 2022.
- 3. I.R. Baroukh, et al., "A Preliminary Thermal-hydraulics Analysis for the NIST Neutron Source", Proceedings of American Nuclear Society, Nov. 2022.
- 4. I.R. Baroukh, et al., "Preliminary CFD Investigations for the NIST Neutron Source", Proceedings of American Nuclear Society, Nov. 2022.
- 5. J.C. Cook, et al., "Proposed NIST Neutron Source User Facility", Proceedings of American Nuclear Society, Nov. 2022.
- 6. J.C. Cook, et al., "Neutron Delivery Systems Design of the Proposed NIST Neutron Source", Proceedings of American Nuclear Society, Nov. 2022.
- 7. D. Şahin, et al., "Pre-Conceptual Design of the NIST Neutron Source", Proceedings of RRFM, April 2023.
- 8. A.G. Weiss, et al., "Modeling Approach for the Design of the NIST Neutron Source", Proceedings of RRFM, April 2023.
- 9. O. Çelikten, et al., "Comparison of U₃Si₂ and U-10Mo LEU-fueled Reactor Cores for the Preconceptual NIST Neutron Source Design", Proceedings of ICONE30, May 2023.
- 10. J. Shen, et al., "Turbulence Model Sensitivity Analysis of Thermal-Hydraulic Properties on the Pre-Conceptual NIST Neutron Source Design", Proceedings of ICONE30, May 2023.
- 11. A.G. Weiss, et al., "Sensitivity Analyses of the Thermal-hydraulics Safety Margins in the Proposed NIST Neutron Source Design", Proceedings of ICONE30, May 2023.
- 12. Y. Shaposhnik, et al., "Alternative Reflectors for the NIST Neutron Source", In Transactions of TRTR/IGORR, June 2023.
- 13. A.G. Weiss, et al., "A Turbulence Model Sensitivity Analysis on the Hydraulic Behavior in the Inlet Plenum of the Proposed NIST Neutron Source Design", In Proceedings of NURETH-20, Aug. 2023.
- 14. A. Gurgen, et al., "Thermal-hydraulic Assessment of the Proposed NIST Neutron Source Design", In Proceedings of NURETH-20, Aug. 2023.

Thank you for listening!

Abdullah G. Weiss

NIST Center for Neutron Research 100 Bureau Drive, Gaithersburg, 20899, USA <u>abdullah.weiss@nist.gov</u>

Acknowledgements: Dağıstan Şahin, Jeremy C. Cook, John M. Jurns

Questions??

